99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫COMP528、代做 Python ,java 編程

時間:2023-11-25  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman
Problem. This document explains the operations in detail, so you do not need previous
knowledge. You are encouraged to start this as soon as possible. Historically, as the dead?line nears, the queue times on Barkla grow as more submissions are tested. You are also
encouraged to use your spare time in the labs to receive help, and clarify any queries you
have regarding the assignment.
1 The Travelling Salesman Problem (TSP)
The travelling salesman problem is a problem that seeks to answer the following question:
‘Given a list of vertices and the distances between each pair of vertices, what is the shortest
possible route that visits each vertex exactly once and returns to the origin vertex?’.
(a) A fully connected graph (b) The shortest route around all vertices
Figure 1: An example of the travelling salesman problem
The travelling salesman problem is an NP-hard problem, that meaning an exact solution
cannot be solved in polynomial time. However, there are polynomial solutions that can
be used which give an approximation of the shortest route between all vertices. In this
assignment you are asked to implement 2 of these.
1.1 Terminology
We will call each point on the graph the vertex. There are 6 vertices in Figure 1.
We will call each connection between vertices the edge. There are 15 edges in Figure 1.z
We will call two vertices connected if they have an edge between them.
The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is
(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.
A partial tour is a tour that has not yet visited all the vertices.
202**024 1
COMP528
2 The solutions
2.1 Preparation of Solution
You are given a number of coordinate files with this format:
x, y
4.81263062**6921, 8.3**19930253777
2.**156816804616, 0.39593575612759
1.13649642931556, 2.2**59458630845
4.4**7**99682118, 2.9749120444**06
9.8****616851393, 9.107****070**
Figure 2: Format of a coord file
Each line is a coordinate for a vertex, with the x and y coordinate being separated by a
comma. You will need to convert this into a distance matrix.
0.000000 8.177698 7.099481 5.381919 5.0870**
8.177698 0.000000 2.577029 3.029315 11.138848
7.099481 2.577029 0.000000 3.426826 11.068045
5.381919 3.029315 3.426826 0.000000 8.139637
5.0870** 11.138848 11.068045 8.139637 0.000000
Figure 3: A distance matrix for Figure 2
To convert the coordinates to a distance matrix, you will need make use of the euclidean
distance formula.
d =
q (xi ? xj )
2 + (yi ? yj )
2
(1)
Figure 4: The euclidean distance formula
Where: d is the distance between 2 vertices vi and vj
, xi and yi are the coordinates of the
vertex vi
, and xj and yj are the coordinates of the vertex vj
.
202**024 2
COMP528
2.2 Cheapest Insertion
The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each
step, it looks for a vertex that hasn’t been visited, and inserts it between two connected
vertices in the tour, such that the cost of inserting it between the two connected vertices is
minimal.
These steps can be followed to implement the cheapest insertion algorithm. Assume that the
indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always
pick the lowest index or indices.
1. Start off with a vertex vi
.
Figure 5: Step 1 of Cheapest Insertion
2. Find a vertex vj such that the dist(vi
, vj ) is minimal, and create a partial tour (vi
, vj
, vi)
Figure 6: Step 2 of Cheapest Insertion
3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and
vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +
dist(vn+1, vk) ? dist(vn, vn+1) is minimal.
202**024 3
COMP528
Figure 7: Step 3 of Cheapest Insertion
4. Repeat step 3 until all vertices have been visited, and are in the tour.
Figure 8: Step 4 of Cheapest Insertion
Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11
2.3 Farthest Insertion
The farthest insertion algorithm begins with two connected vertices in a partial tour. Each
step, it checks for the farthest vertex not visited from any vertex within the partial tour, and
then inserts it between two connected vertices in the partial tour where the cost of inserting
it between the two connected vertices is minimal.
202**024 4
COMP528
These steps can be followed to implement the farthest insertion algorithm. Assume that the
indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always
pick the lowest index(indices).
1. Start off with a vertex vi
.
Figure 10: Step 1 of Farthest Insertion
2. Find a vertex vj such that dist(vi
, vj ) is maximal, and create a partial tour (vi
, vj
, vi).
Figure 11: Step 2 of Farthest Insertion
3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an
unvisited vertex vk such that dist(vn, vk) is maximal.
Figure 12: Step 3 of Farthest Insertion
202**024 5
COMP528
4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is
a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) ? dist(vn, vn+1) is
minimal.
Figure 13: Step 4 of Farthest Insertion
5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.
Figure 14: Step 3(2) of Farthest Insertion
Figure 15: Step 4(2) of Farthest Insertion
202**024 6
COMP528
Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11
3 Running your programs
Your program should be able to be ran like so:
./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >
Therefore, your program should accept a coordinate file, and an output file as arguments.
Note that C considers the first argument as the program executable.
Both implementations should read a coordinate file, run either cheapest insertion or farthest
insertion, and write the tour to the output file.
3.1 Provided Code
You are provided with code that can read the coordinate input from a file, and write the
final tour to a file. This is located in the file coordReader.c. You will need to include this
file when compiling your programs.
