99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代寫159.740編程、代做c/c++,Python程序
代寫159.740編程、代做c/c++,Python程序

時間:2024-11-04  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
Letter Recognition using Deep Neural Nets with Softmax Units 
Deadline: 4th of November 
Instructions: 
You are allowed to work in a group of 2 members for this assignment. 
Your task is to write a program that implements and tests a multi-layer feed-forward network for 
recognising characters defined in the UCI machine learning repository: 
http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
Requirements: 
1. Use QT to develop your Neural Network application. A short tutorial on QT, and a start-up 
code that will help you get started quickly with the assignment is provided via Stream. 
2. You may utilise/consult codes available in books and websites provided that you cite them 
properly, explain the codes clearly, and incorporate them with the start-up codes provided. 
3. Implement a multi-layer feed-forward network using backpropagation learning and test it on the 
given problem domain using different network configurations and parameter settings. There 
should be at least 2 hidden layers in your neural network. 
h21 h11 X1
X2
F1
F2 h12 h22
OF1
OF2
δh21
δh22 δh12
δf1
δf2
δh11
… … … … 
X16
Fm Hi Hj
OFm
Input node
Legend: 
hidden node
output node = softmax unit
 Note that all nodes, except the input nodes have a bias node attached to it. 
159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
A. Inputs 
 16 primitive numerical attributes (statistical moments and edge counts) 
 The input values in the data set have been scaled to fit into a range of integer values 
from 0 through 15. It is up to you if you want to normalise the inputs before feeding 
them to your network. 
B. Data sets 
 Use the data set downloadable from: 
 Training set: use the first 16,000 
 Test set/Validation set: use the remaining 4,000 
 Submit your training data, validation/test data in separate files. 
C. Performance measure: 
 Mean Squared Error (MSE) 
 Percentage of Good Classification (PGC) 
 Confusion Matrix (only for the best Neural Network configuration found) 
D. Training 
 Provide a facility for shuffling data before feeding it to the network during training 
 Provide a facility for continuing network training after loading weights from file (do not 
reset the weights). 
 Provide a facility for training the network continuously until either the maximum 
epochs have been reached, or the target percentage of good classification has been met. 
 For each training epoch, record the Mean Squared Error and the Percentage of Good 
Classification in a text file. You need this to plot the results of training later, to 
compare the effects of the parameter settings and the architecture of your network. 
E. Testing the Network 
 Calculate the performance of the network on the Test set in terms of both the MSE and 
PGC. 
F. Network Architecture 
 It is up to you to determine the number of hidden layers and number of hidden nodes 
per hidden layer in your network. The minimum number of hidden layers is 2. 
 Use softmax units at the output layer 
 Experiment with ReLU and tanh as the activation functions of your hidden units 
 Determine the weight-update formulas based on the activation functions used 
4. Provide an interface in your program for testing the network using an input string consisting of 
the 16 attributes. The results should indicate the character classification, and the 26 actual 
numeric outputs of the network. (the start-up codes partly include this functionality already, for 
a simple 3-layer network (1 hidden layer), but you need to modify it to make it work for the 
multiple hidden layer architecture that you have designed). 
5. Provide an interface in your program for: 
A. Reading the entire data set 
B. Initialising the network 
C. Loading trained weights 
D. Saving trained weights 
E. Training the network up to a maximum number of epochs 
159.740 Intelligent Systems
Assignment #2 
F. Testing the network on a specified test set (from a file) 
G. Shuffling the training set. 
6. Set the default settings of the user interface (e.g. learning rate, weights, etc.) to the best 
configuration that delivered the best experiment results. 
7. Use a fixed random seed number (123) so that any randomisation can be replicated empirically. 
8. It is up to you to write the main program, and any classes or data structures that you may 
require. 
9. You may choose to use a momentum term or regularization term, as part of backpropagation 
learning. Indicate in your documentation, if you are using this technique. 
10. You need to modify the weight-update rules to reflect the correct derivatives of the activation 
function used in your network architecture. 
11. Provide graphs in Excel showing the network performance on training data and test data 
(similar to the graphs discussed in the lecture). 
