99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫EE5434、代做c/c++,Java程序
代寫EE5434、代做c/c++,Java程序

時間:2024-12-06  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



EE5434 final project 
 
Data were available on Nov. 5 (see the Kaggle website) 
Report and source codes due: 11:59PM, Dec. 6th 
Full mark: 100 pts. 
 
During the process, you can keep trying new machine learning models and boost the learning 
accuracy. 
 
You are encouraged to form groups of size 2 with your classmates so that the team can 
implement multiple learning models and compare their performance. If you cannot find any 
partners, please send a message on the group discussion board and briefly introduce your 
expertise. If you prefer to do this project yourself, you can get 5 bonus points. 
 
Submission format: Report should be in PDF format. Source code should be in a notebook file 
(.ipynb) and also save your source code as a HTML file (.html). Thus, there are three files you 
need to upload to Canvas. Remember that you should not copy anyone’s codes, which can lead 
to faisure of this course. 
 
Files and naming rules: If you have two members in the team, start the file name with G2, 
otherwise, G1. For example, you have a teammate and the team members are: Jackie Lee and 
Xuantian Chan, name it as G2-Lee-Chan.xxx. 5 pts will be deducted if the naming rule is not 
followed. In your report, please clearly show the group members. 
 
How do we grade your report? We will consider the following factors. 
 
 1. You would get 30% (basic grade) if you correctly applied two learning models to our 
classification problem. The accuracy should be much better than random guess. Your 
report is written in generally correct English and is easy to follow. Your report should 
include clear explanation of your implementation details and basic analysis of the 
results. 
2. Factors in grading: 
a. Applied/implemented and compared at least 2 different models. You show good 
sense in choosing appropriate models (such as some NLP related models). 
b. For each model, clear explanation of the feature encoding methods, model 
structure, etc. Carefully tuned multiple sets of parameters or feature engineering 
methods. Provided evidence of multiple methods to boost the performance. 
c. Consider performance metrics beyond accuracy (such as confusion matrix, recall, 
ROC, etc.). Carefully compare the performance of different 
methods/models/parameter sets. Being able to present your results using the most 
insightful means such as tables/figures etc. 
d. Well-written reports that are easy to follow/read. 
e. Final ranking on Kaggle.  For each of the factor, we have unsatisfactory (1), acceptable (2), satisfactory (3), good (4), 
excellent (5). The sum of each factor will determine the grade. For example, student A got 4 
good and 1 acceptable for a to e. Then, A’s total score is 4*4+2=16. The full mark for a to e is 
25. So, A’s percentage is 64%. 
 
 
Note that if the final performance is very close (e.g. 0.65 vs 0.66), the corresponding 
submissions belong to the same group in the ranking. 
 
Factors that can increase your grade: 
1. You used a new learning model/feature engineering method that was not taught in 
class. This requires some reading and clear explanation why you think this model fits this 
problem. 
2. Your model’s performance is much better than others because of a new or optimized 
method. 
 
The format of the report 
1. There is no page limit for the report. If you don’t have much to report, keep it simple. 
Also, miminize the language issues by proofreading. 
2. To make our grading more standard, please use the following sections: 
a. Abstract. Summarize the report (what you done, what methods you use and the 
conclusions). (less than 300 words) 
b. Data properties (data explortary analysis). You should describe your 
understanding/analysis of the data properties. 
c. Methods/models. In this section, you should describe your implemented models. 
Provide key parameters. For example, what are the features? If you use kNN, 
what is k and how you computed the distance? If you use ANN, what is the 
architecture, etc. You should separate the high-level description of the models 
and the tuning of hyper-parameters. 
d. Experimental results. In this section, compare and summarize the results using 
appropriate tables/figures. Simplying copying screening is acceptable but will 
lead to low mark for sure. Instead, you should *summarize* your results. You 
can also compare the performance of your model under different 
hyperparameters. 
e. Conclusion and discussion. Discussion why your models perform well or poorly. 
f. Future work. Discuss what you could do if more time is given. 
3. For each model you tried, provide the codes of the model with the best performance. In 
your report, you can detail the performance of this model with different parameters. 
 
