99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CIS5200、代做Java/Python程序語言
代寫CIS5200、代做Java/Python程序語言

時間:2024-11-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CIS5200: Machine Learning Fall 2024
Homework 2
Release Date: October 9, 2024 Due Date: October 18, 2024
• HW2 will count for 10% of the grade. This grade will be split between the written (30 points)
and programming (40 points) parts.
• All written homework solutions are required to be formatted using LATEX. Please use the
template here. Do not modify the template. This is a good resource to get yourself more
familiar with LATEX, if you are still not comfortable.
• You will submit your solution for the written part of HW2 as a single PDF file via Gradescope.
The deadline is 11:59 PM ET. Contact TAs on Ed if you face any issues uploading your
homeworks.
• Collaboration is permitted and encouraged for this homework, though each student must
understand, write, and hand in their own submission. In particular, it is acceptable for
students to discuss problems with each other; it is not acceptable for students to look at
another student’s written Solutions when writing their own. It is also not acceptable to
publicly post your (partial) solution on Ed, but you are encouraged to ask public questions
on Ed. If you choose to collaborate, you must indicate on each homework with whom you
collaborated.
Please refer to the notes and slides posted on the website if you need to recall the material discussed
in the lectures.
1 Written Questions (30 points)
Problem 1: Gradient Descent (20 points)
Consider a training dataset S = {(x1, y1), . . . ,(xm, ym)} where for all i ∈ [m], ∥xi∥2 ≤ 1 and
yi ∈ {−1, 1}. Suppose we want to run regularized logistic regression, that is, solve the following
optimization problem: for regularization term R(w),
min
w m
1
mX
i=1
log  1 + exp  −yiw
⊤xi
 + R(w)
Recall: For showing that a twice differentiable function f is µ-strongly convex, it suffices to show
that the hessian satisfies: ∇2f ⪰ µI. Similarly to show hat a twice differentiable function f is
L-smooth, it suffices to show that the hessian satisfies: LI ⪰ ∇2f. Here I is the identity matrix of
the appropriate dimension.
1
1.1 (3 points) In the case where R(w) = 0, we know that the objective is convex. Is it strongly
convex? Explain your answer.
1.2 (3 points) In the case where R(w) = 0, show that the objective is **smooth.
1.3 (4 points) In the case of R(w) = 0, what is the largest learning rate that you can choose such
that the objective is non-increasing at each iteration? Explain your answer.
Hint: The answer is not 1/L for a L-smooth function.
1.4 (1 point) What is the convergence rate of gradient descent on this problem with R(w) = 0?
In other words, suppose I want to achieve F(wT +1) − F(w∗) ≤ ϵ, express the number of iterations
T that I need to run GD for.
Note: You do not need to reprove the convergence guarantee, just use the guarantee to provide the
rate.
1.5 (5 points) Consider the following variation of the ℓ2 norm regularizer called the weighted ℓ2
norm regularizer: for λ1, . . . , λd ≥ 0,
Show that the objective with R(w) as defined above is µ-strongly convex and L-smooth for µ =
2 minj∈[d] λj and L = 1 + 2 maxj∈[d] λj .
1.6 (4 points) If a function is µ-strongly convex and L-smooth, after T iterations of gradient
descent we have:
Using the above, what is the convergence rate of gradient descent on the regularized logistic re gression problem with the weighted ℓ2 norm penalty? In other words, suppose I want to achieve
∥wT +1 − w∗∥2 ≤ ϵ, express the number of iterations T that I need to run GD.
Note: You do not need to prove the given convergence guarantee, just provide the rate.
Problem 2: MLE for Linear Regression (10 points)
In this question, you are going to derive an alternative justification for linear regression via the
squared loss. In particular, we will show that linear regression via minimizing the squared loss is
equivalent to maximum likelihood estimation (MLE) in the following statistical model.
Assume that for given x, there exists a true linear function parameterized by w so that the label y
is generated randomly as
y = w
⊤x + ϵ
2
where ϵ ∼ N (0, σ2
) is some normally distributed noise with mean 0 and variance σ
2 > 0. In other
words, the labels of your data are equal to some true linear function, plus Gaussian noise around
that line.