12. Provide the specifications of your best trained network. Fill-up Excel workbook 
(best_network_configuration.xlsx). 
13. Provide a confusion matrix for the best NN classifier system found in your experiments. 
14. Provide a short user guide for your program. 
15. Fill-up the Excel file, named checklist.xlsx, to allow for accurate marking of your assignment. 
Criteria for marking 
 Documentation – 30% 
o Submit the trained weights of your best network (name it as best_weights.txt) 
o Generate a graph of the performance of your best performing network (MSE vs. 
Epochs) on the training set and test set. 
o Generate a confusion matrix of your best network 
o fill-up the Excel file, named checklist.xlsx
o fill-up the Excel file, named best_network_configuration.xlsx
o provide a short user guide for your program 
 System implementation – 70% 
Nothing follows. 
N.H.Reyes 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:DATA 2100代寫、代做Python語言編程
  • 下一篇:ME5701程序代寫、代做Matlab設計編程
  • ·代寫2530FNW、代做Python程序語言
  • ·代寫CIS5200、代做Java/Python程序語言
  • ·LCSCI4207代做、Java/Python程序代寫
  • ·代寫COP3502、Python程序設計代做
  • ·代做MLE 5217、代寫Python程序設計
  • ·代寫ISAD1000、代做Java/Python程序設計
  • ·代做COMP3811、C++/Python程序設計代寫
  • ·代寫SCIE1000、代做Python程序設計
  • ·代寫comp2022、代做c/c++,Python程序設計
  • ·CVEN9612代寫、代做Java/Python程序設計
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                日韩中文字幕一区二区三区| 综合av第一页| 亚洲欧美另类久久久精品| 国产精品原创巨作av| 国产日韩影视精品| 成人丝袜视频网| 最新久久zyz资源站| 在线视频观看一区| 午夜日韩在线电影| 欧美一区二区三区色| 久久99精品一区二区三区| 国产午夜亚洲精品羞羞网站| www.日韩av| 天天操天天综合网| 欧美高清在线一区二区| 欧美视频一二三区| 狠狠网亚洲精品| 亚洲伦在线观看| 精品伦理精品一区| 色一情一伦一子一伦一区| 免费在线观看一区| 亚洲视频免费在线| 日韩精品一区在线观看| 91在线观看一区二区| 久久精品国产第一区二区三区| 国产精品久久99| 国产人成亚洲第一网站在线播放 | av色综合久久天堂av综合| 亚洲日穴在线视频| 欧美精品一区二区三区蜜桃视频| 成人国产电影网| 麻豆精品在线播放| 亚洲va欧美va天堂v国产综合| 国产亚洲va综合人人澡精品| 91麻豆精品国产91久久久资源速度 | 国产亚洲自拍一区| 欧美一区二区在线看| 91浏览器打开| 高清在线观看日韩| 国内精品第一页| 日本女优在线视频一区二区| 亚洲欧美欧美一区二区三区| 国产精品久久久久国产精品日日| 日韩欧美中文字幕公布| 欧美熟乱第一页| 