合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

        代做MLE 5217、代寫Python程序設計
        代做MLE 5217、代寫Python程序設計

        時間:2024-10-23  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



        Dept. of Materials Science & Engineering NUS
        MLE 5217 : Take-Home Assignments
        Objectives
        Based on the chemical composition of materials build a classiffcation model to distinguish metals and non-metals
        (Model 1), and then build a regression model to predict the bandgap of non-metallic compounds (Model 2).
        Please use a separate jupyter notebook for each of the models.
        Data
        The data contains the chemical formula and energy band gaps (in eV) of experimentally measured compounds.
        These measurements have been obtained using a number of techniques such as diffuse reffectance, resistivity
        measurements, surface photovoltage, photoconduction, and UV-vis measurements. Therefore a given compound
        may have more than one measurement value.
        Tasks
        Model I (30 marks)
        Dataset: Classiffcation data.csv
        Fit a Support Vector Classiffcation model to separate metals from non-metals in the data. Ensure that you:
        • Follow the usual machine learning process.
        • Use a suitable composition based feature vector to vectorize the chemical compounds.
        • You may use your judgement on how to differentiate between metals & non-metals. As a guide, two possible
        options are given below.
        Option 1 : for metals Eg = 0, and Non-metals Eg > 0
        Option 2: for metals Eg ≤ 0.5, for non-metals Eg > 0.5
        • Use suitable metrics to quantify the performance of the classiffer.
        • For added advantage you may optimize the hyper-parameters of the Support Vector Classiffer. Note: Optimization
         algorithms can require high processing power, therefore may cause your computer to freeze (Ensure
        you have saved all your work before you run such codes). In such a case you may either do a manual
        optimization or leave the code without execution.
        • Comment on the overall performance of the model.
        Model II (30 marks)
        Dataset: Regression data.csv
        Fit a Regression Equation to the non-metals to predict the bandgap energies based on their chemical composition
        • Use a suitable composition based feature vector to vectorize the chemical compounds. You may try multiple
        feature vectors and analyse the outcomes.
        • You may experiment with different models for regression analysis if required.
        • Comment on the overall performance of the model and suggest any short-comings or potential improvements.
        September 2024Important : Comments
        • Write clear comments in the code so that a user can follow the logic.
        • In instances where you have made decisions, justify them.
        • In instances where you may have decided to follow a different analysis path (than what is outlined in the
        tasks), explain your thinking in the comments.
        • Acknowledge (if any) references used at the bottom of the notebook.
        Submission
        • Ensure that each of the cells of code in the ffnal Jupyter notebooks have been Run for output (Except for
        the hyper-parameter optimization if any).
        • The two models (I and II) have been entered in two separate notebooks.
        • Name the ffles by your name as ”YourName 1.ipynb” and ”YourName 2.ipynb”
        • It is your responsibility to Ensure that the correct ffles are being submitted, and the ffle extensions
        are in the correct format (.ipynb).
        • Submission will be via Canvas, and late submissions will be penalized.
        Evaluation
        The primary emphasis will be on the depth and thoroughness of your approach to the problem. Key areas of focus
        will include:
        * Data Exploration: Demonstrating a thorough investigation of the data, exploring different analytical
        possibilities, and thoughtfully selecting the best course of action.
        * Implementation: Translating your chosen approach into clean and efffcient code.
        * Machine Learning Process: Executing the machine learning process correctly and methodically, ensuring
        proper data handling, model selection, and evaluation.
        * Clarity of Explanation: Providing clear explanations of each step, with logical reasoning for the decisions made.
        *Critical Analysis: Identifying any limitations of the approach, suggesting potential improvements, and making
        relevant statistical inferences based on the results.
        ================================================================


        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






         

        掃一掃在手機打開當前頁
      1. 上一篇:代寫ISAD1000、代做Java/Python程序設計
      2. 下一篇:代寫B(tài)attleship 、代做Game 設計程序
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發(fā)動機性能
        挖掘機濾芯提升發(fā)動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網(wǎng)400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網(wǎng)
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 日本一区二区三区高清| 国语对白一区二区三区| 精品无码综合一区二区三区| 国模精品一区二区三区视频| 日韩人妻精品一区二区三区视频 | 在线精品视频一区二区| 久久久99精品一区二区| 国产aⅴ精品一区二区三区久久| 精品三级AV无码一区| 无码人妻精品一区二区| 国产激情з∠视频一区二区| 一区二区三区影院| 一区二区三区高清视频在线观看 | 人妻体内射精一区二区| 日韩精品久久一区二区三区| 亚洲熟女乱色一区二区三区 | 国产一区二区三区精品久久呦| 91成人爽a毛片一区二区| 日韩精品一区二区三区中文| 亚洲一区二区三区日本久久九| 国产免费一区二区视频| 国产亚洲一区二区在线观看| 亚洲一区AV无码少妇电影☆| 国产精品视频一区二区噜噜| 无码精品人妻一区二区三区人妻斩| 国产一区三区二区中文在线| 精品久久一区二区| 少妇无码一区二区三区免费| 日韩高清国产一区在线| 日韩一区二区视频在线观看| 久久人妻无码一区二区| 国产福利一区视频| 日韩一区二区三区在线观看| 丰满人妻一区二区三区免费视频| 99久久精品国产高清一区二区| 在线精品动漫一区二区无广告| 无码人妻AV免费一区二区三区| 亚洲日韩AV无码一区二区三区人| 国产欧美一区二区精品仙草咪| 日本一区视频在线播放| 久久精品一区二区三区中文字幕 |