99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫COMP528、代做 Python ,java 編程

時間:2023-11-25  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman
Problem. This document explains the operations in detail, so you do not need previous
knowledge. You are encouraged to start this as soon as possible. Historically, as the dead?line nears, the queue times on Barkla grow as more submissions are tested. You are also
encouraged to use your spare time in the labs to receive help, and clarify any queries you
have regarding the assignment.
1 The Travelling Salesman Problem (TSP)
The travelling salesman problem is a problem that seeks to answer the following question:
‘Given a list of vertices and the distances between each pair of vertices, what is the shortest
possible route that visits each vertex exactly once and returns to the origin vertex?’.
(a) A fully connected graph (b) The shortest route around all vertices
Figure 1: An example of the travelling salesman problem
The travelling salesman problem is an NP-hard problem, that meaning an exact solution
cannot be solved in polynomial time. However, there are polynomial solutions that can
be used which give an approximation of the shortest route between all vertices. In this
assignment you are asked to implement 2 of these.
1.1 Terminology
We will call each point on the graph the vertex. There are 6 vertices in Figure 1.
We will call each connection between vertices the edge. There are 15 edges in Figure 1.z
We will call two vertices connected if they have an edge between them.
The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is
(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.
A partial tour is a tour that has not yet visited all the vertices.
202**024 1
COMP528
2 The solutions
2.1 Preparation of Solution
You are given a number of coordinate files with this format:
x, y
4.81263062**6921, 8.3**19930253777
2.**156816804616, 0.39593575612759
1.13649642931556, 2.2**59458630845
4.4**7**99682118, 2.9749120444**06
9.8****616851393, 9.107****070**
Figure 2: Format of a coord file
Each line is a coordinate for a vertex, with the x and y coordinate being separated by a
comma. You will need to convert this into a distance matrix.
0.000000 8.177698 7.099481 5.381919 5.0870**
8.177698 0.000000 2.577029 3.029315 11.138848
7.099481 2.577029 0.000000 3.426826 11.068045
5.381919 3.029315 3.426826 0.000000 8.139637
5.0870** 11.138848 11.068045 8.139637 0.000000
Figure 3: A distance matrix for Figure 2
To convert the coordinates to a distance matrix, you will need make use of the euclidean
distance formula.
d =
q (xi ? xj )
2 + (yi ? yj )
2
(1)
Figure 4: The euclidean distance formula
Where: d is the distance between 2 vertices vi and vj
, xi and yi are the coordinates of the
vertex vi
, and xj and yj are the coordinates of the vertex vj
.
202**024 2
COMP528
2.2 Cheapest Insertion
The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each
step, it looks for a vertex that hasn’t been visited, and inserts it between two connected
vertices in the tour, such that the cost of inserting it between the two connected vertices is
minimal.
These steps can be followed to implement the cheapest insertion algorithm. Assume that the
indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always
pick the lowest index or indices.
1. Start off with a vertex vi
.
Figure 5: Step 1 of Cheapest Insertion
2. Find a vertex vj such that the dist(vi
, vj ) is minimal, and create a partial tour (vi
, vj
, vi)
Figure 6: Step 2 of Cheapest Insertion
3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and
vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +
dist(vn+1, vk) ? dist(vn, vn+1) is minimal.
202**024 3
COMP528
Figure 7: Step 3 of Cheapest Insertion
4. Repeat step 3 until all vertices have been visited, and are in the tour.
Figure 8: Step 4 of Cheapest Insertion
Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11
2.3 Farthest Insertion
The farthest insertion algorithm begins with two connected vertices in a partial tour. Each
step, it checks for the farthest vertex not visited from any vertex within the partial tour, and
then inserts it between two connected vertices in the partial tour where the cost of inserting
it between the two connected vertices is minimal.
202**024 4
COMP528
These steps can be followed to implement the farthest insertion algorithm. Assume that the
indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always
pick the lowest index(indices).
