合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代寫ENG4200、Python/Java程序設(shè)計(jì)代做
        代寫ENG4200、Python/Java程序設(shè)計(jì)代做

        時(shí)間:2024-11-24  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        Coursework 2: Neural networks 
        ENG4200 Introduction to Artificial Intelligence and Machine Learning 4 
        1. Key Information 
        • Worth 30% of overall grade 
        • Submission 1 (/2): Report submission 
        • Deadline uploaded on Moodle 
        • Submission 2 (/2): Code submission to CodeGrade 
        • Deadline uploaded on Moodle (the same as for report) 
        2. Training data 
        The training dataset has been generated by maximum flow analysis between nodes 12 and 2. The 
        feature dataset has 19 fields, which of each represents the maximum flow capacity of each of the 
        19 edges, taking the values of 0, 1, and 2. The output dataset has 20 fields, where the first 19 
        fields refer to the actual flow taking place on each of the 19 edges, and the last one refers to the 
        maximum flow possible between nodes 12 and 2. 
         
        Figure 1 The network used to generate training dataset. This information is just to help you understand the training 
        dataset; you must not generate additional training dataset to train your neural network. 
         3. What you will do 
        You have to create and train a neural network with the following requirement/note: 
        • Only the provided training dataset should be used, i.e. furthur traning dataset must NOT be 
        created by performing maximum flow analysis over the network in Figure 1. 
        • The accuracy on a hidden test dataset will be evaluated by a customised function as 
        follows, where the accuracy on the maximum flow field is weighted by 50%, and other 19 
        fields share the rest 50% (you may design your loss function accordingly): 
         
         
         You should prepare two submissions, code submission and report submission. In blue colour are 
        assessment criteria. 
        • Code submission should include two files (example code uploaded on Moodle): 
        o A .py file with two functions 
        ▪ demo_train demonstrates the training process for a few epochs. It has three 
        inputs: (1) the file name of taining feature data (.csv), (2) the file name of 
        training output data (.csv), and (3) the number of epochs. It needs to do two 
        things: (1) it needs to print out a graph with two curves of training and 
        validation accuracy, respectively; and (2) save the model as .keras file. 
        ▪ predict_in_df makes predictions on a provided feature data. It has two 
        inputs: (1) the file name of a trained NN model (.keras) and (2) the file name 
        of the feature data (.csv). It needs to return the predictions by the NN model 
        as a dataframe that has the same format as ‘train_Y’. 
        o A .keras file of your trained model 
        ▪ This will be used to test the hidden test dataset on CodeGrade. 
         
        o You can test your files on CodeGrade. There is no limit in the number of 
        submissions on CodeGrade until the deadline. 
         
        o Assessment criteria 
        ▪ 5% for the code running properly addressing all requirements. 
        ▪ 10% for a third of the highest accuracy, 7% (out of 10%) for a third of the 
        second highest accuracy, and 5% (out of 10%) for the rest. 
         
        • Report submission should be at maximum 2 pages on the following three questions and 
        one optional question: 
        o Parametric studies of hyperparameters (e.g. structure, activators, optimiser, learning 
        rate, etc.): how did you test different values, what insights have you obtained, and 
        how did you decide the final setting of your model? 
        o How did you address overfitting and imbalanced datasets? 
        o How did you decide your loss function? 
        o [Optional] Any other aspects you’d like to highlight (e.g. using advanced methods 
        such as graphical neural network and/or transformer)? 
         
        o [Formatting] Neither cover page nor content list is required. Use a plain word 
        document with your name and student ID in the first line. 
         
        o Assessment criteria 
        ▪ 5% for each of the questions, evaluated by technical quality AND 
        writing/presentation 
        ▪ Any brave attempts of methods (e.g. Graphical Neural Network, Transformer, 
        or Physics-Informed Neural Network using physical relationships e.g. that 
        the flows going in and out of a node should be balanced) that go beyond 
        what we learned in classroom will earn not only the top marks for report, but 
        also (unless the accuracy is terribly off) will earn a full 10% mark for 
        accuracy in the code submission part. If you have made such attempts, don’t 
        forget to highlight your efforts on the report. 
         
        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機(jī)打開當(dāng)前頁
      1. 上一篇:CS1026A代做、Python設(shè)計(jì)程序代寫
      2. 下一篇:代寫ECE 36800、代做Java/Python語言編程
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        出評(píng) 開團(tuán)工具
        出評(píng) 開團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)400(全國(guó)服務(wù)熱線)
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話24小時(shí)服務(wù)熱線
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話2
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)客服熱線
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
      4. 上海廠房出租 短信驗(yàn)證碼 酒店vi設(shè)計(jì)

        主站蜘蛛池模板: 精品福利一区二区三区| 国产成人一区二区在线不卡| 在线一区二区三区| 无码人妻一区二区三区精品视频 | 日本精品一区二区三区在线视频一 | 久久国产一区二区| 无码国产亚洲日韩国精品视频一区二区三区| 久久99精品国产一区二区三区| 美女AV一区二区三区| 在线精品一区二区三区电影 | 福利国产微拍广场一区视频在线| 亚洲国产激情在线一区| 日韩人妻一区二区三区免费| 久久精品一区二区| 任你躁国语自产一区在| 亚洲日本一区二区| 精品视频无码一区二区三区| 亚洲电影国产一区| 久久人做人爽一区二区三区| 亚洲国产成人久久综合一区| 在线视频一区二区| 亚洲欧美日韩中文字幕在线一区| 国产福利微拍精品一区二区| 男插女高潮一区二区| 中文无码一区二区不卡αv| 精品无码国产一区二区三区51安 | 99精品国产一区二区三区不卡| 久久国产精品亚洲一区二区| 亚洲AV无码一区二区三区DV| 91香蕉福利一区二区三区| 78成人精品电影在线播放日韩精品电影一区亚洲 | 国产一区二区视频在线观看| 爆乳熟妇一区二区三区霸乳 | 久久一区二区三区精华液使用方法| 成人区精品一区二区不卡亚洲| 国产一区二区不卡老阿姨| 美女视频一区二区| 国产在线精品一区二区在线观看| 日韩亚洲AV无码一区二区不卡 | 亚洲综合色自拍一区| 日韩毛片基地一区二区三区|