99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

MSE 5760代做、代寫C/C++,Java程序
MSE 5760代做、代寫C/C++,Java程序

時間:2025-05-06  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MSE 5760: Spring 2025 HW 6 (due 05/04/25)
Topic: Autoencoders (AE) and Variational Autoencoders (VAE)
Background:
In this final homework, you will build a deep autoencoder, a convolutional 
autoencoder and a denoising autoencoder to reconstruct images of an isotropic composite 
with different volume fractions of fibers distributed in the matrix. Five different volume 
fraction of fibers are represented in the dataset and these form five different class labels for 
the composites. After the initial practice with AEs and reconstruction of images using latent 
vectors, you will build a VAE to examine the same dataset. After training the VAE (as best 
as you can using the free colab resources to reproduces images), you will use it to generate 
new images by randomly sampling datapoints from the learned probability distribution of 
the data in latent space. Finally, you will build a conditional VAE to not only generate new 
images but generate them for arbitrary volume fractions of fibers in the composite.
The entire dataset containing 10,000 images of composites with five classes of 
volume fractions of fibers was built by Zequn He (currently a Ph.D. student in MEAM in 
Prof. Celia Reina’s group who helped put together this course in Summer 2022 by designing 
all the labs and homework sets). Each image in the dataset shows three fibers of different 
volumes with circular cross sections. Periodic boundary conditions were used to generate 
the images. Hence, in some images, the three fiber particles may appear broken up into
more than three pieces. The total cross sectional area of all the fibers in each image can, 
however, be divided equally among three fibers. Please do not use this dataset for other 
work or share it on data portals without prior permission from Zequn He
(hezequn@seas.upenn.edu).
Due to the large demands on memory and the intricacies of the AE-VAE 
architecture, the results obtained will not be of the same level of accuracy and quality that 
was possible in the previous homework sets. No train/test split is recommended as all 
10,000 images are used for training purposes. You may, however, carry out further analysis 
using train/test split or by tuning the hyperparameters or changing the architecture for 
bonus points. The maximum bonus points awarded for this homework will be 5.
**********************************Please Note****************************
Sample codes for building the AE, VAE and a conditional GAN were provided in 
Lab 6. There is no separate notebook provided for the homework and students will 
have to prepare one. Tensorflow and keras were used in Lab 6 and is recommended 
for this homework. You are welcome to use other libraries such as pytorch.
************************************************************************
1. Model 1: Deep Autoencoder model (20 points)
Import the needed libraries. Load the original dataset from canvas. Check the 
dimensions of each loaded image for consistency. Scale the images.
1.1 Print the class labels and the number of images in each class. Print the shape of 
the input tensor representing images and the shape of the vector representing the 
class labels. (2 points)
1.1. A measure equivalent to the volume fraction of fibers in each composite image is 
the mean pixel value of the image. As the images are of low-resolution, you may 
notice a slight discrepancy in the assigned class value of the image and the 
calculated mean pixel intensity. As the resolution of images increases, there will be 
negligible difference between the assigned class label and the pixel mean of the 
image. Henceforth, we shall use the pixel mean (PM) intensity of the images to be 
the class label. Print a representative sample of ten images showing the volume 
fraction of fibers in the composite along with the PM value of the image. (3 points)
1.2. Build the following deep AE using the latent dimension value = 64.
(a) Let the first layer of the encoder have 256 neurons.
(b) Let the second layer of the encoder have 128 neurons.
(c) Let the last layer of the encoder be the context or latent vector.
(d) Use ReLU for the activation function in all of the above layers.
(e) Build a deep decoder with its input being the context layer of the encoder.
(f) Build two more layers of the decoder with 128 and 256 neurons, respectively. 
These two layers can use the ReLU activation function.
(g) Build the final layer of the decoder such that its output is compatible with the 
reconstruction of the original input shape tensor. Use sigmoid activation for the 
final output layer of the decoder.
(h) Use ADAM as your optimizer and a standard learning rate. Let the loss be the 
mean square error loss. Compile the AE and train it for at least 50 epochs.
(10 points)
1.3. Print the summary of the encoder and decoder blocks showing the output shape of 
each layer along with the number of parameters that need to be trained. Monitor 
and print the lossfor each epoch. Plot the loss as a function of the epochs. (2 points)
1.4. Plot the first ten reconstructed images showing both the original and reconstructed 
images. (3 points)
2. Model 2: Convolutional Autoencoder model (20 points)
2.1 Build the following convolutional AE with the latent dimension = 64
(a) In the first convolution block of the encoder, use 8 filters with 3x3 kernels, 
ReLU activation and zero padding. Apply max pooling layer with a kernel of 
size 2.
