99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫ENG4200、Python/Java程序設(shè)計(jì)代做
代寫ENG4200、Python/Java程序設(shè)計(jì)代做

時(shí)間:2024-11-24  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Coursework 2: Neural networks 
ENG4200 Introduction to Artificial Intelligence and Machine Learning 4 
1. Key Information 
• Worth 30% of overall grade 
• Submission 1 (/2): Report submission 
• Deadline uploaded on Moodle 
• Submission 2 (/2): Code submission to CodeGrade 
• Deadline uploaded on Moodle (the same as for report) 
2. Training data 
The training dataset has been generated by maximum flow analysis between nodes 12 and 2. The 
feature dataset has 19 fields, which of each represents the maximum flow capacity of each of the 
19 edges, taking the values of 0, 1, and 2. The output dataset has 20 fields, where the first 19 
fields refer to the actual flow taking place on each of the 19 edges, and the last one refers to the 
maximum flow possible between nodes 12 and 2. 
 
Figure 1 The network used to generate training dataset. This information is just to help you understand the training 
dataset; you must not generate additional training dataset to train your neural network. 
 3. What you will do 
You have to create and train a neural network with the following requirement/note: 
• Only the provided training dataset should be used, i.e. furthur traning dataset must NOT be 
created by performing maximum flow analysis over the network in Figure 1. 
• The accuracy on a hidden test dataset will be evaluated by a customised function as 
follows, where the accuracy on the maximum flow field is weighted by 50%, and other 19 
fields share the rest 50% (you may design your loss function accordingly): 
 
 
 You should prepare two submissions, code submission and report submission. In blue colour are 
assessment criteria. 
• Code submission should include two files (example code uploaded on Moodle): 
o A .py file with two functions 
▪ demo_train demonstrates the training process for a few epochs. It has three 
inputs: (1) the file name of taining feature data (.csv), (2) the file name of 
training output data (.csv), and (3) the number of epochs. It needs to do two 
things: (1) it needs to print out a graph with two curves of training and 
validation accuracy, respectively; and (2) save the model as .keras file. 
▪ predict_in_df makes predictions on a provided feature data. It has two 
inputs: (1) the file name of a trained NN model (.keras) and (2) the file name 
of the feature data (.csv). It needs to return the predictions by the NN model 
as a dataframe that has the same format as ‘train_Y’. 
o A .keras file of your trained model 
▪ This will be used to test the hidden test dataset on CodeGrade. 
 
o You can test your files on CodeGrade. There is no limit in the number of 
submissions on CodeGrade until the deadline. 
 
o Assessment criteria 
▪ 5% for the code running properly addressing all requirements. 
▪ 10% for a third of the highest accuracy, 7% (out of 10%) for a third of the 
second highest accuracy, and 5% (out of 10%) for the rest. 
 
• Report submission should be at maximum 2 pages on the following three questions and 
one optional question: 
o Parametric studies of hyperparameters (e.g. structure, activators, optimiser, learning 
rate, etc.): how did you test different values, what insights have you obtained, and 
how did you decide the final setting of your model? 
o How did you address overfitting and imbalanced datasets? 
o How did you decide your loss function? 
o [Optional] Any other aspects you’d like to highlight (e.g. using advanced methods 
such as graphical neural network and/or transformer)? 
 
o [Formatting] Neither cover page nor content list is required. Use a plain word 
document with your name and student ID in the first line. 
 