2.1 (3 points) Show that the above model implies that the conditional density of y given x is
P p(y|x) = 1.
Hint: Use the density function of the normal distribution, or the fact that adding a constant to a
Gaussian random variable shifts the mean by that constant.
2.2 (2 points) Show that the risk of the predictor f(x) = E[y|x] is σ.
2.3 (3 points) The likelihood for the given data {(x1, y1), . . . ,(xm, ym)} is given by.
Lˆ(w, σ) = p(y1, . . . , ym|x1, . . . , xm) =
Compute the log conditional likelihood, that is, log Lˆ(w, σ).
Hint: Use your expression for p(y | x) from part 2.1.
2.4 (2 points) Show that the maximizer of log Lˆ(w, σ) is the same as the minimizer of the empirical
risk with squared loss, ˆR(w) = m
Hint: Take the derivative of your result from 2.3 and set it equal to zero.
2 Programming Questions (20 points)
Use the link here to access the Google Colaboratory (Colab) file for this homework. Be sure to
make a copy by going to “File”, and “Save a copy in Drive”. As with the previous homeworks, this
assignment uses the PennGrader system for students to receive immediate feedback. As noted on
the notebook, please be sure to change the student ID from the default ‘99999999’ to your 8-digit
PennID.
Instructions for how to submit the programming component of HW 2 to Gradescope are included
in the Colab notebook. You may find this PyTorch linear algebra reference and this general
PyTorch reference to be helpful in perusing the documentation and finding useful functions for
your implementation.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代寫MMME4056、代做MATLAB編程設計
  • 下一篇:CSCI 201代做、代寫c/c++,Python編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                精品久久久久久亚洲综合网| 国产欧美日本一区视频| 久久人人超碰精品| 国产乱一区二区| 精品免费日韩av| 91在线播放网址| 国产精品午夜久久| 一本一道久久a久久精品| 日韩一级视频免费观看在线| 日韩电影在线观看电影| 精品日韩成人av| 成人一区在线看| 亚洲午夜电影网| 精品嫩草影院久久| 不卡的电视剧免费网站有什么| 亚洲同性gay激情无套| 欧美日韩久久一区二区| 久久精品国产网站| 中文字幕亚洲欧美在线不卡| 欧美性受xxxx| 国产精品一区二区在线播放| 一区二区三区加勒比av| 日韩精品一区二区在线| 不卡视频在线看| 日韩精品一卡二卡三卡四卡无卡| 精品国产一区二区精华| 91麻豆成人久久精品二区三区| 日本系列欧美系列| 