99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MATH3030、代做c/c++,Java程序
代寫MATH3030、代做c/c++,Java程序

時間:2025-03-22  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MATH3030: Coursework, Spring 2025
17/03/2025
• If you are a MATH4068 student, please stop reading and go and find the coursework for
MATH4068. This assessment is for MATH3030 students only.
• This coursework is ASSESSED and is worth 20% of the total module mark. It is split into two questions,
of equal weight.
• Deadline: Coursework should be submitted via the coursework submission area on the Moodle page
by Wednesday 30 April, 10am.
• Do not spend more time on this project than it merits - it is only worth 20% of the module mark.
• Format: Please submit a single pdf document. The easiest way to do this is to use R Markdown or
Quarto in R Studio. Do not submit raw markdown or R code - raw code (i.e. with no output,
plots, analysis etc) will receive a mark of 0.
• As this work is assessed, your submission must be entirely your own work (see the University’s policy
on Academic Misconduct).
• Submissions up to five working days late will be subject to a penalty of 5% of the maximum mark
per working day. Deadline extensions due to Support Plans and Extenuating Circumstances can be
requested according to School and University policies, as applicable to this module. Because of these
policies, solutions (where appropriate) and feedback cannot normally be released earlier than 10 working
days after the main cohort submission deadline.
• Report length: Your solution should not be too long. You should aim to convey the important
details in a way that is easy to follow, but not excessively long. Avoid repetition and long print-outs of
uninteresting numerical output.
• Please post any questions about the coursework on the Moodle discussion boards. This will ensure that
all students receive the same level of support. Please be careful not to ask anything on the discussion
boards that reveals any part of your solution to other students.
• I will be available to discuss the coursework at our Tuesday or Thursday sessions during the semester. I
will not be meeting students 1-1 to discuss the coursework outside of these times.
Plagiarism and Academic Misconduct For all assessed coursework it is important that you submit
your own work. Some information about plagiarism is given on the Moodle webpage.
Grading The two questions carry equal weight, and both will be marked out of 10. You will be assessed on
both the technical content (use of R, appropriate choice of method) and on the presentation and interpretation
of your results.
1
Coursework
The file UN.csv is available on Moodle, and contains data from the United Nations about 141 different
countries from 1952 to 2007. This includes the GDP per capita, the life expectancy, and the population.
Load the data into R, and extract the three different types of measurement using the commands below:
UN <- read.csv('UN.csv')
gdp <- UN[,3:14] # The GDP per capita.
years <- seq(1952, 2007,5)
colnames(gdp) <- years
rownames(gdp) <- UN[,2]
lifeExp <- UN[,15:26] # the life expectancy
colnames(lifeExp) <- years
rownames(lifeExp) <- UN[,2]
popn <- UN[,27:38] # the population size
colnames(popn) <- years
rownames(popn) <- UN[,2]
In this project, you will analyse these data using the methods we have looked at during the module.
Question 1
Exploratory data analysis
Begin by creating some basic exploratory data analysis plots, showing how the three variables (GDP, life
expectancy, population) have changed over the past 70 years. For example, you could show should how the
average life expectancy and GDP per capita for each continent has changed through time. Note that there
are many different things you could try - please pick a small number of plots which you think are most
informative.
Principal component analysis
Carry out principal component analysis of the GDP and life expectancy data. Analyse the two variable types
independently (i.e. do PCA on GDP, then on life-expectancy). Things to consider include whether you use
the sample covariance or correlation matrix, how many principal components you would choose to retain in
your analysis, and interpretation of the leading principal components.
Use your analysis to produce scatter plots of the PC scores for GDP and life expectancy, labelling the names
of the countries and colouring the data points by continent. You can also plot the first PC score for life
expectancy against the first PC score for GDP (again colouring and labelling your plot). Briefly discuss these
plots, explaining what they illustrate for particular countries.
Canonical correlation analysis
Perform CCA using log(GDP) and life expectancy as the two sets of variables. Provide a scatter plot of the
first pair of CC variables, labelling and colouring the points. What do you conclude from your canonical
correlation analysis? What has been the effect of using log(gdp) rather than gdp as used in the PCA?
Multidimensional scaling
Perform multidimensional scaling using the combined dataset of log(GDP), life expectancy, and log(popn),
i.e., using
UN.transformed <- cbind(log(UN[,3:14]), UN[,15:26], log(UN[,27:38]))
Find and plot a 2-dimensional representation of the data. As before, colour each data point by the continent
it is on. Discuss the story told by this plot in comparison with what you have found previously.
