99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫I&C SCI 46 、c/c++,Java程序語言代做
代寫I&C SCI 46 、c/c++,Java程序語言代做

時間:2024-11-22  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



I&C SCI 46 Fall 2024 Project 4: Finding Balance in Nature
Due at 9:30 AM. You may use late submissions as usual.
Reviewing related material
I encourage you to review your lecture notes for the Binary Search Tree portions of this class,
especially the portions about balancing trees. The data structure we covered this quarter for a
balanced tree is called a Crumple Tree. Supplemental reading is posted on Canvas.
Very important note: it is not enough to implement some type of binary search tree for this
assignment. For the vast majority of the points, your type must be a Crumple Tree. Attempting
to fool the auto-grader is a decidedly bad idea.
Requirements
In this project you will be implementing the Level-balanced tree data structure as a class named
CrumpleTree. The class consists of the following functions which you are responsible for
implementing and have been started for you in CrumpleTree.hpp:
CrumpleTree()
This is the constructor for the class. You should initialize any variables you add to the
class here.
~CrumpleTree()
This is the class destructor. You are responsible for freeing any allocated memory here.
You will most likely be allocating memory to store the nodes within the tree. Since these
allocations need to be dynamic, as we don’t know how large the tree will be, they should
be freed here in the destructor. It’s your job to come up with a traversal algorithm to
accomplish this. Note, if you elect to use shared pointers or unique pointers the compiler
will generate code to deallocate the memory for you if certain conditions are met. You
should only use these features of the standard library if you already understand them or
are willing to put in extra effort. In most industry settings features like these will be used
as opposed to explicitly implemented destructors.
However, be advised that course staff are not expected to know these and might not be
able to help you debug problems with them. If you are unfamiliar with shared or unique
pointers, use traditional (raw) pointers if you are expecting help with debugging.
[[nodiscard]] size_t size() const noexcept
This function returns the number of keys stored in the tree. It returns the count as a
size_t. It is marked const (also known as a constant member function) because it
should not modify any member variables that you’ve added to the class or call any
function functions that are not marked const as well. The advantage of marking this
function as const is that it can be called on constant CrumpleTree instances. It also
allows the compiler to make additional optimizations since it can assume the object this
function is called on is not changed. This is a fairly good StackOverflow answer that
goes into additional detail.
[[nodiscard]] bool empty() const noexcept
This function simply returns whether or not the tree is empty, or in other words, if the tree
contains zero keys. Marked const because it should not change any member data.
Marked noexcept because it should not throw any exceptions.
bool contains(const K & key) const noexcept
Simply checks to see if the key k is stored in the tree. True if so, false if not. Once
again, this function does not modify any member data, so the function is marked const.
Since this is a balanced tree, this function should run in O(log N) time where N is the
number of keys in the tree. This is accomplished through the on-demand balancing
property of Crumple Trees and a consequence of the height of the tree never exceeding
O(log N). IMPORTANT: when comparing keys, you can only assume that the < and ==
operator has been defined. This means you should not use any other comparison
operators for comparing keys.
std::optional<unsigned> Level(const K & key) const
This returns the level on which the given key is stored in the tree. If the tree does not
contain this key, return std::nullopt.
IMPORTANT: when comparing keys, you can only assume that the < and == operator
has been defined. This means you should not use any other comparison operators for
comparing keys.
Value & find(const K & key)
Like contains(), this function searches for key k in the tree. However, this function
returns a reference to the value stored at this particular key. Since this function is not
marked const, and it does not return a const reference, this value is modifiable through
this interface. This function should also run in O(log N) time since it is bound by the
height of the tree. If the key k is not in the tree, a std::runtime_error should be
thrown.
const Value & find(const K & key) const
Same as the constant version of find, but returns a constant reference to the stored
value, which prevents modification. This function is marked const to present the find
(or “lookup”) interface to instances of CrumpleTree which are marked const
themselves. This means that member data should not be modified in this function. For
example, the following code would call the version of find() marked constant:
CrumpleTree<int, int> tree;
const CrumpleTree<int, int> & treeRef= tree;
treeRef.find(1);
Warning: this function will not be compiled until you explicitly call it on a constant
CrumpleTree as in the example above. If you submit code to GradeScope, and that
system says it does not compile, make sure you've done this. You will end up with a
zero on the assignment if your code does not compile when I pair it with test cases that
call every function. Testing comprehensively is your responsibility!
void insert(const K & key, const V & value)
Adds a (key, value) pair to the tree. If the key already exists in the tree, you may do as
you please (no test cases in the grading script will deal with this situation). The key k
should be used to identify the location where the pair should be stored, as in a normal
binary search tree insertion. Since this is an level-balanced tree, the tree should be
rebalanced if this insertion results in an unbalanced tree.
