99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CHC6089、代寫 java/c++程序語言

時間:2023-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯




OBU COMPUTING
Module CHC6089: Machine Learning:  Semester 1, 2023/24
Coursework 1: Experimental Comparison of Different Supervised Machine Learning Algorithms Using UCI Dataset
 
For this coursework 1, you are required to evaluate and compare fivesupervised machine learning algorithms using UCI dataset in Python programming language methods. Every student is expected to have their individual dataset according to their class grouping. This coursework 1 is worth 30% of the module mark.
Learning Outcomes
1. Evaluate and articulate the issues and challenges in machine learning, including model selection, complexity and feature selection.
2. Demonstrate a working knowledge of the variety of mathematical techniques normally adopted for machine learning problems, and of their application to creating effective solutions.
3. Critically evaluate the performance and drawbacks of a proposed solution to a machine learning problem.
4. Create solutions to machine learning problems using appropriate software.
Data set
 
This coursework is designed to allow you to work freely and make sure that your report is unique by avoiding collusions.  No two students ought to possess an identical or comparable dataset. Each student will receive a different UCI dataset at random, and you will need to download it from the student website as designated by the module leader. The dataset that you have been given must be used and followed strictly. The purpose of this instruction is to encourage students to work independently, avoid cheating and collusion; any infringement will result in a deduction of twenty points.  
Machine Learning and Evaluation
For this coursework you will evaluate five supervised learningmethods on UCI dataset in Python. The first algorithm is linear regression, second algorithm is logistic regression, third algorithm is neural network, fourth model is decision tree and the fifth model is k-nearest neighbour. 
You may implement these algorithms using the inbuilt classifiers; however you are highly encouraged to implement the functionsyourself to train the classifiers. More so, inbuilt function for error measurement is not allowed.
 
The objective of this coursework is to experimentally investigate which supervised algorithm is best suited for the dataset, and whichparameter values are best. In order to answer this question you need to evaluate the error measurement rate and any other performance evaluation metrics you can provide.
 
Experiments must at least show:
• The training and test error for all the models.
• Develop appropriate data handling code. 
• The use of inbuilt error measurement is not allowed for this coursework.
• Experimentally compare different hyper-parameters.
• Provide a visualization of how data was classified for each method (or parameter value), for example based on a scatter plot of two of the features. You are allowed to utilize any inbuilt visualization routines you like, such as plot, or scatter. 
The entire experiment must be submitted as jupyter notebook script file (.ipynb) from which all results and figures can be reproduced.
 
 
 
Report structure and assessment (30% of module mark)
1) Write a brief introduction that introduces (5%)
a) Provide a brief introduction of the supervised learning problem as it relates to real-life challenges.
b) Give details of the dataset and other information that describe the dataset.
c) Briefly explain the five models as well as possible parameters.
d) Briefly explain how the models can be individually applied to the dataset.
 
2) Realize and describe the experiment that evaluates the error measurement rate for all the models on your specific dataset. Explain the choice (or necessity) of your error measurement method. Make sure you use appropriate illustrations and diagrams as well as statistics. What other evaluation metrics than just theerror measurement method could be important to decide which method is most suited? More so, discuss the result of the chosen evaluate metrics.  (20%)
 
3) Write a brief conclusion on the results. Mention the algorithm that provides the best result and mentioned the hyper-parameters used. Also, provide a comparison of all the model performance results. (5%)
 
Submission
 
Submit your report following the report structure provided above. Include step-by-step descriptions of the tasks you performed and the results obtained during the experiment. Ensure that your report is well-organized, clearly written, and includes all the necessary evaluation metrics and graphs as specified in the coursework requirements. The submission deadline is week 9, November 2023, by 16:00. Late submissions may incur penalties of up to 10 marks reduction, so make sure to plan your work accordingly. Failure to submit your coursework will result to Zero Mark. In the case of exceptional circumstances, contact the Award Administrator in advance.
 