2
Question 2
Linear discriminant analysis
Use linear discriminant analysis to train a classifier to predict the continent of each country using gdp,
lifeExp, and popn from 1952-2007. Test the accuracy of your model by randomly splitting the data into test
and training sets, and calculate the predictive accuracy on the test set.
Clustering
Apply a selection of clustering methods to the GDP and life expectancy data. Choose an appropriate number
of clusters using a suitable method, and discuss your results. For example, do different methods find similar
clusters, is there a natural interpretation for the clusters etc? Note that you might want to consider scaling
the data before applying any method.
UN.scaled <- UN[,1:26]
UN.scaled[,3:26] <- scale(UN[,3:26])
Linear regression
Finally, we will look at whether the life expectancy in 2007 for each country can be predicted by a country’s
GDP over the previous 55 years. Build a model to predict the life expectancy of a country in 2007 from its
GDP values (or from log(gdp)). Explain your choice of regression method, and assess its accuracy. You
may want to compare several different regression methods, and assess whether it is better to use the raw gdp
values or log(gdp) as the predictors.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:CSC3050代做、Java/Python編程代寫
  • 下一篇:悠悠分期全國客服電話-悠悠分期24小時人工服務熱線
  • ·COMP 5076代寫、代做Python/Java程序
  • ·代寫COP3503、代做Java程序設計
  • ·COMP3340代做、代寫Python/Java程序
  • ·COM1008代做、代寫Java程序設計
  • ·MATH1053代做、Python/Java程序設計代寫
  • ·CS209A代做、Java程序設計代寫
  • ·ITC228編程代寫、代做Java程序語言
  • ·PROG2004代做、Java程序設計代寫
  • ·代寫Tic-Tac-To: Markov Decision、代做java程序語言
  • ·CP1407代做、代寫c/c++,Java程序
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                99re成人精品视频| 成人午夜电影网站| 久久精品国产99久久6| 久久99国产精品久久99果冻传媒| 懂色av一区二区在线播放| 欧美一区二区三区爱爱| 亚洲另类中文字| 777xxx欧美| 蜜臀精品久久久久久蜜臀| 色国产精品一区在线观看| 成人黄色在线网站| 欧美视频在线观看一区| 欧美在线色视频| 丝袜亚洲精品中文字幕一区| 亚洲欧洲另类国产综合| 国产亚洲欧洲997久久综合| www国产精品av| 一区二区三区欧美久久| 91在线国产福利| 欧美性猛交xxxx乱大交退制版| 日韩视频在线观看一区二区| 风间由美一区二区av101| 国产人伦精品一区二区| 国产老妇另类xxxxx| 日韩激情视频网站| 成人免费一区二区三区在线观看| 丝袜美腿一区二区三区| 