合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

         代寫MCEN30017、代做C++,Java程序
         代寫MCEN30017、代做C++,Java程序

        時間:2024-10-18  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



         Department of Mechanical Engineering
         Mechanics and Materials (MCEN30017)
         Part 2: Finite Element Analysis (FEA)
         Semester 2, 2024
        Assignment 
        Objective: 
        This assignment aims to evaluate students’ ability to use an analytical FEA approach to solve 
        1D/2D structural problems (see examples in lecture notes_ and utilize both Matlab and a 
        commercial FEA package to give a flavor of conducting research to students and prepare them 
        for structural integrity of a modern world engineering problem. 
        Assessment: 
        This assignment constitutes 25% of your total grade. You are required to submit an individual 
        report addressing all the questions. The report must be submitted online through the LMS by 
        Friday, October 18, 2024, at 23:59. 
        The report should be at least 15 pages long, including figures, in a word or pdf document format. 
        Alternatively, you may submit a written report of at least 10 to 12 pages, including figures, 
        accompanied by a 4 to 6-minute video presentation (e.g., a voice-over PowerPoint), explaining 
        your steps for conducting the FEA simulations required for Question 3. 
        We recommend using an equation editor for writing mathematical equations and formulas. 
        However, you may also use clear and legible handwritten equations if preferred. Section 1: FEA analytical approach 
        Question 1. (20 marks) 
        For the plane truss shown in figure 1, determine the horizontal and vertical displacement of node 
        1 and node 2, and calculate the stresses on rods A, B, C. Let Young’s modulus    = 210        & 
        uniform cross-section area    = 4 × 10
        −4
           2
         for all elements. You should demonstrate: 
        a) Calculation of the stiffness matrix for each rod in this figure 
        b) Calculation of displacements on nodes 1 and 2 in both horizontal and vertical directions 
         
        Figure 1 
        Question 2. (20 marks) 
        Most of the engineering problems fall into a category of solution of a partial differential equation 
        (PDE). There are analytical, experimental, and numerical methods to solve these PDEs. Read 
        the following documentation (only the uniaxial tension section) on analytical stress analysis of a 
        circular hole in an infinite plate (you can search for “stress concentrations at holes”). 
        https://www.fracturemechanics.org/hole.html 
        Download the Matlab code for assignment on LMS, or alternatively go through the following 
        MATLAB help center which guides you through simulation of a circular hole in a rectangular 
        strip. 
        https://au.mathworks.com/help/pde/ug/stress-concentration-in-plate-with-circular-hole.html 
        B (4m)
        C (3m)
        F (4m)
        E (4m)
         (3m)
        4000 N
        3000 N

        5Following the instructions, instead of a rectangle, design a square with a circular hole in the 
        middle of it. Call circular hole diameter “d” and square width “w” and use only fine mesh. We 
        know that the analytical solution is not valid anymore if “d/w” parameter is not small enough. 
        a) This is the analytical method to the solution of a PDE. Write a maximum of 2 paragraphs 
        on your understanding of the nature of the problem. (4 marks). 
        b) Iterate multiple times and report the minimum “d/w” in which maximum stress is three 
        (3) times higher than the average stress at the edge of the square. Hint: you can find the 
        average stress on one edge and on the centerline similar to the way stress is defined on 
        the circle (a few lines of code). (8 marks) 
        c) Make a similar geometry in SolidWorks and conduct an FEA analysis. Present both results 
        (8 marks) 
         
        Section 2: FEA numerical approach 
        Question 3 (60 marks) 
        During the tutorial sessions, we have learned how to design and analyze an FEA model. Try to 
        design the model below in SolidWorks and report the required steps to perform a valid simulation 
        for a prosthetic hip joint replacement. You are supposed to generate the backbone of your model 
        first. Subsequently, add fillets and cut-extrudes to the model to generate the final model as 
        proposed in the next page. Keep the 10 mm bottom edge of the model, and its midpoint as a 
        reference to start your design. Each fillet size is simply written as   5 as an example to convey a 
        5 mm fillet.  
         