o Assessment criteria 
▪ 5% for each of the questions, evaluated by technical quality AND 
writing/presentation 
▪ Any brave attempts of methods (e.g. Graphical Neural Network, Transformer, 
or Physics-Informed Neural Network using physical relationships e.g. that 
the flows going in and out of a node should be balanced) that go beyond 
what we learned in classroom will earn not only the top marks for report, but 
also (unless the accuracy is terribly off) will earn a full 10% mark for 
accuracy in the code submission part. If you have made such attempts, don’t 
forget to highlight your efforts on the report. 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:CS1026A代做、Python設(shè)計(jì)程序代寫
  • 下一篇:代寫ECE 36800、代做Java/Python語言編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          国产精品综合av一区二区国产馆| 亚洲欧美中文在线视频| 久久成人亚洲| 欧美视频一区在线| 在线观看成人小视频| 午夜精品久久久久久久男人的天堂| 母乳一区在线观看| 影音国产精品| 久久精品91久久久久久再现| 国产精品美女久久久浪潮软件| 亚洲另类春色国产| 欧美黄色成人网| 在线欧美视频| 久久亚洲精品一区| 韩国精品在线观看| 久久国产精品久久久| 国产日产精品一区二区三区四区的观看方式 | 激情欧美日韩一区| 欧美专区第一页| 国产精品亚洲成人| 亚洲欧美视频在线观看视频| 欧美性做爰毛片| 午夜精品剧场| 国产精品视频大全| 欧美制服丝袜第一页| 国产精品一区在线观看| 欧美一级久久久| 狠狠色狠狠色综合系列| 久久午夜电影| 91久久在线播放| 欧美人交a欧美精品| 在线亚洲欧美专区二区| 国产精品久久久久久模特| 亚洲欧美久久久久一区二区三区| 国产精品久久一卡二卡| 性欧美超级视频| 极品尤物久久久av免费看| 蜜臀av在线播放一区二区三区| 亚洲日本欧美在线| 欧美午夜不卡在线观看免费| 午夜精品久久久久99热蜜桃导演| 国内成+人亚洲| 欧美成人一品| 午夜精品99久久免费| 影音先锋日韩精品| 欧美日韩免费| 欧美一区二区三区免费在线看| 国产永久精品大片wwwapp| 欧美va天堂在线| 亚洲尤物在线视频观看| 韩国三级在线一区| 欧美日韩一区二| 久久国产精品亚洲77777| 亚洲人人精品| 国产亚洲激情视频在线| 欧美激情亚洲视频| 亚久久调教视频| 亚洲人成欧美中文字幕| 国产欧美一区二区三区另类精品| 欧美不卡高清| 欧美一级淫片aaaaaaa视频| 亚洲国产第一页| 国产精品尤物| 欧美精品色综合| 久久久青草青青国产亚洲免观| 夜夜嗨av一区二区三区四季av| 国产午夜精品一区理论片飘花| 欧美激情在线免费观看| 欧美在线短视频| 中文精品99久久国产香蕉| 在线欧美视频| 国产丝袜美腿一区二区三区| 欧美日韩一区二区免费视频| 久久噜噜亚洲综合| 欧美亚洲一区在线| 99精品福利视频| 亚洲国产精品传媒在线观看 | 免费中文字幕日韩欧美| 香蕉国产精品偷在线观看不卡| 亚洲精品一区在线观看| 亚洲国产精品激情在线观看| 国产视频亚洲| 国产精品美女一区二区在线观看| 欧美精品 日韩| 麻豆精品一区二区综合av| 欧美一区免费视频| 亚洲在线国产日韩欧美| 日韩亚洲欧美一区| 亚洲黄色av一区| 亚洲高清在线观看| 在线播放一区| 亚洲第一二三四五区| 一区二区三区在线高清| 国产专区精品视频| 国产一区在线免费观看| 国产真实乱子伦精品视频| 国产日韩欧美中文在线播放| 国产伦精品免费视频| 国产精品久久久久久久第一福利| 欧美日韩亚洲天堂| 国产精品videosex极品| 国产精品国产a| 国产精品日韩精品欧美在线| 国产精品一区2区| 国产日韩欧美中文在线播放| 国产欧美一区二区三区在线老狼| 国产欧美精品| 国内久久婷婷综合| 精品成人一区二区三区四区| 在线观看成人网| 亚洲欧洲精品一区二区三区 | 在线观看成人av| 尤物yw午夜国产精品视频明星| 精品电影一区| 亚洲国产精品va| 日韩视频在线观看国产| 亚洲一区二区精品在线| 性色av一区二区三区| 久久久综合网站| 欧美电影免费观看大全| 欧美三级精品| 国产一区二区0| 亚洲国产mv| 亚洲线精品一区二区三区八戒| 欧美一级大片在线观看| 久久在线视频在线| 欧美日韩国产电影| 国产精品专区h在线观看| 国内一区二区三区在线视频| 亚洲激情综合| 亚洲欧美在线aaa| 美女图片一区二区| 欧美性猛交xxxx免费看久久久 | 亚洲美女黄网| 亚洲欧美国产精品专区久久| 久久久久99| 欧美日韩一本到| 国产一区再线| 亚洲视频免费在线| 久久看片网站| 欧美午夜精品理论片a级大开眼界| 国产日韩欧美一区在线| 亚洲啪啪91| 久久国产66| 欧美日韩一卡二卡| 怡红院精品视频| 亚洲一区制服诱惑| 欧美激情第二页| 狠狠狠色丁香婷婷综合久久五月| 亚洲精品网站在线播放gif| 久久国产福利| 国产精品海角社区在线观看| 亚洲国产精品ⅴa在线观看 | 久久男人av资源网站| 欧美天天在线| 亚洲国产精品一区二区三区| 午夜精品视频在线| 欧美精品一区二区视频| 狠狠综合久久av一区二区老牛| 亚洲天堂免费观看| 欧美激情1区2区3区| 伊人久久久大香线蕉综合直播 | 久久精品国产77777蜜臀| 欧美日韩综合一区| 亚洲精品欧美| 欧美成人午夜激情在线| 黑丝一区二区三区| 久久成人18免费观看| 国产精品视频网站| 亚洲一二三级电影| 欧美先锋影音| 在线一区二区三区四区| 欧美日韩国产影院| 亚洲美女av电影| 欧美经典一区二区三区| 91久久精品日日躁夜夜躁欧美 | 亚洲欧美在线磁力| 国产精品久久久久久久浪潮网站| 一本到12不卡视频在线dvd| 欧美精品激情在线观看| 亚洲国产中文字幕在线观看| 美女露胸一区二区三区| 在线看片第一页欧美| 久久久久免费视频| 国内欧美视频一区二区| 久久婷婷久久| 亚洲高清视频一区| 欧美xart系列高清| 亚洲国产午夜| 欧美日本中文| 亚洲天堂黄色| 国产日韩欧美在线| 久久综合给合久久狠狠狠97色69| 精品福利免费观看| 免费成人在线视频网站| 亚洲精品国产品国语在线app| 欧美精品aa| 在线综合亚洲| 国产一区欧美| 欧美大学生性色视频|