99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代寫159.740編程、代做c/c++,Python程序
代寫159.740編程、代做c/c++,Python程序

時間:2024-11-04  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
Letter Recognition using Deep Neural Nets with Softmax Units 
Deadline: 4th of November 
Instructions: 
You are allowed to work in a group of 2 members for this assignment. 
Your task is to write a program that implements and tests a multi-layer feed-forward network for 
recognising characters defined in the UCI machine learning repository: 
http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
Requirements: 
1. Use QT to develop your Neural Network application. A short tutorial on QT, and a start-up 
code that will help you get started quickly with the assignment is provided via Stream. 
2. You may utilise/consult codes available in books and websites provided that you cite them 
properly, explain the codes clearly, and incorporate them with the start-up codes provided. 
3. Implement a multi-layer feed-forward network using backpropagation learning and test it on the 
given problem domain using different network configurations and parameter settings. There 
should be at least 2 hidden layers in your neural network. 
h21 h11 X1
X2
F1
F2 h12 h22
OF1
OF2
δh21
δh22 δh12
δf1
δf2
δh11
… … … … 
X16
Fm Hi Hj
OFm
Input node
Legend: 
hidden node
output node = softmax unit
 Note that all nodes, except the input nodes have a bias node attached to it. 
159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
A. Inputs 
 16 primitive numerical attributes (statistical moments and edge counts) 
 The input values in the data set have been scaled to fit into a range of integer values 
from 0 through 15. It is up to you if you want to normalise the inputs before feeding 
them to your network. 
B. Data sets 
 Use the data set downloadable from: 
 Training set: use the first 16,000 
 Test set/Validation set: use the remaining 4,000 
 Submit your training data, validation/test data in separate files. 
C. Performance measure: 
 Mean Squared Error (MSE) 
 Percentage of Good Classification (PGC) 
 Confusion Matrix (only for the best Neural Network configuration found) 
D. Training 
 Provide a facility for shuffling data before feeding it to the network during training 
 Provide a facility for continuing network training after loading weights from file (do not 
reset the weights). 
 Provide a facility for training the network continuously until either the maximum 
epochs have been reached, or the target percentage of good classification has been met. 
 For each training epoch, record the Mean Squared Error and the Percentage of Good 
Classification in a text file. You need this to plot the results of training later, to 
compare the effects of the parameter settings and the architecture of your network. 
E. Testing the Network 
 Calculate the performance of the network on the Test set in terms of both the MSE and 
PGC. 
F. Network Architecture 
 It is up to you to determine the number of hidden layers and number of hidden nodes 
per hidden layer in your network. The minimum number of hidden layers is 2. 
 Use softmax units at the output layer 
 Experiment with ReLU and tanh as the activation functions of your hidden units 
 Determine the weight-update formulas based on the activation functions used 
4. Provide an interface in your program for testing the network using an input string consisting of 
the 16 attributes. The results should indicate the character classification, and the 26 actual 
numeric outputs of the network. (the start-up codes partly include this functionality already, for 
a simple 3-layer network (1 hidden layer), but you need to modify it to make it work for the 
multiple hidden layer architecture that you have designed). 
5. Provide an interface in your program for: 
A. Reading the entire data set 
B. Initialising the network 
C. Loading trained weights 
D. Saving trained weights 
E. Training the network up to a maximum number of epochs 
159.740 Intelligent Systems
Assignment #2 
F. Testing the network on a specified test set (from a file) 
G. Shuffling the training set. 
6. Set the default settings of the user interface (e.g. learning rate, weights, etc.) to the best 
configuration that delivered the best experiment results. 
7. Use a fixed random seed number (123) so that any randomisation can be replicated empirically. 
8. It is up to you to write the main program, and any classes or data structures that you may 
require. 
9. You may choose to use a momentum term or regularization term, as part of backpropagation 
learning. Indicate in your documentation, if you are using this technique. 
10. You need to modify the weight-update rules to reflect the correct derivatives of the activation 
function used in your network architecture. 
11. Provide graphs in Excel showing the network performance on training data and test data 
(similar to the graphs discussed in the lecture). 
