合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        COMP3340代做、代寫Python/Java程序
        COMP3340代做、代寫Python/Java程序

        時間:2025-03-15  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        COMP3340 Applied Deep Learning The University of Hong Kong
        Assignment 1
        Feb 2025
        Question 1 - XOR Approximation
        We consider the problem of designing a feedforward neural network to approximate the XOR
        function. Specifically, for any input points (x1, x2), x1, x2 ∈ {0, 1}, the output of the network
        should be approximately equal to x1 ⊕ x2. Suppose the network has two input neurons, one
        hidden layer with two neurons, and an output layer with one neuron, as shown in Figure 1.
        The activation function for all neurons is the Sigmoid function defined as σ(z) = 1+
        1
        e−z .
        (a) Please provide the specific values for the parameters in your designed network. Demon strate how your network approximates the XOR function (Table 1) by performing forward
        propagation on the given inputs (x1, x2), x1, x2 ∈ {0, 1}.
        (b) If we need the neural network to approximate the XNOR function (Table 1), how should
        we modify the output neuron without altering the neurons in the hidden layer?
        x1 x2 x1 ⊕ x2 x1  x2
        0 0 0 1
        0 1 1 0
        1 0 1 0
        1 1 0 1
        Table 1: XOR and XNOR Value Table
         !
         "
         #
        Figure 1: Network structure and the notation of parameters
        COMP3340 Applied Deep Learning The University of Hong Kong
        Question 2 - Backpropagation
        We consider the problem of the forward pass and backpropagation in a neural network whose
        structure is shown in Figure 1. The network parameters is initialized as w1 = 1, w2 = −2,
        w3 = 2, w4 = −1, w5 = 1, w6 = 1, b1 = b2 = b3 = 0. The activation function for all neurons
        is the Sigmoid function defined as σ(z) = 1+
        1
        e−z .
        (a) Suppose the input sample is (1, 2) and the ground truth label is 0.1. Please compute
        the output y of the network.
        (b) Suppose we use the Mean Squared Error (MSE) loss. Please compute the loss value for
        the sample (1, 2) and its gradient with respect to the network parameters using chain rules.
        The final answer should be limited to 3 significant figures.
        (c) Suppose we use stochastic gradient descent (SGD) with a learning rate of α = 0.1.
        Please specify the parameters of the network after one step of gradient descent, using the
        gradient computed in (b). Please also specify the prediction value and the corresponding loss
        of the new network on the same input (1, 2).

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

        掃一掃在手機打開當前頁
      1. 上一篇:被小豬應急強制下款怎么辦?怎么聯系米來花客服?
      2. 下一篇:CE860代做、代寫C/C++編程設計
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 97精品一区二区视频在线观看 | 538国产精品一区二区在线| 少妇人妻精品一区二区三区| 久久精品免费一区二区喷潮| 国产免费一区二区三区不卡| 国产精品福利一区| 亚洲AV无码一区二区一二区| 国产激情一区二区三区成人91| 国产精品久久久久久一区二区三区 | 少妇激情av一区二区| 精品免费AV一区二区三区| 亚洲Av永久无码精品一区二区| 亚洲AV无码一区二区乱孑伦AS| 日本高清无卡码一区二区久久| av一区二区三区人妻少妇| 91精品福利一区二区| 精品国产一区二区三区久久久狼| 日本亚洲国产一区二区三区| 国产高清精品一区| 日韩一区二区三区免费播放| 亚洲AV无码一区二区大桥未久| 亚洲一区二区三区不卡在线播放| 无码国产伦一区二区三区视频 | 一区二区三区免费视频网站| 国产伦精品一区二区三区免费迷 | 国产一区在线观看免费| 无码人妻aⅴ一区二区三区有奶水| 精品无码一区二区三区爱欲九九| 国产成人综合亚洲一区| 无码精品久久一区二区三区 | 精彩视频一区二区| 日韩av片无码一区二区三区不卡| 免费国产在线精品一区| 国产韩国精品一区二区三区 | 97久久精品无码一区二区天美| 99久久精品日本一区二区免费| 亚洲综合一区二区三区四区五区| 亚洲av永久无码一区二区三区| 精品国产福利在线观看一区| 日本一区午夜爱爱| 日韩精品人妻一区二区中文八零 |