99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CHC6089、代寫 java/c++程序語言

時間:2023-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯




OBU COMPUTING
Module CHC6089: Machine Learning:  Semester 1, 2023/24
Coursework 1: Experimental Comparison of Different Supervised Machine Learning Algorithms Using UCI Dataset
 
For this coursework 1, you are required to evaluate and compare fivesupervised machine learning algorithms using UCI dataset in Python programming language methods. Every student is expected to have their individual dataset according to their class grouping. This coursework 1 is worth 30% of the module mark.
Learning Outcomes
1. Evaluate and articulate the issues and challenges in machine learning, including model selection, complexity and feature selection.
2. Demonstrate a working knowledge of the variety of mathematical techniques normally adopted for machine learning problems, and of their application to creating effective solutions.
3. Critically evaluate the performance and drawbacks of a proposed solution to a machine learning problem.
4. Create solutions to machine learning problems using appropriate software.
Data set
 
This coursework is designed to allow you to work freely and make sure that your report is unique by avoiding collusions.  No two students ought to possess an identical or comparable dataset. Each student will receive a different UCI dataset at random, and you will need to download it from the student website as designated by the module leader. The dataset that you have been given must be used and followed strictly. The purpose of this instruction is to encourage students to work independently, avoid cheating and collusion; any infringement will result in a deduction of twenty points.  
Machine Learning and Evaluation
For this coursework you will evaluate five supervised learningmethods on UCI dataset in Python. The first algorithm is linear regression, second algorithm is logistic regression, third algorithm is neural network, fourth model is decision tree and the fifth model is k-nearest neighbour. 
You may implement these algorithms using the inbuilt classifiers; however you are highly encouraged to implement the functionsyourself to train the classifiers. More so, inbuilt function for error measurement is not allowed.
 
The objective of this coursework is to experimentally investigate which supervised algorithm is best suited for the dataset, and whichparameter values are best. In order to answer this question you need to evaluate the error measurement rate and any other performance evaluation metrics you can provide.
 
Experiments must at least show:
• The training and test error for all the models.
• Develop appropriate data handling code. 
• The use of inbuilt error measurement is not allowed for this coursework.
• Experimentally compare different hyper-parameters.
• Provide a visualization of how data was classified for each method (or parameter value), for example based on a scatter plot of two of the features. You are allowed to utilize any inbuilt visualization routines you like, such as plot, or scatter. 
The entire experiment must be submitted as jupyter notebook script file (.ipynb) from which all results and figures can be reproduced.
 
 
 
Report structure and assessment (30% of module mark)
1) Write a brief introduction that introduces (5%)
a) Provide a brief introduction of the supervised learning problem as it relates to real-life challenges.
b) Give details of the dataset and other information that describe the dataset.
c) Briefly explain the five models as well as possible parameters.
d) Briefly explain how the models can be individually applied to the dataset.
 
2) Realize and describe the experiment that evaluates the error measurement rate for all the models on your specific dataset. Explain the choice (or necessity) of your error measurement method. Make sure you use appropriate illustrations and diagrams as well as statistics. What other evaluation metrics than just theerror measurement method could be important to decide which method is most suited? More so, discuss the result of the chosen evaluate metrics.  (20%)
 
3) Write a brief conclusion on the results. Mention the algorithm that provides the best result and mentioned the hyper-parameters used. Also, provide a comparison of all the model performance results. (5%)
 
Submission
 
Submit your report following the report structure provided above. Include step-by-step descriptions of the tasks you performed and the results obtained during the experiment. Ensure that your report is well-organized, clearly written, and includes all the necessary evaluation metrics and graphs as specified in the coursework requirements. The submission deadline is week 9, November 2023, by 16:00. Late submissions may incur penalties of up to 10 marks reduction, so make sure to plan your work accordingly. Failure to submit your coursework will result to Zero Mark. In the case of exceptional circumstances, contact the Award Administrator in advance.
 