(b) In the second convolution block use 16 filters with 3x3 kernels, ReLU activation 
and zero padding. Apply max pooling layer with a kernel of size 2.
(c) In the third layer of the encoder use 32 filters with 3x3 kernels, ReLU activation 
and zero padding. Apply max pooling layer with a kernel of size 2.
(d) Flatten the obtained feature map and then use a Dense layer with ReLU 
activation function to extract the latent variables.
(d) Build the decoder in the reverse order of the encoder filters with the latent 
output layer of the encoder serving as the input to the decoder part.
(e) Use ADAM as your optimizer and a standard learning rate. Let the loss be the 
mean square error loss. Compile the convolutional AE and train it for at least 
50 epochs.
(10 points)
2.2 Print the summary of the encoder and decoder blocks showing the output shape of 
each layer along with the number of parameters that need to be trained. Monitor 
and print the lossfor each epoch. Plot the loss as a function of the epochs. (5 points)
2.3 Plot the first ten reconstructed images showing both the original and reconstructed 
images. (5 points)
3. Model 3: Denoising convolutional Autoencoder model (15 points)
3.1 Add a Gaussian noise to each image. Choose a Gaussian with a mean of zero and a 
small standard deviation, typically ~ 0.2. Plot a sample of five original images with 
noise. (3 points)
3.2 Use the same convolutional autoencoder as in Problem 2 but with noisy images fed 
to the encoder. Train and display all the information as in 2.2 and 2.3.
(12 points)
4. Model 4: Variational Autoencoder model (25 points)
4.1 Set the latent dimension of the VAE be 64. Build a convolutional autoencoder with 
the following architecture. Set the first block to have 32 filters, 3x3 kernels with 
stride = 2 and zero padding.
4.2 Build the second block with 64 filters, 3x3 kernels, stride =2 and zero padding. Use 
ReLU in both blocks. Apply max pooling layer with kernel of size 2x2.
4.3 Build an appropriate output layer of the encoder that captures the latent space 
probability distribution.
4.4 Define the reparametrized mean and variance of this distribution.
4.5 Build the convolutional decoder in reverse order. Apply the same kernels, stride 
and padding as in the encoder above. Choose the output layer of the decoder and 
apply the appropriate activation function.
4.6 Compile and train the model. Monitor the reconstruction loss, Kullback-Liebler 
loss and the total loss. Plot all three quantities for 500 epochs. (10 points)
4.7 Plot the first ten reconstructed images along with their originals. (5 points)
4.8 Generate ten random latent variables from a standard Gaussian with mean zero and 
unit variance. Display the generated images from these random values of the latent 
vector. Comment on the quality of your results and how it may differ from the input 
images. Mention at least one improvement that can be implemented which may 
improve the results. (3+3+4=10 points)
5. Model 5: Conditional Variational Autoencoder model (20 points)
A conditional VAE differs from a VAE by allowing for an extra input 
variable to both the encoder and the decoder as shown below. The extra label could 
be a class label, ‘c’ for each image. This extra label will enable one to infer the 
conditional probability that describes the latent vector conditioned on the class label 
‘c’ of the input. In VAE, using the variational inference principle, one infers the 
Gaussian distribution (by learning its mean and variance) of the latent vector 
representing each input ‘x’. In conditional VAE, one infers the Gaussian 
conditional distribution of the latent vector conditioned on the extra input variable 
‘label’.
For the dataset used in this homework, there are two advantages of the 
conditional VAE compared to the VAE: (i) the conditional VAE provides a cheap
way to validate the model by comparing the pixel mean of the generated images 
with the conditional class label values (pixel mean) in latent space used to generate 
the images. (ii) The trained conditional VAE can be used to generate images of 
composites with arbitrary volume fraction of fibers with sufficient confidence once 
the validation is done satisfactorily.
A conditional VAE. (source: https://ijdykeman.github.io/ml/2016/12/21/cvae.html)
A good explanation of the conditional VAE in addition to the resource cited in the 
figure above is this: https://agustinus.kristia.de/techblog/2016/12/17/conditional vae/.
A conditional GAN (cGAN) toy problem was shown in Lab 6 where the volume 
fraction (replaced by pixel mean for cheaper model validation) was the design 
parameter, and thus, the condition input into the cGAN. In this question, you will 
build a conditional VAE for the same task of generating new images of composites 
as in Problem 4 by randomly choosing points in the latent space. Since each point 
in the latent space represents a conditional Gaussian distribution, it also has a class 
label. Therefore, it becomes possible to calculate the pixel mean of a generated 
image and compare it with the target ‘c’ value of the random point in latent space. 