12. Provide the specifications of your best trained network. Fill-up Excel workbook 
(best_network_configuration.xlsx). 
13. Provide a confusion matrix for the best NN classifier system found in your experiments. 
14. Provide a short user guide for your program. 
15. Fill-up the Excel file, named checklist.xlsx, to allow for accurate marking of your assignment. 
Criteria for marking 
 Documentation – 30% 
o Submit the trained weights of your best network (name it as best_weights.txt) 
o Generate a graph of the performance of your best performing network (MSE vs. 
Epochs) on the training set and test set. 
o Generate a confusion matrix of your best network 
o fill-up the Excel file, named checklist.xlsx
o fill-up the Excel file, named best_network_configuration.xlsx
o provide a short user guide for your program 
 System implementation – 70% 
Nothing follows. 
N.H.Reyes 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:DATA 2100代寫、代做Python語言編程
  • 下一篇:ME5701程序代寫、代做Matlab設計編程
  • ·代寫2530FNW、代做Python程序語言
  • ·代寫CIS5200、代做Java/Python程序語言
  • ·LCSCI4207代做、Java/Python程序代寫
  • ·代寫COP3502、Python程序設計代做
  • ·代做MLE 5217、代寫Python程序設計
  • ·代寫ISAD1000、代做Java/Python程序設計
  • ·代做COMP3811、C++/Python程序設計代寫
  • ·代寫SCIE1000、代做Python程序設計
  • ·代寫comp2022、代做c/c++,Python程序設計
  • ·CVEN9612代寫、代做Java/Python程序設計
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          国产精品嫩草影院av蜜臀| 亚洲在线电影| 国产午夜精品美女视频明星a级| 久久精品2019中文字幕| 亚洲精品资源美女情侣酒店| 国产日韩专区在线| 欧美日韩一区在线观看视频| 久久中文欧美| 欧美一区二区精品久久911| 亚洲免费成人| 亚洲狠狠丁香婷婷综合久久久| 国产欧美日韩在线播放| 欧美网站在线观看| 欧美久久久久| 欧美精品aa| 欧美成人精品高清在线播放| 久久久国产精品一区二区中文| 亚洲一区二区在线免费观看| 一区二区高清在线| 欧美三区在线视频| 欧美日本一区二区视频在线观看| 久久五月婷婷丁香社区| 久久久久久亚洲精品杨幂换脸 | 亚洲国产视频直播| 一区二区视频免费完整版观看| 国产美女在线精品免费观看| 国产精品久久波多野结衣| 欧美日韩一区二区三| 欧美精品一区三区| 欧美理论在线播放| 国产精品va| 国产精品久久国产精品99gif| 欧美午夜精品理论片a级按摩| 欧美精品二区| 欧美日韩色综合| 欧美日韩理论| 国产精品视频成人| 国产午夜精品一区二区三区视频| 国产精品综合| 1204国产成人精品视频| 亚洲国产精品va在线看黑人 | 