99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫ENG4200、Python/Java程序設(shè)計(jì)代做
代寫ENG4200、Python/Java程序設(shè)計(jì)代做

時(shí)間:2024-11-24  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Coursework 2: Neural networks 
ENG4200 Introduction to Artificial Intelligence and Machine Learning 4 
1. Key Information 
• Worth 30% of overall grade 
• Submission 1 (/2): Report submission 
• Deadline uploaded on Moodle 
• Submission 2 (/2): Code submission to CodeGrade 
• Deadline uploaded on Moodle (the same as for report) 
2. Training data 
The training dataset has been generated by maximum flow analysis between nodes 12 and 2. The 
feature dataset has 19 fields, which of each represents the maximum flow capacity of each of the 
19 edges, taking the values of 0, 1, and 2. The output dataset has 20 fields, where the first 19 
fields refer to the actual flow taking place on each of the 19 edges, and the last one refers to the 
maximum flow possible between nodes 12 and 2. 
 
Figure 1 The network used to generate training dataset. This information is just to help you understand the training 
dataset; you must not generate additional training dataset to train your neural network. 
 3. What you will do 
You have to create and train a neural network with the following requirement/note: 
• Only the provided training dataset should be used, i.e. furthur traning dataset must NOT be 
created by performing maximum flow analysis over the network in Figure 1. 
• The accuracy on a hidden test dataset will be evaluated by a customised function as 
follows, where the accuracy on the maximum flow field is weighted by 50%, and other 19 
fields share the rest 50% (you may design your loss function accordingly): 
 
 
 You should prepare two submissions, code submission and report submission. In blue colour are 
assessment criteria. 
• Code submission should include two files (example code uploaded on Moodle): 
o A .py file with two functions 
▪ demo_train demonstrates the training process for a few epochs. It has three 
inputs: (1) the file name of taining feature data (.csv), (2) the file name of 
training output data (.csv), and (3) the number of epochs. It needs to do two 
things: (1) it needs to print out a graph with two curves of training and 
validation accuracy, respectively; and (2) save the model as .keras file. 
▪ predict_in_df makes predictions on a provided feature data. It has two 
inputs: (1) the file name of a trained NN model (.keras) and (2) the file name 
of the feature data (.csv). It needs to return the predictions by the NN model 
as a dataframe that has the same format as ‘train_Y’. 
o A .keras file of your trained model 
▪ This will be used to test the hidden test dataset on CodeGrade. 
 
o You can test your files on CodeGrade. There is no limit in the number of 
submissions on CodeGrade until the deadline. 
 
o Assessment criteria 
▪ 5% for the code running properly addressing all requirements. 
▪ 10% for a third of the highest accuracy, 7% (out of 10%) for a third of the 
second highest accuracy, and 5% (out of 10%) for the rest. 
 
• Report submission should be at maximum 2 pages on the following three questions and 
one optional question: 
o Parametric studies of hyperparameters (e.g. structure, activators, optimiser, learning 
rate, etc.): how did you test different values, what insights have you obtained, and 
how did you decide the final setting of your model? 
o How did you address overfitting and imbalanced datasets? 
o How did you decide your loss function? 
o [Optional] Any other aspects you’d like to highlight (e.g. using advanced methods 
such as graphical neural network and/or transformer)? 
 
o [Formatting] Neither cover page nor content list is required. Use a plain word 
document with your name and student ID in the first line. 
 