Note: this is by far the most difficult part of this project.
void remove(const K & key)
Removes the given key from the tree, fixing the balance if needed. If the parameter does
not exist in the tree, do not modify the tree.
I recommend you work on both insert and remove in parts; do not attempt to do the
entire insert, or entire remove, in one session. Test that you are able to get some cases
to pass before moving onto other types of cases.
[[nodiscard]] std::vector<K> inOrder() const
Returns a vector consisting of the keys in the order they would be explored during an
in-order traversal as mentioned in class. Since the traversal is “in-order”, the keys should
be in ascending order.
IMPORTANT: this function, as well as preOrder() and postOrder(), are easy to forget to
test separately. Be very careful with these three, as their value (in terms of test cases
that rely on them) is disproportionately high. Please be absolutely sure you got these
right.
[[nodiscard]] std::vector<K> preOrder() const
Returns a pre-ordering of the tree. For the purpose of this assignment, the left subtree
should be explored before the right subtree.
[[nodiscard]] std::vector<K> postOrder() const
Returns a post-ordering of the tree. For the purpose of this assignment, the left subtree
should be explored before the right subtree.
Additional Notes
● Your implementation must be templated as provided.
○ Be sure yours works for non-numeric types! char is a numeric type.
○ Review the warnings in the lab manual, the grading policies, and in particular the
warning about templated code in the “Grading Environment” section.
● You do not need to write a copy constructor or an assignment operator on this project,
but knowing how to do so is generally a good thing.
● As stated in the contains() function: for comparing keys, use the “natural” comparison
offered by <. You should assume that < and == are defined for any object used for Key.
Any test cases provided will have something for the key that has this defined.
● The project will not build by default because a reference to a local variable is returned in
the find() functions. You will need to write an implementation that doesn’t do this.
Restrictions
Your implementation must be implemented via linked nodes in the tree format from the lecture.
That is, you may not have a “vector-based tree.” This means you will probably need to create a
new structure inside of your CrumpleTree class which will represent the nodes.
You may use smart pointers if you would like to do so. However, course staff are not required to
help you with smart pointers, including debugging code that uses them. I advise students who
are not already familiar with smart pointers to not use them for this project; they're good to
learn, but this is not the project on which to learn them.
You may not use any containers in the C++ standard template library in this assignment except
for std::vector. Furthermore, std::vector may only be used when implementing the
three traversals (in-order, pre-order, post-order). For what it’s worth, you won’t miss it for this
assignment. As always, if there’s an exception that you think is within the spirit of this
assignment, please let me know.
Your implementation does not have to be the most efficient thing ever, but it cannot be “too
slow.” In general, any test case that takes 30 seconds on GradeScope may be deemed a
wrong answer, even if it will later return a correct one. The memory check cases have a
significantly higher timeout period, and are cases which your code will very likely complete (if we
aren't running memcheck on the same code) in milliseconds.
For any assignment in this class, including this one, you may not use the directive using
namespace std; anywhere in your code. Doing so will earn you a zero for the project.
If you are found to be attempting to fool the auto-grader, perhaps by implementing a
different type of balanced binary search tree, this will be treated as a serious case of
academic dishonesty -- it will result in a report to AISC and an F in the class.
In the past, a small subset of students have attempted to contact the inventors of Crumple Trees
to get help on this project. This does not qualify as seeking reasonable help, and there are
plenty of UCI course resources available to you.
Additional Grading Note
This is an additional warning that the public tests are not comprehensive. Remember that the
compiler does not compile functions which are not used. Thus, at the bare minimum you should
add additional unit tests which get all of your code to compile. This has been a problem in the
past; do not ignore that warning. Using different template types will help to make sure you
don’t accidentally bake in assumptions about the type of the Key or Value. Always commit your
unit tests with your code.
The points available for this project are broken down into three categories:
● Basic BST functionality. To have your code tested to earn these points, you must pass
all test cases marked [RequiredBasicFunctionality]. Nothing in this portion requires that
you have a balanced tree, although it is possible that a poor implementation of balancing
could "break" this; please be careful. This portion is worth 1 point
● Crumple Tree functionality. To have your code tested to earn these points, you must
pass all test cases marked [RequiredCrumpleTree]. This portion is worth YY points.
Note that you do not need full CrumpleTree functionality to pass the required cases,
which would allow you to be evaluated on the remaining ones. This is one reason we
recommend you work with cases. This portion is worth 4 points.
○ There may be test cases within this that require only insertion procedure to work
correctly. However, the required case prerequisite requires you to get at least one
delete case to work properly. This is on purpose.
