合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        CP1407代做、代寫c/c++,Java程序
        CP1407代做、代寫c/c++,Java程序

        時(shí)間:2024-12-13  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        CP1407 Assignment 2 
         
        - Page 1 - 
         
         
        Note: This is an individual assignment. While it is expected that students will 
        discuss their ideas with one another, students need to be aware of their 
        responsibilities in ensuring that they do not deliberately or inadvertently 
        plagiarise the work of others. 
         
         
        Assignment 2 – Practice on various Machine Learning algorithms 
         
         
         
         1. [Data Pre-Processing, Clustering] [10 marks] 
        Why is attribute scaling of data important? The following table contains sample 
        records having the number of numbers and the total revenue generated by particular 
        stores of a supermarket. Use the table as an example to discuss the necessity of 
        normalisation in any proximity measurement for clustering purposes. 
         
        Supermarket ID Employee Count Revenue 
        001 38 $5,500,000 
        002 29 $5,000,000 
        003 24 $5,000,000 
        004 10 $8**,000 
        005 40 $2,500,000 
        006 31 $3,200,000 
        007 14 $678,000 
        008 35 $5,200,000 
        009 30 $5,300,000 
        010 22 $5,500,000 
         
         
         
         
        2. [Classification – Decision Tree algorithm] [20 marks] 
        Use the soybean dataset (diabetes.arff) to perform decision tree induction in Weka 
        using three different decision tree induction algorithms; J48, REPTree, and 
        RandomTree. Investigate different options, particularly looking at differences between 
        pruned trees and unpruned trees. In discussing your results, consider the following 
        questions. 
         
        a) What are the effects of pruning on the results for the soybean datasets? 
        b) Are there differences in the performances of the three decision tree algorithms? 
        c) What impacts do other parameters of the algorithms have on the results? 
         
        3. [Classification – Naïve Bayes algorithm] [30 marks] 
        Suppose we have data on a few individuals randomly examined for basic health check. 
        The following table gives the data on these individuals’ health-related attributes. CP1407 Assignment 2 
         
        - Page 2 - 
        Body 
        Weight 
        Body 
        Height 
        Blood 
        Pressure 
        Blood Sugar 
        Level 
        Habit Class 
        Heavy Tall High 3 Smoker P 
        Heavy Short High 1 Nonsmoker P 
        Normal Tall Normal 3 Nonsmoker N 
        Heavy Tall Normal 2 Smoker N 
        Low Medium Normal 2 Nonsmoker N 
        Low Tall Normal 1 Nonsmoker P 
        Normal Medium High 3 Smoker P 
        Low Short High 2 Smoker P 
        Heavy Tall High 2 Nonsmoker P 
        Low Medium Normal 3 Smoker P 
        Heavy Medium Normal 3 Smoker N 
         
         Use the data together with the Naïve Bayes classifier to perform a new classification for 
        the following new instance. Create and use the classifier by hand, not with Weka, and 
        show all your working. 
        Body 
        Weight 
        Body 
        Height 
        Blood 
        Pressure 
        Blood Sugar 
        Level 
        Habit Class 
        Low Tall High 2 Smoker ? 
         
         4. [Association Rules Mining] [20 marks] 
        The following table film watching histories for several viewers of an on-demand service. 
         
        User Id Items 
        001 Airplane!, Downfall, Evita, Idiocracy, Jurassic Park 
        002 Casablanca, Downfall, Evita, Flubber, Jurassic Park 
        003 Airplane!, Downfall, Half Baked, Jurassic Park 
        004 Airplane!, Downfall 
        005 Casablanca, Downfall, Flubber, Jurassic Park, Zoolander 
        006 Casablanca, Downfall, Half Baked, Idiocracy, Zoolander 
        007 Evita, Idiocracy, Jurassic Park 
        008 Downfall, Jurassic Park, Zoolander 
        009 Casablanca, Downfall, Evita, Half Baked, Jurassic Park, Zoolander 
         
        a) Follow the steps outlined in Practical 07 and conduct a mining task for Boolean 
        association rules using the Apriori algorithm in Weka. 
        b) Set different parameters and observe the association rules discovered. 
        c) Weka provides association evaluation parameters other than support and 
        confidence. Note the evaluation results by those evaluation parameters of example 
        rules. 
         CP1407 Assignment 2 
         