国产精品天干天干在线综合| 日本精品一级二级| 成a人片国产精品| 欧美日韩国产在线观看| 黄一区二区三区| 一本一道综合狠狠老| 久久精品国产精品青草| 成人蜜臀av电影| 夜夜揉揉日日人人青青一国产精品| 欧美在线观看视频一区二区三区| av在线综合网| 亚洲欧美自拍偷拍| 成人黄色在线网站| 日韩欧美高清dvd碟片| 秋霞电影一区二区| 久久伊人中文字幕| 亚洲www啪成人一区二区麻豆| 色综合天天综合在线视频| 国产精品色婷婷久久58| 天堂蜜桃91精品| 在线观看日韩电影| 午夜天堂影视香蕉久久| av在线不卡免费看| 欧美电影免费观看高清完整版在线| 亚洲图片激情小说| 精品国产一区二区三区av性色| 久久国产欧美日韩精品| 欧美日韩视频在线第一区| 亚洲国产精品综合小说图片区| 欧美韩日一区二区三区四区| 性做久久久久久久久| 夫妻av一区二区| 日韩一区二区三区精品视频 | 国产精品看片你懂得| 精品亚洲aⅴ乱码一区二区三区| 亚洲国产日日夜夜| 日韩精品乱码av一区二区| 视频在线观看91| 亚洲综合清纯丝袜自拍| 亚洲精品成a人| 日韩va亚洲va欧美va久久| 亚洲国产综合在线| 精品一区二区三区免费播放| 99精品偷自拍| 国产成人av在线影院| 色欧美日韩亚洲| 国产欧美一区二区三区在线看蜜臀 | 午夜私人影院久久久久| 日韩免费看网站| 91网页版在线| 久久久综合精品| 136国产福利精品导航| 成人动漫视频在线| 国产伦理精品不卡| 在线播放日韩导航| 奇米一区二区三区| 91丨porny丨在线| 国产精品久久午夜夜伦鲁鲁| 精品一区二区免费视频| 91精品福利在线| 久久综合色婷婷| 午夜精品aaa| 99久久夜色精品国产网站| 色呦呦一区二区三区| 精品福利在线导航| 久久九九国产精品| 精品1区2区3区| 亚洲综合男人的天堂| 欧美日韩dvd在线观看| 日韩av电影天堂| 26uuu国产日韩综合| 粉嫩欧美一区二区三区高清影视| 2欧美一区二区三区在线观看视频| 美国av一区二区| 国产欧美日韩在线| 国产日韩欧美精品电影三级在线| 成人av在线影院| 日本黄色一区二区| 国产亚洲一二三区| 亚洲美女在线一区| 色婷婷精品大视频在线蜜桃视频| 久久精品男人的天堂| 中文字幕在线不卡一区| 国产精品理论片在线观看| 国产精品国产馆在线真实露脸 | 欧美一区二区三区四区久久| 性做久久久久久久久| 日韩在线卡一卡二| 国产成人鲁色资源国产91色综| 久久夜色精品一区| 成人av电影在线观看| 国产伦精一区二区三区| 亚洲欧美激情插| 欧美国产在线观看| 91麻豆精品91久久久久久清纯| 色素色在线综合| 国内精品在线播放| 久久99精品网久久| 亚洲网友自拍偷拍| 亚洲成av人片一区二区| 中文在线资源观看网站视频免费不卡 | 精品国精品国产| 免费人成网站在线观看欧美高清| 中文字幕成人网| 在线综合亚洲欧美在线视频| 不卡电影免费在线播放一区| 春色校园综合激情亚洲| 蜜桃免费网站一区二区三区| 日日夜夜免费精品| 亚洲裸体在线观看| 一区二区三区四区在线播放| 久久尤物电影视频在线观看| 精品福利在线导航| 欧美一级日韩一级| 日韩一级免费观看| 欧美主播一区二区三区美女| 成人美女视频在线观看18| 伦理电影国产精品| 国产成人精品午夜视频免费| 日本亚洲天堂网| 精品综合免费视频观看| 日韩av电影天堂| 裸体歌舞表演一区二区| 三级不卡在线观看| 免费一级片91| 粉嫩13p一区二区三区| 高清不卡一区二区在线| 中文字幕永久在线不卡| 日本精品视频一区二区三区| 日本欧美在线看| 亚洲精品国产视频| 99久久久久久| 成人高清伦理免费影院在线观看| 日韩av一级片| 国产精品亚洲午夜一区二区三区 | 亚洲欧美日韩国产另类专区| 国产精品私人影院| 一区二区三区欧美久久| 在线不卡中文字幕播放| 国产日韩欧美激情| 亚洲一区二区三区中文字幕| 亚洲靠逼com| 免费成人小视频| 国产乱码精品一区二区三区忘忧草 | 亚洲精品高清视频在线观看| 成人欧美一区二区三区黑人麻豆 | 成人av电影在线| 国产超碰在线一区| 91国产成人在线| 在线观看三级视频欧美| 欧美大尺度电影在线| 国产日韩欧美综合一区| 亚洲最快最全在线视频| 亚洲成人中文在线| 成人天堂资源www在线| 色婷婷久久一区二区三区麻豆| 精品美女一区二区| 中文字幕在线一区免费| 久久精品国产一区二区| 成人永久看片免费视频天堂| 欧美丰满美乳xxx高潮www| 精品国产一区二区亚洲人成毛片 | 成人免费在线观看入口| 亚洲第一福利视频在线| 激情偷乱视频一区二区三区| av电影一区二区| 成人av电影在线播放| 欧美在线视频你懂得| 91精选在线观看| 久久精品夜夜夜夜久久| 综合久久给合久久狠狠狠97色| 午夜国产精品影院在线观看| 成人午夜精品在线|