99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CIS5200、代做Java/Python程序語言
代寫CIS5200、代做Java/Python程序語言

時間:2024-11-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CIS5200: Machine Learning Fall 2024
Homework 2
Release Date: October 9, 2024 Due Date: October 18, 2024
• HW2 will count for 10% of the grade. This grade will be split between the written (30 points)
and programming (40 points) parts.
• All written homework solutions are required to be formatted using LATEX. Please use the
template here. Do not modify the template. This is a good resource to get yourself more
familiar with LATEX, if you are still not comfortable.
• You will submit your solution for the written part of HW2 as a single PDF file via Gradescope.
The deadline is 11:59 PM ET. Contact TAs on Ed if you face any issues uploading your
homeworks.
• Collaboration is permitted and encouraged for this homework, though each student must
understand, write, and hand in their own submission. In particular, it is acceptable for
students to discuss problems with each other; it is not acceptable for students to look at
another student’s written Solutions when writing their own. It is also not acceptable to
publicly post your (partial) solution on Ed, but you are encouraged to ask public questions
on Ed. If you choose to collaborate, you must indicate on each homework with whom you
collaborated.
Please refer to the notes and slides posted on the website if you need to recall the material discussed
in the lectures.
1 Written Questions (30 points)
Problem 1: Gradient Descent (20 points)
Consider a training dataset S = {(x1, y1), . . . ,(xm, ym)} where for all i ∈ [m], ∥xi∥2 ≤ 1 and
yi ∈ {−1, 1}. Suppose we want to run regularized logistic regression, that is, solve the following
optimization problem: for regularization term R(w),
min
w m
1
mX
i=1
log  1 + exp  −yiw
⊤xi
 + R(w)
Recall: For showing that a twice differentiable function f is µ-strongly convex, it suffices to show
that the hessian satisfies: ∇2f ⪰ µI. Similarly to show hat a twice differentiable function f is
L-smooth, it suffices to show that the hessian satisfies: LI ⪰ ∇2f. Here I is the identity matrix of
the appropriate dimension.
1
1.1 (3 points) In the case where R(w) = 0, we know that the objective is convex. Is it strongly
convex? Explain your answer.
1.2 (3 points) In the case where R(w) = 0, show that the objective is **smooth.
1.3 (4 points) In the case of R(w) = 0, what is the largest learning rate that you can choose such
that the objective is non-increasing at each iteration? Explain your answer.
Hint: The answer is not 1/L for a L-smooth function.
1.4 (1 point) What is the convergence rate of gradient descent on this problem with R(w) = 0?
In other words, suppose I want to achieve F(wT +1) − F(w∗) ≤ ϵ, express the number of iterations
T that I need to run GD for.
Note: You do not need to reprove the convergence guarantee, just use the guarantee to provide the
rate.
1.5 (5 points) Consider the following variation of the ℓ2 norm regularizer called the weighted ℓ2
norm regularizer: for λ1, . . . , λd ≥ 0,
Show that the objective with R(w) as defined above is µ-strongly convex and L-smooth for µ =
2 minj∈[d] λj and L = 1 + 2 maxj∈[d] λj .
1.6 (4 points) If a function is µ-strongly convex and L-smooth, after T iterations of gradient
descent we have:
Using the above, what is the convergence rate of gradient descent on the regularized logistic re gression problem with the weighted ℓ2 norm penalty? In other words, suppose I want to achieve
∥wT +1 − w∗∥2 ≤ ϵ, express the number of iterations T that I need to run GD.
Note: You do not need to prove the given convergence guarantee, just provide the rate.
Problem 2: MLE for Linear Regression (10 points)
In this question, you are going to derive an alternative justification for linear regression via the
squared loss. In particular, we will show that linear regression via minimizing the squared loss is
equivalent to maximum likelihood estimation (MLE) in the following statistical model.
Assume that for given x, there exists a true linear function parameterized by w so that the label y
is generated randomly as
y = w
⊤x + ϵ
2
where ϵ ∼ N (0, σ2
) is some normally distributed noise with mean 0 and variance σ
2 > 0. In other
words, the labels of your data are equal to some true linear function, plus Gaussian noise around
that line.