在线观看一区二区精品视频| 成人午夜视频在线| 国产成人亚洲综合a∨婷婷| 乱一区二区av| 狠狠色丁香久久婷婷综合_中| 天堂一区二区在线| 日韩在线观看一区二区| 午夜影视日本亚洲欧洲精品| 伊人夜夜躁av伊人久久| 亚洲三级免费电影| 国产精品美女久久久久aⅴ | 亚洲国产精品久久久久秋霞影院 | 国产精品久久一卡二卡| 久久精品视频免费观看| 久久综合九色综合97_久久久| 欧美刺激午夜性久久久久久久| 在线成人午夜影院| 日韩美女在线视频| 精品伦理精品一区| 国产欧美一区二区精品仙草咪| 久久噜噜亚洲综合| 国产精品福利一区二区三区| 综合久久久久久| 天天操天天干天天综合网| 麻豆国产精品视频| 国产麻豆精品在线观看| 成人精品视频一区二区三区| 97成人超碰视| 91精品国产一区二区三区蜜臀| 欧美一区二区三区视频免费| 久久久国际精品| 国产精品日产欧美久久久久| 亚洲久草在线视频| 精品综合久久久久久8888| 成人天堂资源www在线| 国产.欧美.日韩| 欧美性大战久久久久久久| 日韩一级高清毛片| 中文字幕一区av| 午夜a成v人精品| 国产91清纯白嫩初高中在线观看| caoporm超碰国产精品| 7777精品久久久大香线蕉| 国产日韩高清在线| 亚洲va天堂va国产va久| 成人免费高清视频在线观看| 欧美日韩精品免费观看视频 | 欧美aaa在线| 国产精品77777竹菊影视小说| 97aⅴ精品视频一二三区| 51精品视频一区二区三区| 国产精品视频麻豆| 蜜臀久久99精品久久久久宅男| 成人av网站免费观看| 日韩欧美专区在线| 亚洲高清一区二区三区| 国产成人亚洲综合a∨婷婷| 3atv在线一区二区三区| 日韩毛片在线免费观看| 精品一区二区日韩| 69p69国产精品| 国产精品白丝av| 亚洲综合免费观看高清在线观看| 欧美精品久久一区| 久久这里只有精品视频网| 亚洲美女屁股眼交| 国产成人在线网站| 日韩欧美一区二区三区在线| 亚洲美女电影在线| 91亚洲精品乱码久久久久久蜜桃 | 欧美www视频| 亚洲国产成人精品视频| 色婷婷激情一区二区三区| 久久精品日产第一区二区三区高清版| 亚洲国产日韩精品| 色八戒一区二区三区| 亚洲丝袜另类动漫二区| 99视频精品全部免费在线| 欧美精品一区二区高清在线观看 | 91蝌蚪porny| 中文字幕亚洲电影| 国产在线视频不卡二| 欧美成人猛片aaaaaaa| 美脚の诱脚舐め脚责91| 91精品国产全国免费观看| 视频一区欧美日韩| 日韩一区二区免费在线电影| 婷婷综合五月天| 91精品国产麻豆| 久久国产婷婷国产香蕉| 日韩免费观看高清完整版| 麻豆视频一区二区| 久久综合丝袜日本网| 高清不卡在线观看av| 中文字幕第一区| 国产久卡久卡久卡久卡视频精品| 欧美一区二区视频在线观看2020 | 国产一区二区在线看| 欧美精品一区二区三区很污很色的| 午夜久久久久久久久| 欧美另类高清zo欧美| 婷婷夜色潮精品综合在线| 这里只有精品电影| 看片网站欧美日韩| 久久精品欧美日韩| 91蜜桃免费观看视频| 国产精品久久久久久久久动漫| 成人免费高清在线| 午夜精品一区二区三区三上悠亚| 欧美性大战久久久| 国产精品色一区二区三区| 91在线视频官网| 免费成人在线观看视频| 欧美v国产在线一区二区三区| 激情六月婷婷久久| 亚洲伦理在线精品| www国产亚洲精品久久麻豆| 成人h动漫精品一区二区| 午夜日韩在线观看| 中文字幕乱码日本亚洲一区二区| 色偷偷久久一区二区三区| 亚洲一区在线观看网站| 久久婷婷一区二区三区| 色综合久久中文综合久久97| 免费成人性网站| 亚洲最大的成人av| 久久精品夜夜夜夜久久| 欧美三级韩国三级日本一级| 国产v日产∨综合v精品视频| 亚洲国产精品一区二区久久| 国产农村妇女精品| 欧美一区二区三区的| 日本高清不卡视频| 粉嫩嫩av羞羞动漫久久久| 免费的国产精品| 亚洲成人综合视频| 成人欧美一区二区三区白人| 日韩欧美成人激情| 91超碰这里只有精品国产| 91网页版在线| av欧美精品.com| 精品亚洲成a人| 青青草一区二区三区| 亚洲大片一区二区三区| 亚洲欧美日韩中文播放 | 国产精品麻豆99久久久久久| 日韩一区二区免费高清| 欧美日韩精品福利| 97成人超碰视| 成人免费看黄yyy456| 国产精品18久久久久久久久| 精品一区免费av| 麻豆精品精品国产自在97香蕉| 午夜精品一区二区三区免费视频| 亚洲在线观看免费视频|