Submission Format:
The coursework assignment submitted should be compressed into a .zip or .rar file, the following files should be contained in the compressed file:
▪ A report as a Microsoft Word document.
   File name format: ‘Student ID_MLCoursework1_Report.docx’
▪ A .zip or .rar file containing the report experiments: all the program’s sources, including the code, graphs, model architecture, results, and diagrams from the experiments. All implementation source code must be submitted as a Jupyter Notebook script (.ipynb) for easy reproducibility. Your final zipped folder should be submitted digitally to the student website.
 請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP528、代做 Python ,java 編程
  • 下一篇:COMP24011 代做、代寫 java/Python 程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          狠狠狠色丁香婷婷综合激情| 国产日韩在线视频| 午夜欧美大片免费观看| 激情综合在线| 欧美一站二站| 一区二区电影免费在线观看| 黄色另类av| 国产精品性做久久久久久| 免费观看成人| 亚洲国产精品激情在线观看| 国产精品欧美风情| 欧美日韩亚洲一区二区三区在线观看| 亚洲三级视频在线观看| 国产亚洲成精品久久| 欧美午夜激情在线| 亚洲主播在线观看| 日韩午夜中文字幕| 精品福利av| 韩国久久久久| 激情综合中文娱乐网| 国产私拍一区| 国产欧美一区二区三区在线老狼 | 国产精品一区二区三区久久| 免播放器亚洲一区| 久久夜色精品国产噜噜av| 狠久久av成人天堂| 国产日韩专区在线| 国产日韩欧美精品| 国产日韩精品一区二区浪潮av | 国产精品青草综合久久久久99| 一区二区三区成人| 亚洲精选在线观看| 99re66热这里只有精品4 | 国产自产精品| 国内精品免费午夜毛片| 欧美国产丝袜视频| 欧美日韩在线播放三区| 久久久777| 免费看成人av| 亚洲欧美电影在线观看| 亚洲欧美日韩高清| 久久国产精品72免费观看| 久久久久欧美| 亚洲欧美日韩高清| 久久gogo国模啪啪人体图| 久久精品国产一区二区三区免费看| 亚洲国产日韩欧美一区二区三区| 国产精品电影在线观看| 国产午夜一区二区三区| 欧美人在线观看| 国产精品久久久久久妇女6080| 蜜桃久久精品一区二区| 欧美日韩国产在线看| 国产精品欧美日韩一区| 欧美精品入口| 国产欧美在线看| 亚洲人成在线免费观看| 亚洲欧美国产日韩中文字幕| 久久精品99国产精品日本 | 欧美在线你懂的| 欧美va日韩va| 国产精品久久久久久久久久久久久 | 亚洲小视频在线观看| 久久人人精品| 国产精品久久一级| 亚洲激情网站| 欧美一区二区三区日韩视频| 欧美另类亚洲| 影音先锋久久久| 亚洲欧美激情四射在线日 | 欧美在线视频全部完| 欧美成人精品h版在线观看| 国产精品视频自拍| 亚洲人成欧美中文字幕| 久久精品国产久精国产爱| 欧美日韩一区在线播放| 尤物yw午夜国产精品视频明星| 国产夜色精品一区二区av| 国产日韩欧美在线视频观看| 国产精品日产欧美久久久久| 亚洲国产乱码最新视频| 亚洲精品乱码视频| 久久亚洲精品中文字幕冲田杏梨| 另类天堂av| 国产综合色产| 亚洲激情视频| 免费成人你懂的| 在线观看成人av电影| 欧美一区日本一区韩国一区| 国产精品久久午夜夜伦鲁鲁| 一区二区三区日韩欧美| 午夜在线不卡| 国产精品视频xxx| 亚洲一区国产视频| 国产精品毛片大码女人| 一区二区三区精品视频在线观看| 亚洲影音一区| 国产精品午夜av在线| 亚洲伊人色欲综合网| 国产精品精品视频| 久久国产精品久久久| 国产在线精品二区| 久久久久高清| 亚洲福利精品| 欧美日韩一区二区在线视频| 国产精品99久久99久久久二8 | 欧美日韩国产bt| 国产美女精品在线| 欧美在线观看视频一区二区三区| 欧美凹凸一区二区三区视频| 亚洲国产精品日韩| 亚洲欧美怡红院| 国产最新精品精品你懂的| 亚洲日本免费电影| 欧美性猛交xxxx乱大交退制版| 亚洲国产国产亚洲一二三| 欧美成人免费大片| 亚洲天堂偷拍| 激情久久五月天| 欧美日韩另类综合| 亚洲国产高清在线观看视频| 亚洲免费影视第一页| 国产性天天综合网| 亚洲午夜久久久| 欧美区日韩区| 欧美一区二区三区四区高清| 在线免费观看日本一区| 欧美中文在线观看国产| 在线欧美日韩国产| 国产精品av久久久久久麻豆网| 亚洲福利视频免费观看| 国产精品激情电影| 老巨人导航500精品| 国产亚洲制服色| 欧美激情第一页xxx| 午夜精品久久久久久99热| 亚洲国产日韩欧美一区二区三区| 久久久久九九九九| 亚洲视频一区在线| 亚洲国产精品久久久久秋霞影院 | 这里只有视频精品| 一区在线播放| 国产欧美日韩精品在线| 欧美精品一区二区三| 久久久久久九九九九| 亚洲一区二区四区| 亚洲日本一区二区| 欧美日韩1区2区| 久久久水蜜桃| 久久精品123| 午夜精品久久久久久久男人的天堂| 国产精品久久久久久户外露出 | 欧美日韩国产在线播放网站| 欧美在线二区| 性色av一区二区怡红| 亚洲午夜黄色| 一本色道**综合亚洲精品蜜桃冫| 欧美三级韩国三级日本三斤| 老司机一区二区| 久久久视频精品| 久久久蜜臀国产一区二区| 欧美一区二区三区成人| 亚洲欧美另类在线| 亚洲综合欧美日韩| 影音先锋久久久| 狠狠色狠狠色综合| 国语自产精品视频在线看一大j8| 欧美成人免费播放| 你懂的网址国产 欧美| 噜噜爱69成人精品| 欧美激情第一页xxx| 一区二区欧美日韩| 国产一区再线| 国产私拍一区| 在线观看一区二区精品视频| 欧美日韩精品| 国产精品日韩久久久久| 欧美成人黄色小视频| 欧美成年人视频网站| 午夜激情亚洲| 欧美专区福利在线| 老牛嫩草一区二区三区日本 | 欧美午夜精品一区| 久久先锋影音| 蜜乳av另类精品一区二区| 欧美精品一区二区久久婷婷| 欧美一级久久| 看片网站欧美日韩| 午夜日韩av| 乱中年女人伦av一区二区| 欧美久久久久中文字幕| 国产精品九九久久久久久久| 国内精品久久久久久久影视麻豆| 国产精品对白刺激久久久| 国产目拍亚洲精品99久久精品| 欧美精品一区二区三区很污很色的| 久久嫩草精品久久久精品一| 欧美护士18xxxxhd| 国产精品日韩欧美综合| 一区二区三区在线视频免费观看|