合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        STAT4602代寫、代做Java/Python編程
        STAT4602代寫、代做Java/Python編程

        時(shí)間:2025-04-26  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        STAT4602 Multivariate Data Analysis Assignment 2
        Hand in solutions for ALL questions by April 23 (Wednesday), 2025,
        11:59pm
        1. The file IRIS.DAT gives a dataset containing 4 measurements for 3 species
        of iris. In the dataset, each row corresponds to one observation. The first 4
        columns gives the 4 measurements, and the last column takes values 1, 2, 3,
        corresponding to the 3 species of iris.
        (a) Perform multivariate regression for each species separately, treating the
        two sepal measures (x1 and x2) as response variables, and the two petal
        measures (x3 and x4) as indepedent variables. Report the fitted models.
        (b) For the species “versicolour” (serial number 2), test whether the two sets of
        regression coefficients (excluding intercepts) are the same in the regression
        equations for x1 and for x2.
        (c) Consider a multivariate linear model as in (a), but incorporate the
        3 species in the model with the aid of additional dummy variables.
        Specifically, intorduce new variables:
        • s ∈ {0, 1}: s = 1 if species = 1, and s = 0 otherwise.
        • v ∈ {0, 1}: v = 1 if species = 2, and v = 0 otherwise.
        • sx3 = s · x3: sx3 = x3 if species = 1, and sx3 = 0 otherwise.
        • sx4 = s · x4: sx4 = x4 if species = 1, and sx4 = 0 otherwise.
        • vx3 = v · x3: vx3 = x3 if species = 2, and vx3 = 0 otherwise.
        • vx4 = v · x4: vx4 = x4 if species = 2, and vx4 = 0 otherwise.
        Perform the regression and test the hypothesis that the 3 species have
        the same model.
        (d) For a input with species = 1, 2, 3, is the model obtained in (c) equivalent
        to the 3 separate multivariate regression models obtained in (a)?
        2. Consider the data given by CORKDATA.sas in Question 1 of Assignment 1:
        N E S W N E S W
        72 66 76 77 91 79 100 75
        60 53 66 63 56 68 47 50
        56 57 64 58 79 65 70 61
        41 29 36 38 81 80 68 58
        32 32 35 36 78 55 67 60
        30 35 34 26 46 38 37 38
        39 39 31 27 39 35 34 37
        42 43 31 25 32 30 30 32
        37 40 31 25 60 50 67 54
        33 29 27 36 35 37 48 39
        32 30 34 28 39 36 39 31
        63 45 74 63 50 34 37 40
        54 46 60 52 43 37 39 50
        47 51 52 45 48 54 57 43
        (a) Find the principal components based on the covariance matrix. Interpret
        them if possible.
        HKU STAT4602 (2024-25, Semester 2) 1
        STAT4602 Multivariate Data Analysis Assignment 2
        (b) How many principal components would you suggest to retain in
        summarizing the total variability of the data? Give reasons, including
        results of statistical tests if appropriate.
        (c) Repeat (a) and (b) using the correlation matrix instead.
        (d) Compare and comment on the two sets of results for covariance and
        correlation matrices. Recommend a set of results and explain why.
        3. Annual financial data are collected for bankrupt firms approximately 2 years
        prior to their bankruptcy and for financially sound firms at about the same
        time. The data on four variables, X1 = (cash flow) / (total debt), X2 = (net
        income) / (total assets), X3 = (current assets) / (current liabilities) and X4 =
        (current assets) / (net sales) are stored in the file FINANICALDATA.TXT. In
        addition, a categorical variable Y identifies whether a firm is bankrupt (Y = 1)
        or non-bankrupt (Y = 2).
        (a) Apply the linear discriminant analysis (LDA) to classify the firms into
        a bankrupt group and a non-bankrupt group. Calculate the error rates
        with cross-validation and report the results.
        (b) Apply quadratic discriminant analysis (QDA) to classify the firms,
        perform cross-validation and report the results.
        4. The distances between pairs of five items are as follows:
        Cluster the five items using the single linkage, complete linkage, and average
        linkage hierarchical methods. Compare the results.
        5. Consider multivariate linear regression with the following data structure:
        individual Y1 Y2 · · · Yp X1 X2 · · · Xk
        1 y11 y12 · · · y1p x11 x12 · · · x1k
        2 y21 y22 · · · y2p x21 x22 x2k
        n yn1 yn2 · · · ynp xn1 xn2 · · · xnk
        The regression model is given as
        Y
        n×p
        = Xn×k
        B
        k×p
        + Un×p
        ,
        HKU STAT4602 (2024-25, Semester 2) 2
        STAT4602 Multivariate Data Analysis Assignment 2
        where the matrices Y , X, B and U are given as follows:
        Here for i = 1, . . . , n, the vector of errors of observation i is εi =
        (εj1, εj2, · · · , εjp)

        , and we assume that ε1, . . . , εn
        iid∼ Np(0, Σ).
        (a) We know that the maximum likelihood estimator of B and Σ are:
        Bˆ = (X′X)
        −1 X′Y , Σˆ =
        1
        n


        Uˆ , where Uˆ = Y − XBˆ .
        Calculate the maximum value of the log-likelihood function
        ℓ(B, Σ) = −
        np
        2
        log(2π) −
        n
        2
        log |Σ| − 1
        2
        tr[(Y − XB)Σ
        −1
        (Y − XB)

