99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做NEKN96、代寫c/c++,Java程序設計
代做NEKN96、代寫c/c++,Java程序設計

時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Homework Assignment 1
NEKN96
Guidelines
1. Upload the HWA in .zip format to Canvas before the 2nd of October, 23:59, and only
upload one HWA for each group. The .zip ffle should contain two parts:
- A report in .pdf format, which will be corrected.
- The code you used to create the output/estimates for the report. The code itself will
not be graded/corrected and is only required to conffrm your work. The easiest is to add
the whole project folder you used to the zip ffle.
1 However, if you have used online tools,
sharing a link to your work is also ffne.
2
2. The assignment should be done in groups of 3-4 people, pick groups at
Canvas → People → Groups.
3
3. Double-check that each group member’s name and ID number are included in the .pdf ffle.
4. To receive your ffnal grade on the course, a PASS is required on this HWA.
- If a revision is required, the comments must be addressed, and an updated version should
be mailed to ioannis.tzoumas@nek.lu.se. However, you are only guaranteed an additional
evaluation of the assignment in connection to an examination period.
4
You will have a lot of ffexibility in how you want to solve each part of the assignment, and all things
that are required to get a PASS are denoted in bullet points:

Beware, some things require a lot of work, but you should still only include the ffnal table or ffgure
and not all intermediary steps. If uncertain, add a sentence or two about how you reached your
conclusions, but do not add supplementary material. Only include the tables/ffgures explicitly asked
for in the bullet points.
Good Luck!
1Before uploading the code, copy-paste the project folder to a new directory and try to re-run it. Does it still work?
2Make sure the repository/link is public/working before sharing it.
3Rare exceptions can be made if required. 
4Next is the retake on December 12th, 2024.
1NEKN96
Assignment
Our goal is to put into practice the separation of population vs. sample using a linear regression
model. This hands-on approach will allow us to generate a sample from a known Population Regression
Function (PRF) and observe how breakages of the Gauss-Markov assumptions can affect our sample
estimates.
We will assume that the PRF is:
Y = α + β1X1 + β2X2 + β3X3 + ε (1)
However, to break the assumptions, we need to add:
A0: Non-linearities
A2: Heteroscedasticity
A4: Endogeneity
A7: Non-normality in a small sample
A3 autocorrelation will be covered in HWA2, time-series modelling.
Q1 - All Assumptions Fulfflled
Let’s generate a ”correct” linear regression model. Generate a PRF with the parameters:
α = 0.7, β1 = −1, β2 = 2, β3 = 0.5, ε ∼ N(0, 4), Xi
 iid∼ N(0, 1). (2)
The example code is also available in Canvas
Setup Parameters
n = 30
p = 3
beta = [-1, 2, 0.5]
alpha = 0.7
Simulate X and Y, using normally distributed errors
5
np. random . seed ( seed =96)
X = np. random . normal (loc=0, scale =1, size =(n, p))
eps = np. random . normal (loc =0, scale =2, size =n)
y = alpha + X @ beta + eps
Run the correctly speciffed linear regression model
result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
result_OLS . summary ()
ˆ Add a well-formatted summary table
ˆ Interpret the estimate of βˆ
2 and the R2
.
5
Important: The np.random.seed() will ensure that we all get the same result. In other words, ensure that we are
using the ”correct” seed and that we don’t generate anything else ”random” before this simulation.
2NEKN96
ˆ In a paragraph, discuss if the estimates are consistent with the population regression function.
Why, why not?
ˆ Re-run the model, increasing the sample size to n = 10000. In a paragraph, explain what happens
to the parameter estimates, and why doesn’t R2 get closer and closer to 1 as n increases?
Q2 - Endogeneity
What if we (wrongly) assume that the PRF is:
Y = α + β1X1 + β2X2 + ε (3)
Use the same seed and setup as in Q1, and now estimate both the ”correct” and the ”wrong” model:
result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
result_OLS . summary ()
result_OLS_endog = OLS ( endog =y, exog = add_constant (X[:,0:2 ])). fit ()
result_OLS_endog . summary ()
ˆ Shouldn’t this imply an omitted variable bias? Show mathematically why it won’t be a problem
in this speciffc setup (see lecture notes ”Part 2 - Linear Regression”).
Q3 - Non-Normality and Non-Linearity
Let’s simulate a sample of n = 3000, keeping the same parameters, but adding kurtosis and skewness
to the error terms:
6
n = 3000
X = np. random . normal (loc=0, scale =1, size =(n, p))
eps = np. random . normal (loc =0, scale =2, size =n)
eps_KU = np. sign ( eps) * eps **2
eps_SKandKU_tmp = np. where ( eps_KU > 0, eps_KU , eps_KU *2)
eps_SKandKU = eps_SKandKU_tmp - np. mean ( eps_SKandKU_tmp )
Now make the dependent variable into a non-linear relationship
y_exp = np.exp( alpha + X @ beta + eps_SKandKU )
ˆ Create three ffgures:
1. Scatterplot of y exp against x 1
2. Scatterplot of ln(y exp) against x 1
3. plt.plot(eps SKandKU)
The ffgure(s) should have a descriptive caption, and all labels and titles should be clear to the
reader.