Submission Format:
The coursework assignment submitted should be compressed into a .zip or .rar file, the following files should be contained in the compressed file:
▪ A report as a Microsoft Word document.
   File name format: ‘Student ID_MLCoursework1_Report.docx’
▪ A .zip or .rar file containing the report experiments: all the program’s sources, including the code, graphs, model architecture, results, and diagrams from the experiments. All implementation source code must be submitted as a Jupyter Notebook script (.ipynb) for easy reproducibility. Your final zipped folder should be submitted digitally to the student website.
 請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP528、代做 Python ,java 編程
  • 下一篇:COMP24011 代做、代寫 java/Python 程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美国产日韩一二三区| 风间由美一区二区三区在线观看| 一区二区三区免费网站| 亚洲精品久久久蜜桃| 午夜精品视频一区| 国产精品自拍毛片| 欧美日韩成人一区| 亚洲国产乱码最新视频| 91精品福利视频| 久久久久9999亚洲精品| 青草国产精品久久久久久| 一本大道久久a久久精品综合| 国产美女久久久久| 亚洲国产精品激情在线观看| 水蜜桃久久夜色精品一区的特点| 亚洲精品成人少妇| 粉嫩欧美一区二区三区高清影视| 欧美精品 国产精品| 自拍偷在线精品自拍偷无码专区| 日韩欧美国产一区二区三区| 国产精品毛片久久久久久久| 欧美卡1卡2卡| 99re成人精品视频| 九色综合狠狠综合久久| 亚洲18女电影在线观看| 亚洲一区二区影院| 亚洲欧洲成人自拍| 精品成人佐山爱一区二区| 一本色道久久加勒比精品| 午夜精品爽啪视频| 国产精品福利在线播放| 制服视频三区第一页精品| 五月婷婷激情综合| 日本一区二区三区国色天香| 精品在线免费观看| 亚洲福利电影网| 精品国产伦一区二区三区观看体验 | 久久精品噜噜噜成人av农村| 亚洲国产成人porn| 成人高清视频在线| 成人欧美一区二区三区白人| 一区二区三区日韩精品| 国产成人av网站| 精品国产乱码久久久久久影片| 中文字幕一区在线观看视频| 国产精品香蕉一区二区三区| 亚洲成人午夜影院| 午夜精品在线看| 国产精品盗摄一区二区三区| 欧美电视剧免费全集观看| 国产成人a级片| 最新高清无码专区| 亚洲美女免费在线| 亚洲香蕉伊在人在线观| 日韩一级黄色大片| 欧美亚洲自拍偷拍| 亚洲欧美日韩一区二区| 91免费精品国自产拍在线不卡| 成人av先锋影音| 看电影不卡的网站| 成人av网址在线观看| 一本在线高清不卡dvd| www.亚洲色图| 欧美日韩精品免费观看视频| 亚洲精品中文字幕在线观看| 久久蜜桃一区二区| 亚洲同性同志一二三专区| 男女男精品视频| 久久综合九色欧美综合狠狠 | 亚洲另类在线一区| 日韩精品在线一区| 欧美高清在线一区二区| 亚洲欧美日韩中文字幕一区二区三区| 91丨九色丨黑人外教| 久久精品国产秦先生| 国产精品嫩草影院com| 日韩丝袜美女视频| www.在线成人| 亚洲图片另类小说| 狠狠色2019综合网| 蜜臀av性久久久久蜜臀aⅴ | 亚洲美女屁股眼交| 亚洲品质自拍视频网站| 午夜精品成人在线| 国产一区二区三区高清播放| 精品毛片乱码1区2区3区| 日韩和的一区二区| 91精品国产欧美一区二区成人| 91最新地址在线播放| 国产欧美日韩另类视频免费观看| 爽好久久久欧美精品| 6080午夜不卡| 国产成人综合在线| 久久蜜桃一区二区| 欧美国产激情二区三区| 中文字幕一区免费在线观看| 亚洲男人都懂的| 偷窥国产亚洲免费视频| 日韩欧美在线123| 欧美综合一区二区| 尤物av一区二区| 欧美一级精品大片| 国产综合久久久久久鬼色 | 国产精品欧美经典| 99久久精品国产麻豆演员表| 日韩精品资源二区在线| 欧美日韩在线播| 美脚の诱脚舐め脚责91| 精品一区二区av| 久久久久久久久久电影| 一卡二卡三卡日韩欧美| 欧美日韩国产综合久久| 一区二区三区在线播| 国产不卡一区视频| 国产jizzjizz一区二区| 97精品电影院| 精品国产一区二区精华| 亚洲欧美日韩精品久久久久| 丰满岳乱妇一区二区三区| 麻豆精品一二三| 日本不卡123| 91在线观看免费视频| 日韩电影免费在线看| 亚洲综合丁香婷婷六月香| www.日韩在线| 久久精品视频一区| 欧美日韩一级大片网址| 麻豆成人在线观看| 2017欧美狠狠色| 国产最新精品精品你懂的| 国产精品超碰97尤物18| 91玉足脚交白嫩脚丫在线播放| 福利一区在线观看| 亚洲色图在线播放| 国产激情偷乱视频一区二区三区| 亚洲日穴在线视频| 欧美日本韩国一区二区三区视频| 在线看国产一区二区| 亚洲成人精品一区| 欧美日韩免费观看一区二区三区 | 日韩精品免费专区| 国产精品国产自产拍在线| 91污片在线观看| 日韩色视频在线观看| 欧美日韩色一区| 久久女同精品一区二区| 久久草av在线| 日韩中文字幕亚洲一区二区va在线 | 亚洲综合在线电影| 国产99精品在线观看| 韩日欧美一区二区三区| 久久亚洲一级片| 日韩不卡免费视频| 一区二区三区四区精品在线视频| 婷婷综合在线观看| 9191成人精品久久| 成人爱爱电影网址| 亚洲国产精品久久不卡毛片| 粉嫩一区二区三区性色av| 久久尤物电影视频在线观看| 欧美色窝79yyyycom| 丝袜脚交一区二区| 一色屋精品亚洲香蕉网站| 亚洲国产精品成人综合色在线婷婷 | 欧美日韩久久久久久| 日韩欧美精品三级| 国产精品久久久久久妇女6080 | 亚洲精品在线免费播放| 精品福利一二区| 亚洲自拍与偷拍| 美女视频网站黄色亚洲| 91小视频在线观看| 成人91在线观看| 欧美午夜精品久久久久久超碰 | 成人自拍视频在线| 欧美性感一区二区三区| 美女视频黄 久久| 在线观看亚洲a| 91麻豆精东视频| 在线精品视频免费观看| 国产片一区二区| 免费人成网站在线观看欧美高清| 亚洲精品一区二区三区蜜桃下载 | av不卡免费电影| 91亚洲男人天堂| 91福利精品第一导航| 日韩精品电影在线| 久久综合久久综合九色| 制服丝袜中文字幕一区| 成人激情文学综合网| 亚洲精品成人天堂一二三| 亚洲最大的成人av| 激情五月婷婷综合| 亚洲综合在线第一页| 久久伊人中文字幕| 国产成人精品aa毛片| 精品国产制服丝袜高跟| 激情六月婷婷久久| 精品免费视频.| 中文字幕一区视频|