        - Page 3 - 
         
        5. [Clustering] [20 marks] 
        Consider the following 2-dimensional point data set presented in (x,y) coordinates: 
         P1(1,1), P2(1,3), P3(4,3), P4(5,4), P5(9,4), P6(9, 6). 
        Apply the hierarchical clustering method by hand (using Agglomerative algorithm) to 
        get final two clusters. Use the Manhattan distance function to measure the distance 
        between points and use the single-linkage scheme to do clustering. Show all your 
        working. 
         
        Rubric 
         Exemplary Good Satisfactory Limited Very Limited 
         **-100% 70-80% 50-60% 30-40% 0-20% 


        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


         

        掃一掃在手機(jī)打開當(dāng)前頁
      1. 上一篇:UFUG2601代做、代寫C++設(shè)計(jì)程序
      2. 下一篇:菲律賓移民局學(xué)生簽證辦理手續(xù)(留學(xué)要準(zhǔn)備啥材料)
      3. ·代做CS-107、java程序語言代寫
      4. ·代寫EE5434、代做c/c++,Java程序
      5. ·MS3251代寫、代做Python/Java程序
      6. ·COMP4134代做、Java程序語言代寫
      7. ·代寫ENG4200、Python/Java程序設(shè)計(jì)代做
      8. ·代寫I&C SCI 46 、c/c++,Java程序語言代做
      9. ·CCIT4020代做、代寫c/c++,Java程序設(shè)計(jì)
      10. ·代寫COMP2011J、Java程序設(shè)計(jì)代做
      11. ·IS3240代做、代寫c/c++,Java程序語言
      12. ·代寫CSE x25、C++/Java程序設(shè)計(jì)代做
      13. 合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        出評(píng) 開團(tuán)工具
        出評(píng) 開團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士1號(hào)線
        合肥機(jī)場(chǎng)巴士1號(hào)線
      14. 短信驗(yàn)證碼 酒店vi設(shè)計(jì) deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號(hào)-3 公安備 42010502001045

        主站蜘蛛池模板: 国产精品美女一区二区视频| 国产SUV精品一区二区88| 立川理惠在线播放一区| 成人精品视频一区二区三区 | 日韩国产免费一区二区三区| 日本精品少妇一区二区三区| 麻豆AV一区二区三区| 精品国产一区二区三区AV性色| 国产欧美一区二区精品仙草咪 | 欧美日韩精品一区二区在线视频 | 国产一区二区三区日韩精品| 中文字幕一区二区三区精彩视频| 狠狠色婷婷久久一区二区| 韩国精品一区二区三区无码视频| 日韩一区二区在线观看视频| 久久99国产一区二区三区| 无码人妻一区二区三区精品视频 | 成人免费一区二区无码视频 | 夜夜添无码试看一区二区三区| 国产人妖在线观看一区二区| 精品无码国产一区二区三区51安| 亚洲AV无码一区二区三区DV| 中文字幕一区视频一线| 日韩十八禁一区二区久久| 国产成人av一区二区三区在线 | 亚欧免费视频一区二区三区 | 无码人妻精品一区二区三区久久 | av在线亚洲欧洲日产一区二区| 国产精品无码一区二区三区在| 亚洲变态另类一区二区三区| 亚洲福利一区二区| 精品国产一区二区三区不卡| 无码国产精品一区二区免费vr| 久久精品一区二区三区不卡| 中文字幕一区二区三区乱码| 任你躁国产自任一区二区三区| 久夜色精品国产一区二区三区 | 日本无码一区二区三区白峰美| 无码精品尤物一区二区三区| 精品人妻AV一区二区三区| 中文激情在线一区二区|