● Memory check. Some of these cases will require some simple functionality to be
reasonably efficient; this is due to a constraint with how long GradeScope will run a
submission. We test with small cases that would run quickly if we were not checking for
memory, and we give a good maximum amount of time for each to run (7-10 minutes
each). This portion is worth 1 point.
Frequently Asked Questions (FAQs)
Q1. Does _____ make problem-solving in this project trivial or is it allowed?
The following parts are permitted for use in this project: std::pair, std::max, std::abs,
std::swap. If you have another part of the standard library in mind, please ask on edStem.
Q2. Are we allowed to include the <functional> library so I can make a lambda function recursive?
Sure, if you think it will help you.
Q3. Can I include parts of the standard library to test my trees?
You can use any library for debugging purposes. The only disallowed functions are for the
final, active submission, submitted to GradeScope.
Q4. Can you use the vectors you got from the in-order, pre-order, or post-order functions in other
functions?
No. You also don't need to. However, you may use std::vector within helper functions of
in/pre/post order traversals.
Q5. Are we allowed to use stacks/queues for the inorder/postorder/preorder functions?
No. You are not allowed to use any standard containers except for in your traversal
implementations where you are allowed only std::vector.
Q6. Are we allowed to use vectors or arrays to store shapes?
No, but I'm sure you could do the same without using an array or vector.
Q7. Are > (greater than) and <= (equal to or greater than) off-limits when comparing keys?
Yes, any other operators other than < (less than) and == (equal to) are off-limits when
comparing keys.
Q8. Can I use recursion to destruct the trees?
You can use recursion for a destructor. However, you should also consider the off chance that
the stack size is exceeded and the destruction fails resulting in unfreed memory.
Q9. What to do if the passed in key does not exist in the remove() function?
You can handle this case as desired; we will not be testing it.
Q10. If the deleted node is not a leaf and has two children, should we replace it with successor or
predecessor?
Both are correct to do, and the grading script will accept either.
Q11. Do we need to have O(log n) time complexity for insert and remove?
That is the target time for balanced binary search trees, including Crumple trees.
Q12. Are we allowed to implement other level-balancing binary search trees on project 4?
No.
Q13. Are we expected to handle very large trees?
Yes, you can assume that the size of the tree will not exceed the maximum uint64_t value.