亚洲视频在线一区| 欧美大白屁股肥臀xxxxxx| 波多野结衣在线aⅴ中文字幕不卡| 亚洲va天堂va国产va久| 中文字幕欧美区| 五月婷婷综合在线| 国产日韩欧美综合一区| 在线欧美日韩精品| 日本不卡在线视频| 久久综合色鬼综合色| 91色porny蝌蚪| 狠狠色丁香九九婷婷综合五月| 一区视频在线播放| 欧美男女性生活在线直播观看| 国产精品99久久久久久似苏梦涵 | 亚洲美女偷拍久久| 26uuu国产在线精品一区二区| 欧美日韩一区不卡| 91一区二区在线观看| 国产99久久久精品| 韩国v欧美v亚洲v日本v| 日本在线不卡一区| 五月激情综合婷婷| 亚洲综合成人网| 亚洲欧美成人一区二区三区| 国产精品日日摸夜夜摸av| 久久天堂av综合合色蜜桃网| 日韩三级中文字幕| 欧美日韩国产免费| 欧美男人的天堂一二区| 欧美视频三区在线播放| 在线精品观看国产| 欧美美女一区二区三区| 欧美日韩国产综合视频在线观看| 91高清在线观看| 欧美精品一卡二卡| 欧美一区二区在线免费播放| 911国产精品| 日av在线不卡| 激情综合一区二区三区| 久久99在线观看| 成人成人成人在线视频| 在线观看亚洲精品视频| 91精品国产91热久久久做人人| 日韩女优电影在线观看| 国产成人在线视频网站| 99久久久久久99| 色老汉av一区二区三区| 欧美群妇大交群的观看方式| 精品国产乱码久久久久久久久| 国产亚洲欧美日韩日本| 亚洲精品午夜久久久| 亚洲国产精品一区二区www| 日韩av一级片| a级高清视频欧美日韩| 欧美午夜免费电影| 欧美mv和日韩mv的网站| 亚洲图片你懂的| 丝袜美腿一区二区三区| 国产精品中文字幕日韩精品 | 久久精品一区蜜桃臀影院| 中文字幕亚洲区| 日韩av电影免费观看高清完整版| 亚洲精品免费视频| 国产在线播放一区二区三区| 色综合一区二区| 日韩亚洲欧美中文三级| 国产精品福利影院| 久久精品国产澳门| 一本色道久久综合狠狠躁的推荐 | 国产最新精品免费| 日本韩国精品一区二区在线观看| 精品久久久久久久久久久久包黑料| 亚洲国产精品精华液2区45| 午夜不卡av免费| 91一区二区三区在线播放| 欧美成人精品3d动漫h| 亚洲最新视频在线播放| 国产成人av自拍| 欧美大尺度电影在线| 伊人夜夜躁av伊人久久| 国产成人精品网址| 欧美va天堂va视频va在线| 一区二区三区国产| 国产**成人网毛片九色| 欧美不卡一二三| 视频精品一区二区| 欧美性色黄大片| 日韩美女久久久| 不卡高清视频专区| 国产亚洲精品资源在线26u| 日韩黄色一级片| 欧美日韩国产精品成人| 亚洲一区二区三区四区在线观看| 成人精品国产免费网站| 欧美激情在线一区二区| 国产综合久久久久久久久久久久| 91精品国产免费| 日日夜夜一区二区| 欧美酷刑日本凌虐凌虐| 日韩精品国产欧美| 欧美一级在线免费| 蜜臀久久99精品久久久画质超高清| 欧美精品久久99| 免费观看成人av| 26uuu国产电影一区二区| 国产精品夜夜嗨| 一区二区中文视频| 欧美怡红院视频| 美女看a上一区| 中文字幕欧美区| 色女孩综合影院| 亚洲成人av福利| 日韩美女视频在线| 国产福利不卡视频| 综合电影一区二区三区| 欧美视频完全免费看| 九九在线精品视频| 国产精品入口麻豆原神| 欧美系列日韩一区| 久久国产精品无码网站| 国产精品视频线看| 欧美日韩国产另类不卡| 国产传媒日韩欧美成人| 亚洲香肠在线观看| 精品美女被调教视频大全网站| 成人午夜私人影院| 亚洲高清免费在线| 国产人久久人人人人爽| 欧美日韩视频一区二区| 国产成人午夜片在线观看高清观看| 一区二区在线看| 日韩一级片在线播放| 91在线云播放| 精品一区二区免费在线观看| 亚洲视频中文字幕| 日韩美女在线视频| 在线看不卡av| 国产精一区二区三区| 亚洲精品中文字幕乱码三区| 欧美丰满嫩嫩电影| 成人av电影在线网| 日韩西西人体444www| 国产不卡高清在线观看视频| 久久免费看少妇高潮| 91蝌蚪porny| 亚洲成av人片观看| 亚洲永久精品大片| 国产精品美女久久久久久久| 91成人免费电影| 久久精品国内一区二区三区| 亚洲国产精品一区二区久久| 日韩欧美美女一区二区三区| 国产盗摄一区二区三区| 自拍av一区二区三区| 91精品国产福利| youjizz久久| 美国十次综合导航| 天堂影院一区二区| 国产精品区一区二区三区| 欧美卡1卡2卡| 欧美性色黄大片手机版| 国产一区二区三区日韩| 亚洲最大色网站| 国产精品免费视频网站| 久久精品水蜜桃av综合天堂| 欧美日韩国产综合久久 | 麻豆91在线观看| 亚洲免费观看高清完整版在线观看熊| 5858s免费视频成人| 91精品国产福利| 91国模大尺度私拍在线视频|