合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        AERO20542代做、代寫Python/Java編程

        時間:2024-03-07  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        MECH20042/AERO20542 Numerical Methods and Computing
        Laboratory exercise 1: Direct methods for the solution of
        tridiagonal systems of linear equations
        Solution of systems of linear equations is one of the most frequently encountered problems in
        numerical modelling and simulation. Efficient numerical methods, both in terms of the execution time
        and memory storage are essential to complete this task. Sparse systems of linear equations arise in
        many applications, such as finite element or finite volume solution of differential equations. Sparse
        linear systems have coefficient matrices that are sparse, i.e., a large proportion of the elements are
        equal to zero. Banded matrices are a special class of sparse matrices in which the non-zero coefficients
        are concentrated about the main diagonal.
        Storing sparse matrices in computer memory as two-dimensional arrays is inefficient, as many zero
        elements are kept needlessly in computer memory. Banded matrices can be stored by their diagonals,
        where each diagonal is stored as a one-dimensional array (a vector). With this setup a tridiagonal
        matrix 𝑇 of size 𝑛 × 𝑛

        can be stored using three vectors as follows:
        𝐴 = [𝑎11 𝑎22 ⋯ 𝑎𝑛𝑛]
        𝑇 ∈ 𝑅
        𝑛
        ,
        w**; = [𝑎21 𝑎** ⋯ 𝑎𝑛,𝑛−1]
        𝑇 ∈ 𝑅
        𝑛−1
        ,
        𝐶 = [𝑎12 𝑎23 ⋯ 𝑎𝑛−1,𝑛]
        𝑇 ∈ 𝑅
        𝑛−1
        .
        The Gaussian elimination technique applied to a tridiagonal system 𝑇𝒙 = 𝒇 is particularly simple,
        because only the non-zero elements in the sub-diagonal held in vector w**; need to be eliminated. This
        algorithm, known as the Thomas algorithm, proceeds as follows:
        FORWARD ELIMINATION BACKSUBSTITUTION
        𝑎𝑖𝑖 = 𝑎𝑖𝑖 −
        𝑎𝑖,𝑖−1
        𝑎𝑖−1,𝑖−1
        𝑎𝑖−1,𝑖 w**9;𝑛 =
        𝑓𝑛
        𝑎𝑛𝑛
        𝑓𝑖 = 𝑓𝑖 −
        𝑎𝑖,𝑖−1
        𝑎𝑖−1,𝑖−1
        𝑓𝑖−1 w**9;𝑖 =
        1
        𝑎𝑖𝑖
        (𝑓𝑖 − 𝑎𝑖,𝑖+1 w**9;𝑖+1)
        𝑖 = 2, … , 𝑛 𝑖 = 𝑛 − 1, … ,1
        TASK 1. Calculate the number of arithmetic operations that are required to solve a tridiagonal system
        𝑇𝒙 = 𝒇 of size 𝑛 using the Thomas algorithm. Based on this result, determine the asymptotic
        complexity of the Thomas algorithm, and compare it to the asymptotic complexity of the standard
        Gaussian elimination.
        TASK 2. Rewrite the Thomas algorithm in terms of the arrays 𝐴,w**;, and 𝐶 introduced to store the matrix
        𝑇 efficiently.
        TASK 3. Implement the Thomas algorithm from TASK 2 as a Python function. The input parameters to
        the function should be the coefficient matrix 𝑇 (stored as three arrays 𝐴,w**;, and 𝐶) and the right-hand
        side vector 𝒇. The output should be the solution vector 𝒙. The coefficient matrix and the right-hand
        side should be defined in the main script and passed to the function that solves the system.
        TASK 4. Test your code by solving the linear system of size 𝑛 = 10 with the values 𝐴 = 2, and w**; = 𝐶 =
        −1. Set the right-hand side to 𝒇 = 𝟏. To verify the correctness of your code, compare the solution
        vector obtained from the Thomas algorithm to that obtained by applying the direct solver
        numpy.linalg.solve(). For the latter, the coefficient matrix should be assembled.
        TASK 5. Solve five linear systems 𝑇𝒙 = 𝒇 with 𝐴 = 2, w**; = 𝐶 = −1 and 𝒇 = 𝟏 varying the problem size
        𝑛 between 106
        and 108
        . Record the execution times in seconds for each case. To accomplish this task,
        explore the Python function timer() from the package timeit (refer to the code for matrix
        multiplication covered in lectures). Plot a graph where the obtained execution times are represented
        as the function of the problem size 𝑛. What are your conclusions about the cost of the Thomas
        請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp

        掃一掃在手機打開當前頁
      1. 上一篇:PROG2007代寫、Python/c++程序語言代做
      2. 下一篇:代寫CMSC 323、代做Java/Python編程
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 白丝爆浆18禁一区二区三区| 国产在线不卡一区二区三区| 日韩社区一区二区三区| 日韩精品久久一区二区三区 | 一区二区三区杨幂在线观看| 国产一区美女视频| 精品人妻少妇一区二区三区在线| 亚洲综合色自拍一区| 精品福利视频一区二区三区| 国产精品视频一区| 成人免费区一区二区三区| 国产精品合集一区二区三区 | 日韩精品一区二区三区国语自制 | 日本精品一区二区在线播放| 国产美女露脸口爆吞精一区二区| 无码精品视频一区二区三区| 国产一区二区不卡老阿姨| 国产一区二区视频在线观看| 无码人妻精品一区二区三区99性| 无码AⅤ精品一区二区三区| 久久久老熟女一区二区三区| 黄桃AV无码免费一区二区三区| 亚洲成AV人片一区二区密柚| 日韩电影一区二区三区| 亚洲一区二区中文| 国产精品高清一区二区人妖 | 成人免费av一区二区三区| 国产亚洲情侣一区二区无| 丰满爆乳一区二区三区| 国产一区二区三区不卡观| 色国产精品一区在线观看| 成人精品一区二区户外勾搭野战 | 交换国产精品视频一区| 海角国精产品一区一区三区糖心 | 无码人妻精品一区二区蜜桃网站| 国产99久久精品一区二区| 韩国女主播一区二区| 香蕉一区二区三区观| 亚欧成人中文字幕一区| 色屁屁一区二区三区视频国产| 精品无码一区二区三区水蜜桃|