久久久亚洲国产天美传媒修理工| 久久久久久999| 欧美激情一区二区三级高清视频| 欧美国产日韩一区二区在线观看| 欧美日韩调教| 国产丝袜一区二区三区| 影音先锋久久| av不卡在线看| 欧美一区二区精品久久911| 久久精品理论片| 欧美精品一区视频| 国产亚洲精品综合一区91| 在线观看免费视频综合| 在线中文字幕不卡| 久久久噜噜噜久噜久久| 欧美日韩另类丝袜其他| 国产在线视频不卡二| 亚洲欧洲综合另类在线| 欧美一级大片在线观看| 欧美激情在线观看| 国产无遮挡一区二区三区毛片日本| 影音欧美亚洲| 欧美在线视频一区二区三区| 欧美激情一区在线| 国产原创一区二区| 中文一区二区| 欧美国产一区在线| 国产综合香蕉五月婷在线| 99精品久久久| 老色鬼精品视频在线观看播放| 欧美日韩免费观看一区| 亚洲电影av在线| 久久久激情视频| 国产精品入口日韩视频大尺度| 亚洲经典在线| 久久婷婷色综合| 国产欧美日韩一区| 亚洲一区二区三区激情| 欧美护士18xxxxhd| 亚洲风情亚aⅴ在线发布| 久久国内精品视频| 国产精品久久久久久久久久直播| 亚洲高清视频的网址| 久久精品人人做人人爽电影蜜月| 欧美性猛交视频| 日韩一区二区高清| 欧美另类高清视频在线| 亚洲国产日韩欧美在线图片| 久久久久久久成人| 黄色精品一二区| 久久精品国产一区二区三区| 国产欧美视频一区二区三区| 亚洲色诱最新| 国产精品美女久久久久久久| av成人动漫| 欧美日韩一区二区在线观看| 99视频精品在线| 欧美电影免费| 136国产福利精品导航| 久久精品国产999大香线蕉| 国内精品久久久久久影视8 | 先锋影院在线亚洲| 国产色婷婷国产综合在线理论片a| 亚洲午夜三级在线| 国产精品久久久久毛片软件 | 国产精品美女久久久久av超清 | 欧美性开放视频| 在线综合亚洲| 国产麻豆9l精品三级站| 久久国产精品久久久久久久久久| 国产一区二区电影在线观看| 久久精品麻豆| 亚洲国产精品一区二区www| 欧美成人免费大片| 在线综合亚洲欧美在线视频| 国产精品美女| 久久性色av| 亚洲精品色婷婷福利天堂| 国产精品swag| 久久精品国产99国产精品澳门| 亚洲国产精品一区制服丝袜| 欧美激情精品久久久久久大尺度| av成人黄色| 国产一区二区电影在线观看| 久久免费黄色| 亚洲专区一区二区三区| 国内精品久久久久影院色| 欧美不卡高清| 香蕉久久一区二区不卡无毒影院| 伊人久久综合97精品| 欧美日韩综合| 老牛国产精品一区的观看方式| 亚洲精品久久久蜜桃| 欧美午夜在线一二页| 老司机亚洲精品| 午夜精品成人在线| 亚洲日产国产精品| 国产一区二区丝袜高跟鞋图片 | 久久久久久国产精品一区| 99re6这里只有精品| 国产视频精品va久久久久久| 欧美电影专区| 久久手机精品视频| 亚洲欧美亚洲| 一本色道久久综合一区| 狠狠色丁香久久婷婷综合丁香| 欧美日韩一区成人| 久久天天躁夜夜躁狠狠躁2022 | 亚洲先锋成人| 日韩视频三区| 一区二区三区中文在线观看| 国产精品一区二区黑丝| 欧美日韩免费一区二区三区| 美女视频黄免费的久久| 欧美综合77777色婷婷| 亚洲天堂av电影| 亚洲伦理在线免费看| 影音先锋久久久| 国产欧美视频一区二区三区| 欧美午夜国产| 国产精品国内视频| 欧美日韩综合视频| 欧美日韩视频在线第一区| 欧美成人免费一级人片100| 久久久久久久综合| 久久久久国产成人精品亚洲午夜| 欧美一区二区三区四区在线观看| 亚洲伦理一区| 99精品国产在热久久下载| 亚洲国产婷婷香蕉久久久久久99| 韩日视频一区| 亚洲人人精品| 99热精品在线| 亚洲综合色婷婷| 欧美一区二区三区四区在线观看| 欧美一二三区精品| 久久精品亚洲精品国产欧美kt∨| 欧美一区二区三区视频免费播放| 欧美亚洲色图校园春色| 中文国产成人精品久久一| 亚洲一区二区三区欧美 | 国产精品盗摄久久久| 国产精品久久久久7777婷婷| 国产精品嫩草影院av蜜臀| 国产综合色一区二区三区 | 欧美77777| 欧美精品在线一区二区| 欧美午夜免费电影| 国产欧美日本| 在线精品视频一区二区三四| 亚洲人成毛片在线播放| 亚洲特级毛片| 久久国产精品免费一区| 欧美激情国产日韩| 国产乱肥老妇国产一区二| 伊人蜜桃色噜噜激情综合| 亚洲国产精品www| 亚洲一区免费观看| 久久亚洲一区二区三区四区|