1. Start off with a vertex vi
.
Figure 10: Step 1 of Farthest Insertion
2. Find a vertex vj such that dist(vi
, vj ) is maximal, and create a partial tour (vi
, vj
, vi).
Figure 11: Step 2 of Farthest Insertion
3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an
unvisited vertex vk such that dist(vn, vk) is maximal.
Figure 12: Step 3 of Farthest Insertion
202**024 5
COMP528
4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is
a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) ? dist(vn, vn+1) is
minimal.
Figure 13: Step 4 of Farthest Insertion
5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.
Figure 14: Step 3(2) of Farthest Insertion
Figure 15: Step 4(2) of Farthest Insertion
202**024 6
COMP528
Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11
3 Running your programs
Your program should be able to be ran like so:
./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >
Therefore, your program should accept a coordinate file, and an output file as arguments.
Note that C considers the first argument as the program executable.
Both implementations should read a coordinate file, run either cheapest insertion or farthest
insertion, and write the tour to the output file.
3.1 Provided Code
You are provided with code that can read the coordinate input from a file, and write the
final tour to a file. This is located in the file coordReader.c. You will need to include this
file when compiling your programs.
The function readNumOfCoords() takes a filename as a parameter and returns the number
of coordinates in the given file as an integer.
The function readCoords() takes the filename and the number of coordinates as parameters,
and returns the coordinates from a file and stores it in a two-dimensional array of doubles,
where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y
coordinate for the ith coordinate.
The function writeTourToFile() takes the tour, the tour length, and the output filename
as parameters, and writes the tour to the given file.
202**02**
University of Liverpool Continuous Assessment 1 COMP528
4 Instructions
? Implement a serial solution for the cheapest insertion and the farthest insertion. Name
these: cInsertion.c, fInsertion.c.
? Implement a parallel solution, using OpenMP, for the cheapest insertion and the far?thest insertion. Name these: ompcInsertion.c, ompfInsertion.c.
? Create a Makefile and call it ”Makefile” which performs as the list states below. With?out the Makefile, your code will not grade on CodeGrade (see more in section 5.1).
– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU com?piler
– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler
– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the
GNU compiler
– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the
GNU compiler
– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with
the Intel compiler
– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel
compiler.
? Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording
the time it takes to solve each one. Record the start time after you read from the
coordinates file, and the end time before you write to the output file. Do all testing
with the large data file.
? Plot a speedup plot with the speedup on the y-axis and the number of threads on the
x-axis for each parallel solution.
? Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of
threads on the x-axis for each parallel solution.
? Write a report that, for each solution, using no more than 1 page per solution,
describes: your serial version, and your parallelisation strategy
? In your report, include: the speedup and parallel efficiency plots, how you conducted
each measurement and calculation to plot these, and sreenshots of you compiling and
running your program. These do not contribute to the page limit
202**024 8
COMP528
? Your final submission should be uploaded onto CodeGrade. The files you
upload should be:
– Makefile
– cInsertion.c
– fInsertion.c
– ompcInsertion.c
– ompfInsertion.c
– report.pdf
5 Hints
You can also parallelise the conversion of the coordinates to the distance matrix.
When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...
int ? o n e d a r ra y = ( int ?) malloc ( numOfElements ? s i z e o f ( int ) ) ;
For a 2-D array:
int ?? twod a r ra y = ( int ??) malloc ( numOfElements ? s i z e o f ( int ? ) ) ;
for ( int i = 0 ; i < numOfElements ; i ++){
twod a r ra y [ i ] = ( int ?) malloc ( numOfElements ? s i z e o f ( int ) ) ;
}
5.1 Makefile
You are instructed to use a MakeFile to compile the code in any way you like. An example
of how to use a MakeFile can be used here:
{make command } : { t a r g e t f i l e s }
{compile command}
c i : c I n s e r t i o n . c coordReader . c
gcc c I n s e r t i o n . c coordReader . c ?o c i . exe ?lm
Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,
the compile command is automatically executed. It is worth noting, the compile command
must be indented. The target files are the files that must be present for the make command
to execute.
