合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代做CAP 4611、代寫C/C++,Java程序
        代做CAP 4611、代寫C/C++,Java程序

        時(shí)間:2025-04-28  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        Final Exam
        Instructor: Amrit Singh Bedi
        Instructions
        This exam is worth a total of 100 points. Please answer all questions clearly
        and concisely. Show all your work and justify your answers.
        • For Question 1 and 2, please submit the PDF version of your solution
        via webcourses. You can either write it in latex or do it on paper and
        submit the scanned version. But if you do it on paper and scan it,
        you are responsible for ensuring it is readable and properly scanned.
        There will be zero marks if it is not clearly written or scanned.
        • The total time to complete the exam is 24 hours and it is due at 4:00
        pm EST, Friday (April 25th, 2025). This is a take-home exam. Please
        do not use AI like ChatGPT to complete the exam. There are zero
        marks if found (believe me, we would know if you use it).
        Question 1 50 marks
        Context: In supervised learning, understanding the bias-variance tradeoff
        is crucial for developing models that generalize well to unseen data.
        Problem 1 10 marks
        Define the terms bias, variance, and irreducible error in the context of su pervised learning. Explain how each contributes to the total expected error
        of a model.
        1
        Problem 2 20 marks
        Derive the bias-variance decomposition of the expected squared error for a
        regression problem. That is, show that:
        ED,ε[(y − f
        ˆ(x))2
        ] =  Bias[f
        ˆ(x)]
        2
        + Var[f
        ˆ(x)] + σ
        2
        where f
        ˆ(x) is the prediction of the model trained on dataset D, y = f(x)+ε,
        and σ
        2
        is the variance of the noise ε.
        Hint: You can start by taking y = f(x) + ε, where E[ε] = 0, and
        Var[ε] = σ
        2
        . Let f
        ˆ(x) be a learned function from the training set D. Then
        proceed towards the derivation.
        Problem 3 10 marks
        Consider two models trained on the same dataset:
        • Model A: A simple linear regression model.
        • Model B: A 10th-degree polynomial regression model.
        Discuss, in terms of bias and variance, the expected performance of each
        model on training data and unseen test data. Which model is more likely
        to overfit, and why?
        Problem 4 10 marks
        Explain how increasing the size of the training dataset affects the bias and
        variance of a model. Provide reasoning for your explanation. (10 marks)
        Question 2: Using Transformer Attention 50
        marks
        Context. Consider a simplified Transformer with a vocabulary of six to kens:
        • I (ID 0): embedding  1.0, 0.0

        • like (ID 1): embedding  0.0, 1.0

        • to (ID 2): embedding  1.0, 1.0

        2
        • eat (ID 3): embedding  0.5, 0.5

        • apples (ID 4): embedding  0.6, 0.4

        • bananas (ID 5): embedding  0.4, 0.6

        All three projection matrices are the 2 × 2 identity:
        WQ = WK = WV = I2.
        When predicting the next token, the model uses masked self-attention: the
        query comes from the last position, while keys and values come from all
        previous tokens. (Note: show step by step calculation for all questions
        below)
        (a) (10 marks) For the input sequence [I, like, to] (IDs [0, 1, 2]),
        compute the query, key and value vectors for each token.
        (b) (15 marks) Let Q be the query of the last token and K, V the keys
        and values of all three tokens.
        • Compute the row vector of raw attention scores qK⊤, where q is
        the query of the last token and K is the 3×2 matrix of keys. .
        • Scale by √
        dk (with dk = 2) and apply softmax to obtain attention
        weights.
        • Compute the context vector as the weighted sum of the values.
        (c) (15 marks) Given the context vector c ∈ R
        2
        from part (b), com pute the unnormalized score for each vocabulary embedding via c ·
        embed(w), i.e. dot-product.
        • Apply softmax over these six scores to get a probability distribu tion.
        • Which token has the highest probability? [Note: Because the six
        embeddings are synthetic and not trained on real text, the token
        that receives the highest probability may look ungrammatical in
        normal English; this is an artifact of the toy setup.]
        (d) (10 marks) Explain why the model selects the token you found in
        (c). In your answer, discuss:
        • How the attention weights led to that choice.
        • Explain why keys/values may include the current token but never
        future tokens .
        3

        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

        掃一掃在手機(jī)打開當(dāng)前頁
      1. 上一篇:代做ISYS1001、代寫C++,Java程序
      2. 下一篇:返回列表
      3. ·代做ISYS1001、代寫C++,Java程序
      4. ·代做COMP2221、代寫Java程序設(shè)計(jì)
      5. ·代寫MATH3030、代做c/c++,Java程序
      6. ·COMP 5076代寫、代做Python/Java程序
      7. ·代寫COP3503、代做Java程序設(shè)計(jì)
      8. ·COMP3340代做、代寫Python/Java程序
      9. ·COM1008代做、代寫Java程序設(shè)計(jì)
      10. ·MATH1053代做、Python/Java程序設(shè)計(jì)代寫
      11. ·CS209A代做、Java程序設(shè)計(jì)代寫
      12. ·ITC228編程代寫、代做Java程序語言
      13. 合肥生活資訊

        合肥圖文信息
        出評(píng) 開團(tuán)工具
        出評(píng) 開團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)400(全國(guó)服務(wù)熱線)
        戴納斯帝壁掛爐全國(guó)售后服務(wù)電話24小時(shí)官網(wǎng)
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話24小時(shí)服務(wù)熱線
        菲斯曼壁掛爐全國(guó)統(tǒng)一400售后維修服務(wù)電話2
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)客服熱線
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國(guó)24小時(shí)
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
      14. 上海廠房出租 短信驗(yàn)證碼 酒店vi設(shè)計(jì)

        主站蜘蛛池模板: 高清无码一区二区在线观看吞精| 亚洲综合av永久无码精品一区二区 | 国语精品一区二区三区| 在线精品国产一区二区三区| 免费看AV毛片一区二区三区| 色综合视频一区中文字幕| 日产亚洲一区二区三区| 午夜视频在线观看一区二区| 日韩精品一区二区三区中文| 亚洲AV日韩AV天堂一区二区三区 | 国产一区二区三区乱码| 国产在线一区二区视频| 亚洲午夜精品一区二区麻豆| 久久国产精品亚洲一区二区| 一区二区三区久久精品| 日本在线电影一区二区三区| 91在线一区二区三区| 国产美女精品一区二区三区| 在线免费一区二区| 能在线观看的一区二区三区| 国产精品视频免费一区二区三区| 国产精品高清一区二区三区不卡| 精品人伦一区二区三区潘金莲| 中文字幕VA一区二区三区| 久久99国产精一区二区三区| 中文字幕一区视频一线| 鲁大师成人一区二区三区| 成人精品一区二区电影| 国模极品一区二区三区| 国产一区二区三区电影| 国产福利一区二区在线视频| 亚洲国产av一区二区三区| 国产一区二区精品尤物| 制服美女视频一区| 国产主播一区二区| 日日摸夜夜添一区| 国产精品亚洲专一区二区三区| 国产一区二区精品久久91| 国产一区二区不卡在线播放| 91久久精品一区二区| 精品国产AV无码一区二区三区|