2.1 (3 points) Show that the above model implies that the conditional density of y given x is
P p(y|x) = 1.
Hint: Use the density function of the normal distribution, or the fact that adding a constant to a
Gaussian random variable shifts the mean by that constant.
2.2 (2 points) Show that the risk of the predictor f(x) = E[y|x] is σ.
2.3 (3 points) The likelihood for the given data {(x1, y1), . . . ,(xm, ym)} is given by.
Lˆ(w, σ) = p(y1, . . . , ym|x1, . . . , xm) =
Compute the log conditional likelihood, that is, log Lˆ(w, σ).
Hint: Use your expression for p(y | x) from part 2.1.
2.4 (2 points) Show that the maximizer of log Lˆ(w, σ) is the same as the minimizer of the empirical
risk with squared loss, ˆR(w) = m
Hint: Take the derivative of your result from 2.3 and set it equal to zero.
2 Programming Questions (20 points)
Use the link here to access the Google Colaboratory (Colab) file for this homework. Be sure to
make a copy by going to “File”, and “Save a copy in Drive”. As with the previous homeworks, this
assignment uses the PennGrader system for students to receive immediate feedback. As noted on
the notebook, please be sure to change the student ID from the default ‘99999999’ to your 8-digit
PennID.
Instructions for how to submit the programming component of HW 2 to Gradescope are included
in the Colab notebook. You may find this PyTorch linear algebra reference and this general
PyTorch reference to be helpful in perusing the documentation and finding useful functions for
your implementation.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代寫MMME4056、代做MATLAB編程設計
  • 下一篇:CSCI 201代做、代寫c/c++,Python編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          日韩视频免费在线观看| 欧美在线www| 亚洲系列中文字幕| 午夜精品久久久久久久白皮肤| 亚洲专区免费| 久久免费视频这里只有精品| 欧美aa在线视频| 国产精品护士白丝一区av| 国产精品午夜在线观看| 激情一区二区| 在线亚洲美日韩| 亚洲欧美日韩在线综合| 麻豆国产精品777777在线| 欧美成人a视频| 国产欧美日韩视频| 91久久国产精品91久久性色| 亚洲一区免费观看| 欧美成人精品一区二区三区| 国产精品久久久久久久浪潮网站 | 伊人久久综合| 亚洲私人影院| 牛牛精品成人免费视频| 国产精品男gay被猛男狂揉视频| 激情久久久久久久| 