202**024 9
COMP528
6 Marking scheme
1 Code that compiles without errors or warnings 15%
2 Same numerical results for test cases 20%
3 Speedup plot 10%
4 Parallel Efficiency Plot 10%
5 Parallel efficiency up to ** threads 15%
6 Speed of program 10%
11 Clean code and comments 10%
12 Report 10%
Table 1: Marking scheme
7 Deadline
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:二維碼生成器:更高效的工作方式
  • 下一篇:代做CHC6089、代寫 java/c++程序語言
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                久久亚洲影视婷婷| 日韩精品久久理论片| 91在线你懂得| 久久99蜜桃精品| 奇米影视在线99精品| 天天av天天翘天天综合网| 亚洲欧美激情视频在线观看一区二区三区| 欧美精品一区二区在线播放| 欧美日韩国产小视频在线观看| 91亚洲男人天堂| 99精品久久只有精品| 粗大黑人巨茎大战欧美成人| 国产一区不卡在线| 国产91清纯白嫩初高中在线观看| 国产美女主播视频一区| 国产成人午夜片在线观看高清观看| 久久99国产精品免费网站| 激情国产一区二区 | 国产成人精品影视| 国产在线精品一区二区三区不卡| 国内欧美视频一区二区| 国产成人综合在线| 91香蕉视频在线| 欧美日韩精品免费观看视频| 91 com成人网| 国产三级一区二区三区| 国产精品久久久久久久久免费樱桃 | 久久精品理论片| 国产一区二区三区精品视频| 懂色av一区二区三区蜜臀| 色婷婷亚洲综合| 4438x成人网最大色成网站| 精品国产不卡一区二区三区| 国产精品卡一卡二| 视频一区在线播放| 国产一二精品视频| 欧美无乱码久久久免费午夜一区| 91精品免费观看| 国产精品毛片无遮挡高清| 亚洲www啪成人一区二区麻豆| 久久99精品一区二区三区三区| 不卡一区中文字幕| 欧美一区三区二区| 亚洲欧洲性图库| 九九视频精品免费| 色天使色偷偷av一区二区| 欧美sm极限捆绑bd| 夜夜嗨av一区二区三区中文字幕| 九九精品一区二区| 欧美日韩美女一区二区| 国产精品女主播在线观看| 首页亚洲欧美制服丝腿| 91麻豆国产精品久久| 亚洲精品一区二区三区四区高清| 亚洲自拍与偷拍| 国产成人欧美日韩在线电影| 91精品婷婷国产综合久久竹菊| 国产精品国产精品国产专区不蜜| 蜜桃av噜噜一区| 欧美日韩精品福利| ...xxx性欧美| 成人性生交大合| 欧美xxx久久| 天天综合天天综合色| 日本精品一区二区三区高清| 国产精品丝袜一区| 国产精品一区二区91| 日韩天堂在线观看| 午夜伦理一区二区| 欧美三级电影一区| 亚洲精品国产一区二区精华液 | 欧美少妇xxx| 专区另类欧美日韩| 高清不卡一区二区| 久久日韩粉嫩一区二区三区| 青青草国产精品亚洲专区无| 欧美日韩国产一级| 天天影视色香欲综合网老头| 日本道免费精品一区二区三区| 国产精品女主播av| 97精品久久久久中文字幕| 