It is recommended that students familiarize themselves with the code for providing 
the input to the cGAN with class labels and follow similar logic for building the 
conditional VAE. You may also seek help from the TA’s if necessary.
5.1 Create an array that contains both images and labels (the pixel mean of each image). 
Note the label here is the condition and it should be stored in the additional channel 
of each image.
5.2 Use the same structure, activation functions and optimizer as the one used to build 
the VAE in Problem 4. Print the summary of the encoder and decoder blocks 
showing the output shape of each layer along with the number of parameters that 
need to be trained. (5 points)
5.3 Train the cVAE for 500 epochs. Plot the reconstruction loss, Kullback-Liebler loss 
and the total loss. Plot the first ten reconstructed images along with their originals. 
Include values of the pixel mean for both sets of images. (5 points)
5.4 Generate 10 fake conditions (i.e., ten volume fractions represented as pixel means 
evenly spaced within the range 0.1 to 0.4 as used in Lab 6) for image generation. 
Print the shape of the generated latent variable. Print the target volume fraction (or 
pixel mean). Show the shape of the array that combines the latent variables and fake 
conditions. Print the shape of the generated image tensor. (2 points)
5.5 Plot the 10 generated images. For each image show the generated condition (the 
pixel mean of each image generated in 5.4) and the pixel mean calculated from the 
image itself. (3 points)
5.6 Compare the set of generated images from the conditional VAE with the ones 
obtained in Lab 6 using cGAN. Comment on their differences and analyze the 
possible causes for the differences. (5 points)

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代做 EEB 504B、代寫 java/Python 程序
  • 下一篇:COMP1117B代做、代寫Python程序設計
  • ·代做CAP 4611、代寫C/C++,Java程序
  • ·代做ISYS1001、代寫C++,Java程序
  • ·代做COMP2221、代寫Java程序設計
  • ·代寫MATH3030、代做c/c++,Java程序
  • ·COMP 5076代寫、代做Python/Java程序
  • ·代寫COP3503、代做Java程序設計
  • ·COMP3340代做、代寫Python/Java程序
  • ·COM1008代做、代寫Java程序設計
  • ·MATH1053代做、Python/Java程序設計代寫
  • ·CS209A代做、Java程序設計代寫