o Assessment criteria 
▪ 5% for each of the questions, evaluated by technical quality AND 
writing/presentation 
▪ Any brave attempts of methods (e.g. Graphical Neural Network, Transformer, 
or Physics-Informed Neural Network using physical relationships e.g. that 
the flows going in and out of a node should be balanced) that go beyond 
what we learned in classroom will earn not only the top marks for report, but 
also (unless the accuracy is terribly off) will earn a full 10% mark for 
accuracy in the code submission part. If you have made such attempts, don’t 
forget to highlight your efforts on the report. 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:CS1026A代做、Python設(shè)計(jì)程序代寫
  • 下一篇:代寫ECE 36800、代做Java/Python語言編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                日本一区二区三区免费乱视频| 中文字幕中文字幕在线一区| 久久久久久亚洲综合| 亚洲一区二区中文在线| 欧美日韩亚洲综合一区| 天天操天天干天天综合网| 欧美天堂亚洲电影院在线播放| 午夜欧美一区二区三区在线播放| 欧美视频在线播放| 水野朝阳av一区二区三区| 欧美久久久久久久久| 美国十次综合导航| 欧美国产国产综合| 成人免费视频一区| 亚洲已满18点击进入久久| 一本色道综合亚洲| 奇米色777欧美一区二区| 久久久久综合网| 91在线播放网址| 亚洲r级在线视频| 久久久久久久久久看片| 色婷婷精品大在线视频 | 久久久www成人免费无遮挡大片| 精品一区二区成人精品| 国产精品视频看| 欧美在线视频不卡| 国产精品一级黄| 一区二区三区四区在线| 精品日韩在线观看| 欧美视频完全免费看| 狠狠色丁香九九婷婷综合五月| 一区二区三区四区不卡在线 | 亚洲精品欧美在线| 日韩欧美激情在线| 在线视频你懂得一区二区三区| 日日摸夜夜添夜夜添国产精品| 日本一区二区三区国色天香 | 欧美日韩亚洲综合| 国产ts人妖一区二区| 亚洲成年人网站在线观看| 国产亚洲欧美在线| 欧美色爱综合网| 粉嫩嫩av羞羞动漫久久久| 日韩不卡在线观看日韩不卡视频| 国产精品第四页| 国产偷国产偷亚洲高清人白洁| 日韩一区二区在线播放| 色拍拍在线精品视频8848| 国产suv一区二区三区88区| 国模无码大尺度一区二区三区| 一区二区三区在线播| 亚洲精品欧美激情| 午夜精品一区二区三区电影天堂| 欧美日韩综合在线免费观看| 一区二区视频免费在线观看| 精品视频全国免费看| 美女网站色91| 日本一区二区综合亚洲| av影院午夜一区| 最新热久久免费视频| 欧美一区午夜视频在线观看| 久久国产免费看| 99久久免费精品高清特色大片| www久久精品| 欧美色老头old∨ideo| 欧美视频一区二区三区| 欧洲国产伦久久久久久久| 成人一区二区三区| 午夜精品久久久久影视| 亚洲欧洲精品一区二区精品久久久 | 视频一区二区三区中文字幕| 99久久精品免费看| 三级成人在线视频| 136国产福利精品导航| 国产一区二区在线看| 亚洲免费视频成人| 国产精品久久久久aaaa樱花| 狠狠久久亚洲欧美| 欧美群妇大交群的观看方式 | 中文字幕第一区二区| 国产精品久久一卡二卡| 亚洲天天做日日做天天谢日日欢| 亚洲欧洲国产日韩| 亚洲天堂中文字幕| 日韩精品一卡二卡三卡四卡无卡| 亚洲国产成人av| 国产在线乱码一区二区三区| 国产在线精品免费av| 高清不卡一区二区在线| 91官网在线免费观看| 久久综合久久综合久久综合| 国产欧美日本一区二区三区| 亚洲综合无码一区二区| 日韩高清在线观看| 丁香激情综合国产| 日韩三级精品电影久久久| 精品电影一区二区| ●精品国产综合乱码久久久久 | 狠狠色狠狠色综合日日91app| 成人精品鲁一区一区二区| 欧美高清激情brazzers| 亚洲免费观看高清在线观看| 久久99国产精品成人| 91一区二区在线观看| 精品国产三级电影在线观看| 亚洲香蕉伊在人在线观| 丁香婷婷综合激情五月色| 欧美一级精品在线| 天天综合网天天综合色| 在线精品视频免费观看| 国产精品每日更新在线播放网址| 韩国成人福利片在线播放| 日韩一级片在线观看| 午夜国产不卡在线观看视频| 日本精品裸体写真集在线观看| 国产精品欧美精品| www.欧美日韩| 亚洲欧洲韩国日本视频| eeuss鲁一区二区三区| 国产精品久久二区二区| 国产98色在线|日韩| 欧美激情在线免费观看| 成人激情黄色小说| 亚洲激情欧美激情| 欧美日韩一区二区三区视频| 亚洲图片欧美综合| 欧美午夜精品一区二区蜜桃| 亚洲精品乱码久久久久久| 一本大道综合伊人精品热热| 一区二区视频在线看| 精品视频1区2区| 免费成人在线影院| 日韩精品一区国产麻豆| 国产一区二区三区免费| 中文乱码免费一区二区| 一本大道综合伊人精品热热| 亚洲成人精品影院| 欧美在线你懂得| 青青青爽久久午夜综合久久午夜| 欧美mv和日韩mv的网站| 国产成人福利片| 亚洲精品欧美激情| 91精品久久久久久久91蜜桃| 九九国产精品视频| 日本一区二区三区在线不卡| 99精品久久只有精品| 亚洲图片欧美色图| 久久久久久久久久久久久久久99| 国产不卡在线一区| 亚洲电影第三页| 久久久99精品久久| 欧美三级韩国三级日本三斤| 久久99久久精品| 一区二区在线观看av| 精品剧情在线观看| 日本高清不卡aⅴ免费网站| 日韩va亚洲va欧美va久久| 久久无码av三级| 欧美无砖砖区免费| 丁香激情综合国产| 男女男精品视频| 亚洲免费电影在线| 精品国产乱码久久久久久1区2区| aaa亚洲精品| 蜜臀91精品一区二区三区| 中文字幕第一区第二区| 91精品在线观看入口| 91在线高清观看| 国产精品一区不卡| 奇米精品一区二区三区四区 | 偷窥少妇高潮呻吟av久久免费| 中文字幕精品在线不卡| 欧美一三区三区四区免费在线看| 91丨porny丨中文| 国产酒店精品激情| 久久精品国产精品青草| 婷婷激情综合网| 一区二区在线观看av| 亚洲欧洲日产国码二区| 欧美韩国日本一区| 久久久久久综合| 欧美tk丨vk视频| 日韩精品专区在线影院重磅| 欧美三级三级三级| 欧洲视频一区二区| 一本一道波多野结衣一区二区| 风间由美中文字幕在线看视频国产欧美| 日韩电影在线观看一区| 亚洲综合色丁香婷婷六月图片| 国产精品欧美一级免费| 国产日韩欧美一区二区三区综合| 精品久久久久久久久久久院品网| 91精品国产综合久久久久久漫画| 欧美三级一区二区| 欧美中文字幕久久| 91精品办公室少妇高潮对白| 91黄色小视频| 欧美主播一区二区三区| 欧美日韩一区二区三区四区五区 | 国产成人午夜高潮毛片|