         The common practice is to use a dynamic load on the joint; however, we simplify the modeling 
        with a 1500 Newtons of load applied to the spherical part of the joint. 
        In your report/video presentation: 
        i) Show how you construct your model (use revolve feature), select your material 
        (Titanium alloy- Titanium (Ti-6Al-4V)). (15 marks) 
        ii) Present the boundary conditions that you use to initiate your simulation. In order not 
        to have a rotation in your model, what type of B.C. you would use, and on what 
        edges/faces? Justify your boundary conditions. (10 marks) 
        iii) Perform a mesh sensitivity analysis and demonstrate the regions of high stress on your 
        model, which require further refinement of mesh. Explain your strategy to refine mesh 
        on high stress/ critical zones and report the appropriate mesh size. (10 marks) 
        iv) Present the regions of high stress in your model based on Von-mises stress. 
        Demonstrate a graph for the region with the highest stress. Are you able to reduce 
        this stress in your model? (10 marks). 
        v) A design engineer has recommended reducing the weight of implant considering a few 
        holes inside the model. Apply a 1 mm fillet for each hole. Develop your model based 
        on the suggested design and conduct a design study to investigate the most appropriate 
        size of the holes in your model. Try holes with a diameter of 6, 8, 10, 12 mm. (15 
        marks)  
        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機打開當前頁
      1. 上一篇:MATH36031代做、代寫MATLAB程序語言
      2. 下一篇:代做cmsc14100 編程、代寫python編程語言
      3. · 代寫ICT50220、C++/Java程序語言代做
      4. ·CS2204編程代寫、代做Java程序語言
      5. · ICT50220代做、代寫c++,Java程序設計
      6. ·CS439編程代寫、代做Java程序語言
      7. ·ELX304編程代寫、代做Python/Java程序語言
      8. ·代做NEKN96、代寫c/c++,Java程序設計
      9. ·CRICOS編程代做、代寫Java程序設計
      10. ·MDSB22代做、代寫C++,Java程序設計
      11. ·代寫IK2215、代做java程序語言
      12. ·U6300編程代做、代寫c/c++,Java程序語言
      13. 合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      14. 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 亚洲一区精品伊人久久伊人| 亚洲啪啪综合AV一区| 日韩一区二区在线观看视频| 内射女校花一区二区三区| 国产综合视频在线观看一区| 国产一区在线电影| 国产AV国片精品一区二区| 国精产品一区二区三区糖心| 亚洲一区二区三区四区在线观看| 精品无码人妻一区二区三区品| 亚洲欧美日韩中文字幕一区二区三区| 人妻av综合天堂一区| 亚洲国产精品一区二区第四页| av无码人妻一区二区三区牛牛| 一区二区精品在线| 国产欧美色一区二区三区| 国产福利电影一区二区三区,免费久久久久久久精 | 久久国产三级无码一区二区| 熟女大屁股白浆一区二区| 色妞色视频一区二区三区四区| 无码国产精品久久一区免费| 日本强伦姧人妻一区二区| 亚洲爆乳精品无码一区二区三区| 亚洲丶国产丶欧美一区二区三区| 精品一区二区三区在线观看l| 日韩一区二区精品观看| 国产探花在线精品一区二区 | 无码人妻一区二区三区免费n鬼沢| 亚洲国产成人精品无码一区二区| 青娱乐国产官网极品一区| 一区二区三区国产精品| 视频一区视频二区在线观看| 亚洲国产成人一区二区精品区| 免费看无码自慰一区二区| 中文字幕亚洲一区二区三区| 大香伊人久久精品一区二区| 综合久久久久久中文字幕亚洲国产国产综合一区首 | 精品在线一区二区| 精品亚洲AV无码一区二区三区| 无码日韩人妻AV一区免费l| 蜜桃视频一区二区三区在线观看|