        ]
        = −
        np
        2
        log(2π) −
        n
        2
        log |Σ| − 1
        2
        tr[Σ
        −1
        (Y − XB)

        (Y − XB)].
        (b) Plug in the definition of Bˆ and express Uˆ as a matrix calculated based
        on X and Y . Calculate X⊤Uˆ and Uˆ

        X.
        (c) Prove the identity
        (Y − XB)

        (Y − XB)
        = (Y − XBˆ )

        (Y − XBˆ ) + (XBˆ − XB)

        (XBˆ − XB).
        Hint: by definition, Y − XBˆ = Uˆ , and we have
        (Y − XB)

        (Y − XB)
        = (Y − XBˆ + XBˆ − XB)

        (Y − XBˆ + XBˆ − XB).
        6. Consider p random variables X1, . . . , Xp. Suppose that Y1, . . . , Yp are the first
        to the p-th population principle components of X1, . . . , Xp.
        (a) What are the population principle components of the random variables
        Y1, . . . , Yp? Why?
        (b) Suppose that the population covariance matrix of (X1, . . . , Xp)

        is Σ and
        its eigenvalue decomposition is
        Σ =
        p
        X
        i=1
        λiαiα

        i
        ,
        where α1, . . . , αp are orthogonal unit vectors. What is the covariance
        bewteen X1 and Y1?
        7. Consider a k-class classification task with ni observations in class i, i =
        1, . . . , k. Define matrices
        H =
        k
        X
        j=1
        nj (x¯·j − x¯··)(x¯·j − x¯··)

        , E =
        k
        X
        j=1
        nj
        X
        i=1
        (xij − x¯·j )(xij − x¯·j )

        , S =
        n
        E
        − k
        .
        HKU STAT4602 (2024-25, Semester 2) 3
        STAT4602 Multivariate Data Analysis Assignment 2
        In LDA for multiclass classification, we consider the eigenvalue decompostion
        E
        −1Hai = ℓiai
        , i = 1, . . . , s, s = rank(E
        −1H).
        where a1, . . . , as satisfy a

        iSai = 1 and a

        iSai
        ′ = 0 for all i, i′ = 1, . . . , s, i = i

        .
        (a) While the above definitions were introduced in the case of multiclass
        classification (k > 2), we may check to what extent these definitions are
        reasonable in binary classification (k = 2). In this case, we have the
        sample means within class 1 and class 2 as x¯·1 and x¯·2 respectively. Can
        you calculate the overall mean x¯·· based on x¯·1, x¯·2 and n1, n2?
        (b) For k = 2, express H as a matrix calculated based on x¯·1, x¯·2 and n1, n2.
        (c) What is the rank of the matrix H when k = 2?
        (d) We mentioned in the lecture that we can simply use one Fisher
        discriminant function for binary classification. Can we adopt the
        definitions above to define more than one Fisher discriminant functions
        for binary classification? Why?
        HKU STAT4602 (2024-25, Semester 2) 4

        請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



         

        掃一掃在手機(jī)打開當(dāng)前頁(yè)
      1. 上一篇:STAT4602代寫、代做Java/Python編程
      2. 下一篇:代做 ECE391、代寫 C/C++設(shè)計(jì)編程
      3. 無(wú)相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
        出評(píng) 開團(tuán)工具
        出評(píng) 開團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士4號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士3號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士2號(hào)線
        合肥機(jī)場(chǎng)巴士1號(hào)線
        合肥機(jī)場(chǎng)巴士1號(hào)線
      4. 短信驗(yàn)證碼 酒店vi設(shè)計(jì) NBA直播 幣安下載

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號(hào)-3 公安備 42010502001045

        主站蜘蛛池模板: 狠狠色婷婷久久一区二区| 精品国产aⅴ无码一区二区| 成人区精品一区二区不卡| 亚洲国产精品一区二区九九| 国产在线精品一区二区三区直播| 色婷婷一区二区三区四区成人网| 日韩人妻不卡一区二区三区| 亚洲一区二区三区国产精华液| 人妻精品无码一区二区三区| 区三区激情福利综合中文字幕在线一区亚洲视频1 | 亚洲综合激情五月色一区| 日韩精品一区二区三区中文3d| 一区二区三区免费高清视频| 久久91精品国产一区二区| 国产精品成人免费一区二区 | 精品国产一区二区三区无码| 无码午夜人妻一区二区不卡视频| 国产精品一区二区久久精品无码| 一区二区在线电影| 色欲AV无码一区二区三区| 无码少妇一区二区| 精品乱码一区内射人妻无码| 亚洲日本一区二区三区| 国产精品一区二区香蕉| 无码免费一区二区三区免费播放| 国产精品99精品一区二区三区| 丝袜无码一区二区三区| 好吊妞视频一区二区| 亚洲一区二区在线视频| 亚洲国产一区明星换脸| 无码精品一区二区三区| 亚洲日本一区二区| 99国产精品一区二区| 韩国女主播一区二区| 99久久人妻精品免费一区| 国产在线观看一区二区三区精品 | 精品国产日韩亚洲一区在线| 亚洲一区二区三区AV无码| 国产AV天堂无码一区二区三区| 精品乱码一区二区三区四区| 秋霞午夜一区二区|