合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代寫ENG4200、Python/Java程序設計代做
        代寫ENG4200、Python/Java程序設計代做

        時間:2024-11-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        Coursework 2: Neural networks 
        ENG4200 Introduction to Artificial Intelligence and Machine Learning 4 
        1. Key Information 
        • Worth 30% of overall grade 
        • Submission 1 (/2): Report submission 
        • Deadline uploaded on Moodle 
        • Submission 2 (/2): Code submission to CodeGrade 
        • Deadline uploaded on Moodle (the same as for report) 
        2. Training data 
        The training dataset has been generated by maximum flow analysis between nodes 12 and 2. The 
        feature dataset has 19 fields, which of each represents the maximum flow capacity of each of the 
        19 edges, taking the values of 0, 1, and 2. The output dataset has 20 fields, where the first 19 
        fields refer to the actual flow taking place on each of the 19 edges, and the last one refers to the 
        maximum flow possible between nodes 12 and 2. 
         
        Figure 1 The network used to generate training dataset. This information is just to help you understand the training 
        dataset; you must not generate additional training dataset to train your neural network. 
         3. What you will do 
        You have to create and train a neural network with the following requirement/note: 
        • Only the provided training dataset should be used, i.e. furthur traning dataset must NOT be 
        created by performing maximum flow analysis over the network in Figure 1. 
        • The accuracy on a hidden test dataset will be evaluated by a customised function as 
        follows, where the accuracy on the maximum flow field is weighted by 50%, and other 19 
        fields share the rest 50% (you may design your loss function accordingly): 
         
         
         You should prepare two submissions, code submission and report submission. In blue colour are 
        assessment criteria. 
        • Code submission should include two files (example code uploaded on Moodle): 
        o A .py file with two functions 
        ▪ demo_train demonstrates the training process for a few epochs. It has three 
        inputs: (1) the file name of taining feature data (.csv), (2) the file name of 
        training output data (.csv), and (3) the number of epochs. It needs to do two 
        things: (1) it needs to print out a graph with two curves of training and 
        validation accuracy, respectively; and (2) save the model as .keras file. 
        ▪ predict_in_df makes predictions on a provided feature data. It has two 
        inputs: (1) the file name of a trained NN model (.keras) and (2) the file name 
        of the feature data (.csv). It needs to return the predictions by the NN model 
        as a dataframe that has the same format as ‘train_Y’. 
        o A .keras file of your trained model 
        ▪ This will be used to test the hidden test dataset on CodeGrade. 
         
        o You can test your files on CodeGrade. There is no limit in the number of 
        submissions on CodeGrade until the deadline. 
         
        o Assessment criteria 
        ▪ 5% for the code running properly addressing all requirements. 
        ▪ 10% for a third of the highest accuracy, 7% (out of 10%) for a third of the 
        second highest accuracy, and 5% (out of 10%) for the rest. 
         
        • Report submission should be at maximum 2 pages on the following three questions and 
        one optional question: 
        o Parametric studies of hyperparameters (e.g. structure, activators, optimiser, learning 
        rate, etc.): how did you test different values, what insights have you obtained, and 
        how did you decide the final setting of your model? 
        o How did you address overfitting and imbalanced datasets? 
        o How did you decide your loss function? 
        o [Optional] Any other aspects you’d like to highlight (e.g. using advanced methods 
        such as graphical neural network and/or transformer)? 
         
        o [Formatting] Neither cover page nor content list is required. Use a plain word 
        document with your name and student ID in the first line. 
         
        o Assessment criteria 
        ▪ 5% for each of the questions, evaluated by technical quality AND 
        writing/presentation 
        ▪ Any brave attempts of methods (e.g. Graphical Neural Network, Transformer, 
        or Physics-Informed Neural Network using physical relationships e.g. that 
        the flows going in and out of a node should be balanced) that go beyond 
        what we learned in classroom will earn not only the top marks for report, but 
        also (unless the accuracy is terribly off) will earn a full 10% mark for 
        accuracy in the code submission part. If you have made such attempts, don’t 
        forget to highlight your efforts on the report. 
         
        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機打開當前頁
      1. 上一篇:CS1026A代做、Python設計程序代寫
      2. 下一篇:代寫ECE 36800、代做Java/Python語言編程
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 国产成人精品视频一区二区不卡| 波多野结衣免费一区视频 | 69久久精品无码一区二区| 国产日本一区二区三区| 夜夜添无码试看一区二区三区| 麻豆AV无码精品一区二区| 日韩精品区一区二区三VR| 99热门精品一区二区三区无码| 岛国精品一区免费视频在线观看| 国产伦精品一区二区三区免费迷| 88国产精品视频一区二区三区| av无码一区二区三区| V一区无码内射国产| 国模少妇一区二区三区| 中日韩一区二区三区| 夜夜添无码试看一区二区三区| 三上悠亚精品一区二区久久| 99精品久久精品一区二区| 久久高清一区二区三区| 精品一区二区ww| 国产成人精品一区在线| 国产精品高清一区二区三区| 精品一区二区三区在线观看视频 | 国产精品盗摄一区二区在线| 一区二区在线免费观看| 91精品一区二区三区久久久久| 91视频国产一区| 精品中文字幕一区在线| 中文字幕无码免费久久9一区9| 日本不卡一区二区视频a| 国产精品高清一区二区人妖| 成人区人妻精品一区二区不卡网站| 视频一区在线播放| 精品久久一区二区三区| 欧美日韩精品一区二区在线视频| 秋霞电影网一区二区三区| 亚洲A∨无码一区二区三区| 精品女同一区二区三区在线| 91精品一区二区三区久久久久 | 国产乱码精品一区二区三区香蕉 | 在线观看国产区亚洲一区成人 |