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產品研發(fā)/客戶要求/設計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                中文字幕中文乱码欧美一区二区| 激情图片小说一区| 国产综合久久久久久久久久久久| 欧美日本免费一区二区三区| 亚洲国产一区二区三区青草影视| 99精品在线观看视频| 亚洲特级片在线| 欧美日韩视频一区二区| 日本中文在线一区| 久久久久久久久久电影| 丁香婷婷深情五月亚洲| 亚洲黄色尤物视频| 日韩一卡二卡三卡| 国产在线视频一区二区| 国产精品国产馆在线真实露脸| 91欧美一区二区| 免费一级片91| 中文字幕亚洲区| 欧美一三区三区四区免费在线看| 精品一区二区三区欧美| 一区二区三区久久| 久久久亚洲国产美女国产盗摄| 91尤物视频在线观看| 视频在线观看国产精品| 国产精品麻豆视频| 欧美成人aa大片| 久久国产精品无码网站| 亚洲欧美一区二区不卡| 日韩精品一区二区在线| 91蜜桃传媒精品久久久一区二区 | 欧美三级韩国三级日本一级| 国产精品资源站在线| 午夜婷婷国产麻豆精品| 一区视频在线播放| 久久精品一区八戒影视| 欧美电视剧在线观看完整版| 欧美群妇大交群中文字幕| 91在线播放网址| 不卡的av电影在线观看| 国产一区二区久久| 精彩视频一区二区三区| 日本aⅴ亚洲精品中文乱码| 亚洲自拍另类综合| 一区二区视频在线| 亚洲免费观看高清在线观看| 国产精品乱人伦一区二区| 国产女人水真多18毛片18精品视频 | 99精品视频中文字幕| 成人夜色视频网站在线观看| 国产一区视频在线看| 蜜桃一区二区三区四区| 美日韩一级片在线观看| 久久精品国产99| 久久机这里只有精品| 久久99精品久久只有精品| 久久电影网站中文字幕| 韩国在线一区二区| 国产69精品久久777的优势| 国产91精品免费| 99久久国产综合精品色伊| 99久精品国产| 欧美三级视频在线播放| 欧美人牲a欧美精品| 欧美一区二区三区男人的天堂 | 欧美一区二区三区在线视频 | 精品久久久久久久人人人人传媒 | 精品久久久三级丝袜| www久久精品| 欧美国产一区视频在线观看| 国产精品三级视频| 亚洲伊人伊色伊影伊综合网 | 青青草91视频| 久久99久久精品欧美| 国产乱子伦视频一区二区三区 | 欧美视频精品在线| 精品国产伦一区二区三区观看方式| 欧美xxx久久| 中文字幕在线不卡一区二区三区| 亚洲精品日韩专区silk| 日本美女一区二区| 99久免费精品视频在线观看 | 午夜精品久久久久久| 午夜亚洲福利老司机| 欧洲国产伦久久久久久久| 国产欧美日韩精品a在线观看| 国产在线视频精品一区| 18成人在线视频| 久久精品日韩一区二区三区| 成人免费视频在线观看| 美女一区二区在线观看| 99国产一区二区三精品乱码| 欧美一区二区三区系列电影| 国产精品久久久99| 欧美aaaaaa午夜精品| 99久久久精品| 日韩免费在线观看| 国产精品家庭影院| 成人动漫中文字幕| 99久久国产综合精品女不卡| 午夜欧美电影在线观看| 美洲天堂一区二卡三卡四卡视频| 精品卡一卡二卡三卡四在线| 亚洲美女在线一区| 蜜臀av一区二区| 色婷婷综合在线| 久久久国际精品| 美女视频一区二区三区| 欧美性色黄大片| 中文一区二区完整视频在线观看 | 成人av免费在线观看| 欧美一级日韩不卡播放免费| 亚洲一区二区视频在线观看| 成人国产亚洲欧美成人综合网| 91麻豆精品国产91久久久使用方法| 亚洲色图.com| 波多野结衣欧美| 久久精品亚洲乱码伦伦中文 | 懂色av中文字幕一区二区三区| 激情文学综合插| 精品人伦一区二区色婷婷| 五月天激情综合| 欧美特级限制片免费在线观看| 中文字幕一区不卡| 成人精品免费看| 国产精品天干天干在线综合| 国产精品99久久久久久久vr| 欧美本精品男人aⅴ天堂| 日韩国产一二三区| 欧美美女一区二区| 婷婷国产v国产偷v亚洲高清| 欧美另类久久久品| 免费亚洲电影在线| 久久久久久9999| 国产69精品久久777的优势| 久久久99免费| 成人性视频网站| 综合分类小说区另类春色亚洲小说欧美| 高清国产午夜精品久久久久久| 久久日韩粉嫩一区二区三区| 国产一区二区福利| 国产亚洲精品久| jizzjizzjizz欧美| 亚洲精品你懂的| 欧美日韩免费高清一区色橹橹| 日韩成人dvd| 国产亚洲精品超碰| 色综合天天天天做夜夜夜夜做| 亚洲一区免费观看| 精品日韩一区二区三区免费视频| 国产一区二区主播在线| 国产精品免费久久久久| 欧美日韩亚洲综合在线| 久久99国产精品免费网站| 国产欧美一区二区三区沐欲| 色综合天天在线| 日韩和欧美的一区| 国产人妖乱国产精品人妖| 在线观看不卡一区| 国产一区二区三区不卡在线观看 | 亚洲特黄一级片| 欧美日韩免费电影| 东方aⅴ免费观看久久av| 亚洲影院免费观看| 国产片一区二区三区| 欧美日韩国产电影| 成人综合激情网| 日本成人中文字幕在线视频| 中文一区二区完整视频在线观看| 在线中文字幕不卡| 国产精品自拍网站| 日韩专区中文字幕一区二区| 久久久99久久| 日韩欧美中文字幕精品| 99国产精品国产精品毛片| 久久国产精品第一页| 尤物视频一区二区| 国产精品青草综合久久久久99| 欧美电影在线免费观看| 色婷婷综合中文久久一本| 国产毛片一区二区| 免费一级欧美片在线观看| 一区二区三区在线免费播放| 国产精品乱码人人做人人爱| 2欧美一区二区三区在线观看视频 337p粉嫩大胆噜噜噜噜噜91av | 国产一区二区三区久久久| 亚洲国产中文字幕在线视频综合| 国产肉丝袜一区二区| 日韩西西人体444www| 欧美人与z0zoxxxx视频| 91官网在线免费观看| 北条麻妃一区二区三区| 国产九色sp调教91| 免费观看91视频大全| 日韩精品亚洲专区| 秋霞影院一区二区| 日韩精品亚洲一区二区三区免费| 一区二区三区在线观看动漫 | 最新高清无码专区| 国产精品久久久久久亚洲伦| 国产视频一区二区在线|