中文字幕在线观看一区| 成人综合婷婷国产精品久久| 国产欧美日韩三级| 国产精品主播直播| 欧美激情资源网| 高清久久久久久| 国产精品国产三级国产aⅴ无密码| 成人午夜视频在线| 国产精品国产馆在线真实露脸| 99国产精品一区| 亚洲自拍另类综合| 911精品国产一区二区在线| 免费在线视频一区| 久久综合色综合88| 不卡一区二区在线| 亚洲午夜久久久久中文字幕久| 欧美亚洲动漫制服丝袜| 日韩不卡免费视频| 久久久精品免费网站| 国产精品一品二品| 亚洲免费观看高清完整| 欧亚洲嫩模精品一区三区| 日韩中文字幕不卡| 久久精品一区四区| 色综合久久久久久久久久久| 亚洲va天堂va国产va久| 日韩美女在线视频| 成人综合激情网| 亚洲国产精品一区二区尤物区| 91精品在线观看入口| 成人免费黄色大片| 亚洲成a人片在线观看中文| 日韩欧美国产午夜精品| 高清在线不卡av| 日韩精品电影在线观看| 久久精品亚洲乱码伦伦中文 | 亚洲精品久久嫩草网站秘色| 91精品国产综合久久香蕉麻豆| 久久69国产一区二区蜜臀| 椎名由奈av一区二区三区| 色噜噜狠狠色综合欧洲selulu| 日韩国产精品久久久| 国产精品欧美综合在线| 欧美精品日日鲁夜夜添| 成人在线一区二区三区| 日精品一区二区三区| 中文子幕无线码一区tr| 69久久夜色精品国产69蝌蚪网| 成人一区二区三区视频在线观看| 亚洲国产中文字幕在线视频综合 | 色噜噜偷拍精品综合在线| 青青草国产成人av片免费| 亚洲伦理在线免费看| 久久人人超碰精品| 日韩你懂的在线播放| 欧美性色欧美a在线播放| 国产69精品一区二区亚洲孕妇| 日韩电影在线一区二区三区| 亚洲免费电影在线| 国产精品国产a| 国产亚洲欧美激情| 精品久久一区二区三区| 欧美精品久久久久久久多人混战| 色综合天天天天做夜夜夜夜做| 经典三级视频一区| 蜜臀久久久99精品久久久久久| 亚洲国产aⅴ成人精品无吗| 中文字幕制服丝袜一区二区三区| 久久综合一区二区| 精品久久国产老人久久综合| 69堂亚洲精品首页| 欧美性受xxxx黑人xyx性爽| 色婷婷av一区| 色婷婷精品久久二区二区蜜臀av| 成人黄页毛片网站| 国产东北露脸精品视频| 狠狠色丁香久久婷婷综合_中| 日本欧美韩国一区三区| 日本亚洲免费观看| 日韩av电影免费观看高清完整版 | av毛片久久久久**hd| 高清国产午夜精品久久久久久| 国产一区二区三区日韩 | 欧美日韩精品一区二区| 欧美日韩在线播放| 欧美三级韩国三级日本三斤 | 国产精品女主播在线观看| 国产精品久久久久久久久晋中| 国产精品久久久久影院色老大| 国产亚洲精品超碰| 国产精品久久久久久久久晋中| 亚洲四区在线观看| 亚洲一区二区偷拍精品| 婷婷综合另类小说色区| 蜜臀av一区二区在线免费观看 | 6080国产精品一区二区| 91精品国产一区二区| 日韩精品一区二区三区在线| 亚洲精品一区二区三区影院| 欧美激情中文字幕一区二区| 亚洲日本电影在线| 天天操天天干天天综合网| 久草这里只有精品视频| 国产成a人无v码亚洲福利| 91亚洲国产成人精品一区二三| 在线观看区一区二| 欧美一卡二卡在线观看| 国产日韩欧美在线一区| 亚洲精品久久7777| 久久精品国产网站| www.亚洲免费av| 欧美日韩国产区一| 久久视频一区二区| 一区二区三区**美女毛片| 婷婷六月综合亚洲| 韩国三级电影一区二区| 一本色道久久综合亚洲aⅴ蜜桃| 欧美日韩精品福利| 亚洲国产高清在线观看视频|