亚洲主播在线播放| 欧美激情综合五月色丁香小说| 国产精品永久免费观看| 国产三区精品| 久久国产毛片| 欧美激情国产高清| 国产一区二区黄| 日韩一级大片在线| 久久综合久久久久88| 国产精品久久77777| 亚洲人成久久| 久久久国产成人精品| 欧美丝袜第一区| 亚洲日韩中文字幕在线播放| 欧美在线免费观看| 国产精品国产三级国产普通话三级 | 欧美激情一区在线观看| 国产在线视频欧美一区二区三区| 99国产精品私拍| 午夜视频在线观看一区二区| 欧美日韩精选| 亚洲电影网站| 狂野欧美激情性xxxx| 国产日韩精品一区| 亚洲欧美综合精品久久成人| 欧美吻胸吃奶大尺度电影| 亚洲国产毛片完整版 | 日韩视频中文| 欧美高清在线播放| 亚洲精品字幕| 欧美成人dvd在线视频| 在线播放日韩专区| 欧美xx视频| 亚洲欧洲日韩在线| 欧美成人精品一区二区三区| 尤物视频一区二区| 免费成人av在线看| 91久久精品一区| 欧美久久99| 亚洲婷婷国产精品电影人久久| 欧美日韩另类视频| 亚洲影视中文字幕| 国产日韩欧美成人| 久久欧美中文字幕| 亚洲精品影视| 国产精品国产自产拍高清av王其| 亚洲欧美日韩一区在线观看| 国产一区二区中文| 蜜桃av噜噜一区| 日韩一级黄色片| 国产精品无人区| 久久免费偷拍视频| 一区二区欧美视频| 国产日韩精品一区二区三区| 久久久久久一区二区| 亚洲人成毛片在线播放| 欧美午夜视频网站| 欧美一区二区三区在线看| 亚洲成色最大综合在线| 欧美三级特黄| 久久久一本精品99久久精品66| 亚洲欧洲视频| 国产精品三区www17con| 久久综合狠狠综合久久综合88| 最新亚洲激情| 国产午夜亚洲精品理论片色戒| 麻豆精品精华液| 亚洲免费视频一区二区| 狠狠色狠狠色综合人人| 欧美日韩黄色大片| 久久久九九九九| 亚洲一区二区黄色| 亚洲成色精品| 国产日韩欧美亚洲一区| 欧美精品成人91久久久久久久| 欧美在线999| 日韩亚洲不卡在线| 又紧又大又爽精品一区二区| 国产精品美女主播在线观看纯欲| 免费视频亚洲| 久久久精品欧美丰满| 亚洲天堂男人| 亚洲人成亚洲人成在线观看| 韩国三级在线一区| 国产精品视频在线观看| 欧美精品播放| 欧美国产综合视频| 久久精品一区二区三区四区| 午夜精品久久久久| 亚洲少妇一区| 在线亚洲激情| 亚洲视频中文字幕| 一区二区三区导航| 9色国产精品| 日韩一二三在线视频播| 亚洲人成亚洲人成在线观看图片| 国内精品久久久久久久影视蜜臀| 国产精品免费观看在线| 国产精品国产a级| 国产精品高清免费在线观看| 欧美日韩国产一区| 欧美日本韩国在线| 欧美激情在线免费观看| 欧美激情精品久久久久久| 欧美成人午夜| 欧美激情自拍| 欧美三日本三级少妇三2023| 欧美日韩色一区| 欧美午夜不卡在线观看免费| 欧美三日本三级少妇三2023| 欧美性事在线| 国产拍揄自揄精品视频麻豆| 国产色视频一区| 国内成+人亚洲+欧美+综合在线| 国产女精品视频网站免费| 国产欧美日韩综合一区在线播放 | 国产日韩精品视频一区| 国产亚洲一级高清| 禁断一区二区三区在线| 亚洲国产另类久久久精品极度| 91久久精品一区| 一本久久a久久精品亚洲| 一区二区免费看| 午夜精品在线看| 久久亚洲国产精品日日av夜夜| 久久伊人一区二区| 欧美日韩高清在线| 国产精品一区二区你懂的| 国产一区二区高清不卡| 亚洲国产99| 亚洲视频专区在线| 久久精品人人做人人综合| 免费看黄裸体一级大秀欧美| 欧美午夜精品理论片a级大开眼界| 欧美午夜激情在线| 国产在线精品一区二区中文| 亚洲激情电影中文字幕| 一本色道久久综合狠狠躁篇的优点| 亚洲一区二区黄| 久久久一区二区| 欧美日韩在线亚洲一区蜜芽| 国产一区二区三区成人欧美日韩在线观看 | 免费一级欧美片在线播放| 欧美乱妇高清无乱码| 国产日韩欧美在线观看| 亚洲精品少妇网址| 久久久精品欧美丰满| 欧美视频在线免费| 1024国产精品| 午夜精品福利在线观看| 欧美精品 日韩| 一区二区在线视频观看| 亚洲一卡久久| 欧美韩日视频| 国产一区二区三区久久精品| 一区二区三区|亚洲午夜| 久久一二三区| 国产情人节一区| 在线亚洲一区观看| 欧美成人精品一区| 加勒比av一区二区| 午夜精品久久久久久99热| 欧美老女人xx| 亚洲国产高清aⅴ视频| 久久成人在线| 国产精品一二一区| 亚洲无吗在线| 欧美日韩国产精品一卡| 亚洲国产精品999| 久久精品盗摄| 国产亚洲欧美激情| 午夜亚洲福利在线老司机| 国产精品www色诱视频| 亚洲最新中文字幕| 欧美日本韩国一区| 亚洲精品系列|