Estimate two linear regression models:
6The manual addition of kurtosis and skewness will make E [ε] ̸= 0, so we need to remove the average from the errors
to ensure that the exogeneity assumption is still fulfflled.
3NEKN96
res_OLS_nonLinear = OLS( endog =y_exp , exog = add_constant (X)). fit ()
res_OLS_transformed = OLS ( endog =np.log ( y_exp ), exog = add_constant (X)). fit ()
ˆ Add the regression tables of the non-transformed and transformed regressions
ˆ In a paragraph, does the transformed model fft the population regression function?
Finally, re-run the simulations and transformed estimation with a small sample, n = 30
ˆ Add the regression table of the transformed small-sample estimate
ˆ Now, re-do this estimate several times
7 and observe how the parameter estimates behave. Do
the non-normal errors seem to be a problem in this spot?
Hint: Do the parameters seem centered around the population values? Do we reject H0 : βi = 0?
ˆ In a paragraph, discuss why assuming a non-normal distribution makes it hard to ffnd the
distributional form under a TRUE null hypothesis, H0 ⇒ Distribution?
Hint: Why is the central limit theorem key for most inferences?
Q4 - Heteroscedasticity
Suggest a way to create heteroscedasticity in the population regression function.
8
ˆ Write down the updated population regression function in mathematical notation
ˆ Estimate the regression function assuming homoscedasticity (as usual)
ˆ Adjust the standard errors using a Heteroscedastic Autocorrelated Consistent (HAC) estimator
(clearly state which HAC estimator you use)
ˆ Add the tables of both the unadjusted and adjusted estimates
ˆ In a paragraph, discuss if the HAC adjustment to the standard errors makes sense given the
way you created the heteroscedasticity. Did the HAC adjustment seem to ffx the problem?
Hint: Bias? Efffcient?
7Using a random seed for each estimate.
8Tip: Double-check by simulating the model and plotting the residuals against one of the regressors. Does it look
heteroscedastic?


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:ITMF7.120代寫、代做Python編程設計
  • 下一篇:代做COMP 412、代寫python設計編程
  • ·CRICOS編程代做、代寫Java程序設計
  • ·MDSB22代做、代寫C++,Java程序設計
  • ·代做Electric Vehicle Adoption Tools 、代寫Java程序設計
  • ·代做INFO90001、代寫c/c++,Java程序設計
  • · COMP1711代寫、代做C++,Java程序設計
  • ·GameStonk Share Trading代做、java程序設計代寫
  • ·CSIT213代做、代寫Java程序設計
  • ·CHC5223代做、java程序設計代寫
  • ·代做INFS 2042、Java程序設計代寫
  • ·代寫CPT206、Java程序設計代做