The code 
The code should include: 
1. Preprocessing of the data 2. Construction of the model 
3. Training 
4. Validation 
5. Testing 
6. And other code that is necessary 
 
This is the link that you need to use to join the competition. 
https://www.kaggle.com/t/79178536956041b8acb64b6268afb4de 
 
 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:代寫ENGG1110、代做C++語言編程
  • 下一篇:COMP2010J代做、代寫c/c++,Python程序
  • ·MS3251代寫、代做Python/Java程序
  • ·COMP4134代做、Java程序語言代寫
  • ·代寫ENG4200、Python/Java程序設計代做
  • ·代寫I&C SCI 46 、c/c++,Java程序語言代做
  • ·CCIT4020代做、代寫c/c++,Java程序設計
  • ·代寫COMP2011J、Java程序設計代做
  • ·IS3240代做、代寫c/c++,Java程序語言
  • ·代寫CSE x25、C++/Java程序設計代做
  • ·代寫program、代做c++,Java程序語言
  • · 代寫MCEN30017、代做C++,Java程序
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          亚洲成人资源网| 欧美图区在线视频| 久久久久综合| 亚洲欧洲另类国产综合| 欧美日韩国产小视频在线观看| 一本久久精品一区二区| 黄色资源网久久资源365| 欧美日韩在线视频一区二区| 久久综合精品国产一区二区三区| 一区二区免费在线观看| 在线日本成人| 国产主播精品在线| 国产毛片精品视频| 国产精品夫妻自拍| 欧美日韩精品免费看| 麻豆成人91精品二区三区| 久久精品国产精品亚洲| 亚洲男人第一av网站| 一区二区三区高清在线| 亚洲精品永久免费精品| 在线观看不卡| 亚洲第一中文字幕在线观看| 国产专区精品视频| 国内精品免费在线观看| 国产在线欧美日韩| 国产一区二区三区在线观看网站| 国产精品亚洲视频| 国产欧美日韩麻豆91| 国产农村妇女精品一二区| 国产精品一区二区黑丝| 国产欧美在线视频| 国产综合色产在线精品| 国产主播精品| 一区二区在线免费观看| 亚洲国产精品成人综合色在线婷婷| 一区二区亚洲精品国产| 亚洲国产欧美一区二区三区同亚洲 | 在线看片成人| 亚洲精品一区二区三区蜜桃久| 亚洲国产1区| 妖精视频成人观看www| 亚洲免费在线视频| 欧美在线免费观看| 另类激情亚洲| 欧美日韩一区视频| 国产精品久久一区主播| 国产精品一区二区三区久久久| 亚洲日本欧美日韩高观看| 亚洲国产精品成人va在线观看| 亚洲激情女人| 亚洲欧美日韩在线播放| 久久综合伊人| 欧美日韩中文字幕| 国产一区二区欧美日韩| 亚洲精品久久嫩草网站秘色| 一二三区精品| 久久久久这里只有精品| 欧美日韩一卡| 狠狠干综合网| 亚洲一区国产精品| 久久综合伊人77777蜜臀| 欧美国产成人精品| 国产麻豆91精品| 亚洲伦理自拍| 久久蜜桃资源一区二区老牛 | 