Q14. Am I permitted to add my new function to the class?
Yes. Also, it doesn’t matter where you make the helper functions as long as you don't change
the public functions and their parameters.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:CPT205編程代寫、代做C++/Python語言程序
  • 下一篇:ECE2810J代做、代寫C++語言編程
  • ·&#160;代寫ICT50220、C++/Java程序語言代做
  • ·COMP222代寫、Python, Java程序語言代做
  • ·代寫MISM 6210、Python/java程序語言代做
  • ·代寫DTS203TC、C++,Java程序語言代做
  • ·CS 2210編程代寫、Java程序語言代做
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美ed2k| 国产香蕉久久精品综合网| 亚洲午夜在线视频| 国产自产高清不卡| 欧美视频中文字幕| 欧美aⅴ99久久黑人专区| 亚洲在线观看视频网站| 亚洲国产日韩欧美| 国产亚洲精品一区二555| 欧美日韩一区在线观看| 欧美插天视频在线播放| 久久精品国产第一区二区三区| 亚洲精品乱码久久久久久日本蜜臀 | 久久蜜桃精品| 亚洲影音一区| 亚洲精品一区二区在线| 国产视频一区在线| 国产日韩精品在线| 国产精品videosex极品| 噜噜噜噜噜久久久久久91| 久久成人精品一区二区三区| 亚洲一区国产精品| 亚洲一区二区欧美日韩| 一区二区日韩免费看| 在线观看成人一级片| 欧美视频在线观看一区| 欧美激情一区二区三区高清视频 | 国产精品久久久久久久久久直播| 免费日韩成人| 欧美成人蜜桃| 欧美噜噜久久久xxx| 欧美高清在线| 欧美日韩精品欧美日韩精品一| 免费国产一区二区| 另类尿喷潮videofree| 美女露胸一区二区三区| 欧美成人影音| 欧美精品在线观看91| 欧美日韩国产精品一区| 欧美色另类天堂2015| 国产精品久久久久77777| 国产精品一国产精品k频道56| 国产精自产拍久久久久久| 国产一区二区三区自拍| …久久精品99久久香蕉国产| 亚洲激情图片小说视频| 99精品热视频| 亚洲欧美日韩精品久久亚洲区| 午夜国产不卡在线观看视频| 久久久国产成人精品| 久久中文在线| 国产精品福利在线观看| 国产一区视频观看| 亚洲精品久久久蜜桃| 在线亚洲欧美视频| 久久精品一区蜜桃臀影院| 欧美aaa级| 国产欧美日韩精品在线| 亚洲国产天堂久久国产91| 亚洲一级二级| 老牛影视一区二区三区| 国产精品毛片a∨一区二区三区|国 | 国产在线观看91精品一区| 亚洲黄色视屏| 欧美一区国产一区| 欧美高清在线一区| 国产一区日韩二区欧美三区| 日韩视频一区二区在线观看 | 欧美另类69精品久久久久9999| 国产精品日韩久久久| 亚洲黄网站黄| 久久高清一区| 国产精品久久久久国产a级| 一区精品在线播放| 香蕉久久夜色精品国产| 欧美日本网站| 伊人天天综合| 欧美在线观看网站| 欧美午夜片在线免费观看| 亚洲成人直播| 久久国产夜色精品鲁鲁99| 欧美亚州一区二区三区| 亚洲精品一二三区| 美女视频一区免费观看| 国产亚洲激情在线| 午夜精品在线| 国产精品毛片大码女人| 亚洲美女视频在线观看| 免费观看在线综合色| 韩国三级在线一区| 欧美制服丝袜| 国产视频观看一区| 亚洲欧美中文在线视频| 国产精品a级| 99国产精品视频免费观看| 免费视频一区| 韩日欧美一区| 午夜久久久久久久久久一区二区| 欧美日韩国产影院| 亚洲乱码国产乱码精品精可以看 | 国产欧美日韩麻豆91| 亚洲视频福利| 欧美色视频日本高清在线观看| 亚洲精品久久久一区二区三区| 久久久综合网| 在线观看一区视频| 欧美成人有码| 日韩视频在线免费| 国产精品黄视频| 久久成人免费日本黄色| 国产综合香蕉五月婷在线| 久久亚洲色图| 日韩视频免费观看| 国产精品丝袜久久久久久app| 亚洲欧美国产日韩中文字幕| 国产一区在线播放| 免费成人性网站| 一本色道88久久加勒比精品| 国产精品99免费看| 欧美亚洲一区二区在线观看| 黄色成人免费观看| 欧美日韩国产精品 | 国产精品高精视频免费| 午夜日韩福利| 亚洲国产精品123| 国产精品大全| 久久婷婷综合激情| 亚洲小说春色综合另类电影| 国产亚洲精品v| 欧美人与禽性xxxxx杂性| 亚洲欧美日韩精品久久| 亚洲第一在线| 国产精品久久久久77777| 久久久女女女女999久久| 亚洲免费成人| 国内成人精品一区| 欧美视频在线观看视频极品| 欧美在线综合视频| 这里只有精品丝袜| 亚洲国产裸拍裸体视频在线观看乱了| 欧美色大人视频| 欧美大片在线看| 久久av资源网站| 在线视频欧美精品| 亚洲国产高清一区二区三区| 国产日产高清欧美一区二区三区| 欧美极品在线播放| 久久色在线观看| 亚洲欧美日韩天堂| 日韩图片一区| 亚洲日本免费电影| 在线看片日韩| 国产一区在线视频| 国产精品在线看| 国产精品免费aⅴ片在线观看| 女女同性精品视频| 久久一区二区三区av| 亚洲综合好骚| 亚洲午夜av| 在线亚洲欧美视频| 一区二区高清在线| 亚洲精品影院在线观看| 亚洲丁香婷深爱综合| 一区在线观看| 亚洲二区免费| 亚洲国产日韩欧美在线99 | 久久精品伊人| 久久久久久噜噜噜久久久精品| 午夜激情综合网| 欧美一级精品大片| 欧美在线视频观看| 久久精品国产69国产精品亚洲| 欧美综合国产精品久久丁香| 欧美专区亚洲专区| 久久久久久网址| 欧美xart系列高清| 欧美日韩精品一本二本三本| 欧美视频免费看| 国产精品欧美风情| 国产欧美日韩在线播放| 国产亚洲激情在线| 精品999日本| 日韩一区二区福利| 亚洲手机在线| 欧美一区二区视频97| 久久人人超碰| 欧美日本在线视频| 国产精品久久久久久亚洲调教| 国产一区导航| 亚洲青色在线| 亚洲欧美日韩国产成人精品影院| 欧美亚洲一级片| 欧美精品日日鲁夜夜添| 国产精品美女久久久久久久| 国产尤物精品| 99xxxx成人网| 欧美在线观看一区二区| 欧美国产大片| 国产乱码精品| 亚洲激情黄色|