The function readNumOfCoords() takes a filename as a parameter and returns the number
of coordinates in the given file as an integer.
The function readCoords() takes the filename and the number of coordinates as parameters,
and returns the coordinates from a file and stores it in a two-dimensional array of doubles,
where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y
coordinate for the ith coordinate.
The function writeTourToFile() takes the tour, the tour length, and the output filename
as parameters, and writes the tour to the given file.
202**02**
University of Liverpool Continuous Assessment 1 COMP528
4 Instructions
? Implement a serial solution for the cheapest insertion and the farthest insertion. Name
these: cInsertion.c, fInsertion.c.
? Implement a parallel solution, using OpenMP, for the cheapest insertion and the far?thest insertion. Name these: ompcInsertion.c, ompfInsertion.c.
? Create a Makefile and call it ”Makefile” which performs as the list states below. With?out the Makefile, your code will not grade on CodeGrade (see more in section 5.1).
– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU com?piler
– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler
– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the
GNU compiler
– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the
GNU compiler
– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with
the Intel compiler
– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel
compiler.
? Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording
the time it takes to solve each one. Record the start time after you read from the
coordinates file, and the end time before you write to the output file. Do all testing
with the large data file.
? Plot a speedup plot with the speedup on the y-axis and the number of threads on the
x-axis for each parallel solution.
? Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of
threads on the x-axis for each parallel solution.
? Write a report that, for each solution, using no more than 1 page per solution,
describes: your serial version, and your parallelisation strategy
? In your report, include: the speedup and parallel efficiency plots, how you conducted
each measurement and calculation to plot these, and sreenshots of you compiling and
running your program. These do not contribute to the page limit
202**024 8
COMP528
? Your final submission should be uploaded onto CodeGrade. The files you
upload should be:
– Makefile
– cInsertion.c
– fInsertion.c
– ompcInsertion.c
– ompfInsertion.c
– report.pdf
5 Hints
You can also parallelise the conversion of the coordinates to the distance matrix.
When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...
int ? o n e d a r ra y = ( int ?) malloc ( numOfElements ? s i z e o f ( int ) ) ;
For a 2-D array:
int ?? twod a r ra y = ( int ??) malloc ( numOfElements ? s i z e o f ( int ? ) ) ;
for ( int i = 0 ; i < numOfElements ; i ++){
twod a r ra y [ i ] = ( int ?) malloc ( numOfElements ? s i z e o f ( int ) ) ;
}
5.1 Makefile
You are instructed to use a MakeFile to compile the code in any way you like. An example
of how to use a MakeFile can be used here:
{make command } : { t a r g e t f i l e s }
{compile command}
c i : c I n s e r t i o n . c coordReader . c
gcc c I n s e r t i o n . c coordReader . c ?o c i . exe ?lm
Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,
the compile command is automatically executed. It is worth noting, the compile command
must be indented. The target files are the files that must be present for the make command
to execute.
202**024 9
COMP528
6 Marking scheme
1 Code that compiles without errors or warnings 15%
2 Same numerical results for test cases 20%
3 Speedup plot 10%
4 Parallel Efficiency Plot 10%
5 Parallel efficiency up to ** threads 15%
6 Speed of program 10%
11 Clean code and comments 10%
12 Report 10%
Table 1: Marking scheme
7 Deadline
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:二維碼生成器:更高效的工作方式
  • 下一篇:代做CHC6089、代寫 java/c++程序語言
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          亚洲人成小说网站色在线| 亚洲一区二区成人在线观看| 亚洲国产成人精品久久| 亚洲福利在线看| 亚洲精品一区二区网址| 亚洲视频第一页| 性做久久久久久久久| 蜜桃久久av一区| 国产精品99一区| 国内精品一区二区| 一区二区三区免费观看| 性欧美video另类hd性玩具| 久久亚洲电影| 欧美调教视频| 亚洲国产成人高清精品| 亚洲视屏在线播放| 久久蜜桃精品| 国产精品国产三级欧美二区| 韩国免费一区| 亚洲一品av免费观看| 久热这里只精品99re8久| 欧美三级午夜理伦三级中视频| 国产精品推荐精品| 亚洲破处大片| 久久精品一区二区国产| 国产精品进线69影院| 亚洲第一福利在线观看| 亚洲综合999| 欧美激情综合网| 国语自产精品视频在线看抢先版结局 | 国产私拍一区| 99热这里只有精品8| 久久亚洲综合| 国产日韩精品一区二区三区| 日韩一二在线观看| 欧美成人精品一区二区| 国产欧美一区二区三区另类精品 | 极品少妇一区二区三区| 亚洲视频www| 欧美日韩精品一区二区在线播放| 国产永久精品大片wwwapp| 亚洲伊人伊色伊影伊综合网| 欧美精品一卡二卡| 亚洲第一色在线| 久久免费视频网站| 国产日韩一区在线| 亚洲欧美日韩在线观看a三区 | 欧美日韩精品一区二区三区四区| 精品va天堂亚洲国产| 午夜在线不卡| 国产精品影视天天线| 亚洲尤物在线视频观看| 欧美性做爰毛片| 在线亚洲欧美视频| 国产精品高潮视频| 亚洲综合色激情五月| 欧美视频在线一区二区三区| 亚洲精品永久免费| 欧美日韩精品免费观看| 一区二区高清在线| 欧美日韩午夜视频在线观看| 亚洲美女视频在线观看| 欧美调教vk| 亚洲自拍偷拍色片视频| 国产日韩成人精品| 久久国产欧美| 亚洲国产精品va在线观看黑人 | 免费在线欧美黄色| 亚洲人体大胆视频| 欧美视频一区二区三区四区| 亚洲香蕉在线观看| 国产无一区二区| 媚黑女一区二区| 99re亚洲国产精品| 国产精品乱码| 久久美女性网| 一区二区三区精品在线| 国产精品国产一区二区| 久久精品国产欧美亚洲人人爽| 一区精品久久| 欧美日韩亚洲不卡| 久久久久**毛片大全| 亚洲国产日本| 国产精品一二一区| 蜜桃av综合| 中文精品视频| 在线电影欧美日韩一区二区私密| 欧美激情精品久久久久久大尺度| 一区二区三区**美女毛片| 国产欧美日韩一区二区三区在线观看 | 香蕉成人啪国产精品视频综合网| 国产在线乱码一区二区三区| 欧美精品久久久久久久久久| 亚洲欧美偷拍卡通变态| 亚洲国产婷婷综合在线精品| 欧美日韩一区免费| 久久视频在线免费观看| 一区二区三区欧美日韩| 激情文学一区| 国产欧美精品日韩区二区麻豆天美| 久久亚洲欧美| 午夜日本精品| 一区二区日本视频| 91久久久久久| 国产亚洲欧美aaaa| 国产精品h在线观看| 欧美aⅴ99久久黑人专区| 午夜久久美女| 中文av一区二区| 亚洲国产精品久久久久婷婷老年 | 亚洲国产成人一区| 国产丝袜一区二区三区| 欧美日韩直播| 欧美人与禽性xxxxx杂性| 久久久www免费人成黑人精品| 一区二区三区日韩欧美| 91久久黄色| 樱桃成人精品视频在线播放| 国产欧美丝祙| 国产精品一区在线观看你懂的| 欧美理论片在线观看| 欧美成人情趣视频| 免费国产一区二区| 久久综合一区| 久久伊人一区二区| 麻豆精品精品国产自在97香蕉| 欧美伊人久久久久久午夜久久久久| 亚洲在线中文字幕| 亚洲午夜av在线| 亚洲一区二区网站| 一区二区欧美在线| 一区二区久久| 这里只有精品视频在线| 亚洲一区日韩| 亚洲欧美日韩直播| 欧美在线在线| 久久久久久尹人网香蕉| 裸体一区二区| 欧美夫妇交换俱乐部在线观看| 欧美不卡高清| 欧美日韩成人一区| 国产精品豆花视频| 国产精品日韩| 精品成人国产| 亚洲欧洲精品一区二区| 99国产精品国产精品久久| 一区二区欧美日韩| 亚洲午夜久久久久久尤物 | 欧美四级剧情无删版影片| 欧美日韩成人在线视频| 国产精品扒开腿爽爽爽视频| 国产精品乱码一区二区三区| 国产精品一区二区在线| 国产亚洲精品资源在线26u| 精品成人国产| av72成人在线| 久久精品国产91精品亚洲| 久久婷婷亚洲| 欧美日韩综合视频网址| 国产亚洲精品v| 91久久久亚洲精品| 亚洲午夜在线视频| 久久频这里精品99香蕉| 欧美日韩成人在线观看| 国产美女一区二区| 亚洲欧洲日本在线| 亚洲欧美在线一区| 欧美国产精品va在线观看| 国产精品h在线观看| 尹人成人综合网| 亚洲午夜高清视频| 久久一区国产| 国产精品日本| 最新中文字幕一区二区三区| 亚洲综合99| 欧美精品一区二区在线观看| 国产噜噜噜噜噜久久久久久久久| 亚洲国产综合在线看不卡| 午夜激情久久久| 欧美日韩在线播放三区| 黄色亚洲网站| 亚洲欧美激情精品一区二区| 嫩草影视亚洲| 国产欧美日韩三级| 一区二区三区日韩欧美精品| 久久综合九色综合欧美狠狠| 国产精品久久午夜夜伦鲁鲁| 亚洲国产一区二区三区高清 | 欧美一区二区日韩| 欧美日韩大片| 亚洲国产高清视频| 久久不射2019中文字幕| 欧美三区在线视频| 亚洲激情一区二区三区| 久久久噜噜噜久久| 国产婷婷97碰碰久久人人蜜臀| 国产精品99久久久久久久女警| 欧美高清视频一区| 亚洲国产精品嫩草影院| 久久亚洲欧洲|