欧美视频在线观看一区| 红桃视频欧美| 女生裸体视频一区二区三区| 一区二区三区日韩欧美精品| 亚洲欧洲精品天堂一级| 欧美成在线观看| 国产在线成人| 在线电影国产精品| 国产精品亚洲一区| 亚洲黄色精品| 久久精品在线播放| 国产精品视频内| 亚洲精品影院在线观看| 久久狠狠久久综合桃花| 欧美亚洲成人精品| 日韩视频中午一区| 免费高清在线一区| 伊人精品成人久久综合软件| 午夜精品偷拍| 国产精品久久久久9999高清| 99re视频这里只有精品| 欧美极品色图| 最新日韩精品| 免费短视频成人日韩| 在线观看免费视频综合| 久久久噜噜噜久久中文字幕色伊伊| 国产精品久久久一区麻豆最新章节 | 亚洲美女av网站| 国产一区二区三区四区老人| 一本一道久久综合狠狠老精东影业| 亚洲一区中文字幕在线观看| 欧美激情视频免费观看| 永久域名在线精品| 另类图片国产| 尤物九九久久国产精品的特点 | 欧美手机在线| 在线亚洲一区观看| 国产精品久久久久毛片大屁完整版 | 亚洲综合第一| 国产欧美婷婷中文| 欧美在线视频导航| 亚洲电影免费| 欧美电影免费观看大全| 日韩视频在线观看免费| 国产精品成人在线观看| 亚洲一区二区三区影院| 国产一区二区毛片| 欧美成人久久| 亚洲一区在线直播| 狠狠色综合日日| 欧美大胆成人| 亚洲电影免费观看高清完整版在线| 欧美aⅴ一区二区三区视频| 在线视频日本亚洲性| 国产精品欧美久久久久无广告| 欧美在线啊v一区| 亚洲国产美女精品久久久久∴| 欧美日韩中国免费专区在线看| 小辣椒精品导航| 亚洲黄色天堂| 国产日韩精品视频一区| 欧美高清在线| 香港成人在线视频| 亚洲精品国产系列| 国产亚洲成av人片在线观看桃| 久久一日本道色综合久久| 夜夜嗨av一区二区三区四区| 国产视频一区欧美| 欧美日韩成人在线播放| 欧美在线一二三区| 一区二区三区 在线观看视| 久久女同互慰一区二区三区| 国产精品99久久久久久久女警 | 欧美一区二区女人| 欧美激情第二页| 欧美一级欧美一级在线播放| 亚洲福利久久| 国产一区日韩一区| 欧美婷婷久久| 欧美jjzz| 久久久久看片| 亚洲欧美日本伦理| 亚洲欧洲在线播放| 激情小说亚洲一区| 国产亚洲精品成人av久久ww| 欧美日韩伦理在线免费| 欧美成人中文字幕在线| 久久高清免费观看| 午夜精品久久久久影视 | 亚洲精品你懂的| 国产精品青草综合久久久久99| 久久久精品国产99久久精品芒果| 亚洲免费一级电影| 国产精品国产三级国产普通话99 | 国产一区二区三区视频在线观看| 欧美国产精品va在线观看| 久久免费高清视频| 久久精品亚洲乱码伦伦中文 | 午夜免费电影一区在线观看| 日韩五码在线| 亚洲精品综合久久中文字幕| 亚洲韩国精品一区| 黄色成人在线网址| 国产主播一区| 红桃视频国产精品| 亚洲国产精品久久| 亚洲伦理自拍| 亚洲午夜激情| 午夜亚洲视频| 久久国产欧美| 免费永久网站黄欧美| 欧美多人爱爱视频网站| 欧美激情在线观看| 欧美先锋影音| 国产在线视频欧美| 亚洲国产精品99久久久久久久久| 亚洲欧洲日产国码二区| 一区二区精品在线观看| 亚洲一区二区三区四区中文| 欧美亚洲在线视频| 狼狼综合久久久久综合网 | 亚洲精品国产精品国自产在线| 亚洲理伦在线| 亚洲欧美国产视频| 久久影视三级福利片| 欧美日韩美女| 国产一区二区三区黄视频| 亚洲国产精品va在看黑人| 一区二区三区久久久| 欧美在线高清视频| 欧美华人在线视频| 国产伦理精品不卡| 亚洲精品之草原avav久久| 亚洲一区欧美激情| 蜜臀a∨国产成人精品|