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                91视频xxxx| 日韩一级二级三级| 高清国产午夜精品久久久久久| 成人av资源在线观看| 91丨porny丨在线| 日韩欧美亚洲国产精品字幕久久久| 久久免费的精品国产v∧| 亚洲三级电影网站| 韩国欧美国产一区| 欧美性大战久久| 国产亚洲精品精华液| 日韩中文字幕麻豆| 9色porny自拍视频一区二区| 51精品秘密在线观看| 日韩一区欧美小说| 国产高清不卡二三区| 欧美日韩一区 二区 三区 久久精品| 国产欧美一区二区三区在线老狼| 亚洲一区av在线| 97精品久久久午夜一区二区三区 | 亚洲成人动漫在线免费观看| 久久国产精品99久久人人澡| 欧美亚洲高清一区二区三区不卡| 国产欧美日韩不卡免费| 狂野欧美性猛交blacked| 在线一区二区三区| 综合av第一页| 99精品国产99久久久久久白柏| 日韩免费观看高清完整版| 亚洲图片欧美色图| 在线影院国内精品| 亚洲日本丝袜连裤袜办公室| 粉嫩欧美一区二区三区高清影视| 日韩女优电影在线观看| 秋霞午夜鲁丝一区二区老狼| 欧美老年两性高潮| 图片区小说区国产精品视频| 欧美体内she精高潮| 亚洲与欧洲av电影| 欧美三级日韩三级| 亚洲国产色一区| 色偷偷久久人人79超碰人人澡| 国产欧美日韩在线看| 国产福利电影一区二区三区| 26uuu另类欧美亚洲曰本| 蜜桃av一区二区| 日韩精品一区二区在线观看| 青青草成人在线观看| 欧美精品xxxxbbbb| 日韩和欧美一区二区三区| 欧美日韩亚州综合| 日本三级亚洲精品| 日韩欧美国产三级| 国产一区视频导航| 中文字幕高清不卡| 99久久99久久综合| 亚洲一区电影777| 日韩欧美二区三区| 国产精品1区二区.| 国产精品国产a| 欧美中文字幕亚洲一区二区va在线| 一区二区成人在线观看| 欧美一卡二卡在线观看| 九九九精品视频| 国产精品国产精品国产专区不片| 欧洲一区二区三区在线| 免费观看久久久4p| 国产精品久久久99| 欧美顶级少妇做爰| 成人国产精品免费网站| 亚洲尤物在线视频观看| 精品国内片67194| 色综合色狠狠天天综合色| 天堂影院一区二区| 日韩欧美成人激情| 成人av电影在线| 日韩成人午夜电影| 中文字幕在线观看一区二区| 欧美色网一区二区| 国产美女在线精品| 一区二区三区av电影| 日韩一区二区三区电影在线观看| 国产a视频精品免费观看| 一区二区三区免费网站| 精品国产sm最大网站| 91麻豆国产香蕉久久精品| 男女视频一区二区| 国产精品久久久久久久久动漫 | 韩日av一区二区| 亚洲免费观看高清完整版在线观看| 欧美一区二区三区免费在线看| 国产69精品久久99不卡| 亚洲永久精品国产| 久久久久久久久久久久电影| 日本韩国欧美一区二区三区| 激情亚洲综合在线| 亚洲成av人片观看| 最新热久久免费视频| 久久这里只精品最新地址| 欧美日韩精品一二三区| av一区二区久久| 国产一区二区在线观看免费| 亚洲一区二区高清| 亚洲欧美另类综合偷拍| 欧美极品美女视频| 久久网站热最新地址| 91精品久久久久久久99蜜桃| 色综合久久六月婷婷中文字幕| 国产综合一区二区| 欧美bbbbb| 欧美aaaaaa午夜精品| 亚洲成人激情av| 亚洲与欧洲av电影| 一级日本不卡的影视| 国产精品卡一卡二| 国产欧美精品一区二区三区四区| 日韩欧美123| 日韩一区二区三区观看| 制服丝袜激情欧洲亚洲| 欧美日韩国产综合久久| 色菇凉天天综合网| 91免费在线视频观看| 成人精品免费视频| 国产福利91精品一区二区三区| 黄网站免费久久| 国产在线播放一区三区四| 精品一区二区三区在线播放视频| 免费观看日韩电影| 久色婷婷小香蕉久久| 麻豆视频一区二区| 黑人精品欧美一区二区蜜桃| 久久99精品久久只有精品| 麻豆国产精品777777在线| 久久99日本精品| 国产高清精品久久久久| 国产成人免费av在线| 国产成人超碰人人澡人人澡| 韩国理伦片一区二区三区在线播放| 麻豆中文一区二区| 懂色av中文字幕一区二区三区| 成人综合在线网站| 色哟哟一区二区在线观看| 色老头久久综合| 在线播放91灌醉迷j高跟美女 | 中文字幕欧美三区| 中文字幕中文字幕一区二区 | 色婷婷精品久久二区二区蜜臂av | 亚洲精品大片www| 亚洲一区二区精品视频| 日韩高清电影一区| 韩国女主播成人在线观看| 国产大陆精品国产| 91视频观看免费| 欧美精品色一区二区三区| 91精品国产高清一区二区三区蜜臀| 日韩一区二区三区av| 精品粉嫩超白一线天av| 国产精品美女一区二区三区| 亚洲美女在线国产| 日韩精品免费视频人成| 狠狠色综合播放一区二区| 久久人人爽爽爽人久久久| 国产精品伦一区| 亚洲一区二区欧美| 久久电影网站中文字幕| 懂色av一区二区在线播放| 色综合久久久久久久| 在线观看91精品国产麻豆| 久久久午夜精品| 亚洲大片免费看| 国产aⅴ综合色| 欧美日本一区二区三区四区| 久久久久99精品国产片| 亚洲国产一区二区在线播放| 久久99精品国产91久久来源| www.成人在线| 精品久久人人做人人爰| 亚洲情趣在线观看| 精品影视av免费| 色播五月激情综合网| 久久久久久久久久久久电影 | 欧美一级日韩一级| 自拍偷拍欧美激情| 久久99精品久久久| 欧美日韩免费一区二区三区| 国产精品无人区| 精品一区二区三区在线观看| 不卡一区在线观看| 日韩一级黄色片| 亚洲成人自拍网| 色婷婷精品久久二区二区蜜臀av| 国产三级欧美三级日产三级99| 日韩在线a电影| 欧美性生活一区| 亚洲精品视频免费观看| 成人精品视频网站| 久久精品视频在线看| 蜜臀精品久久久久久蜜臀| 在线一区二区观看| 亚洲乱码国产乱码精品精小说 |