99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

STAT4602代寫、代做Java/Python編程
STAT4602代寫、代做Java/Python編程

時間:2025-04-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



STAT4602 Multivariate Data Analysis Assignment 2
Hand in solutions for ALL questions by April 23 (Wednesday), 2025,
11:59pm
1. The file IRIS.DAT gives a dataset containing 4 measurements for 3 species
of iris. In the dataset, each row corresponds to one observation. The first 4
columns gives the 4 measurements, and the last column takes values 1, 2, 3,
corresponding to the 3 species of iris.
(a) Perform multivariate regression for each species separately, treating the
two sepal measures (x1 and x2) as response variables, and the two petal
measures (x3 and x4) as indepedent variables. Report the fitted models.
(b) For the species “versicolour” (serial number 2), test whether the two sets of
regression coefficients (excluding intercepts) are the same in the regression
equations for x1 and for x2.
(c) Consider a multivariate linear model as in (a), but incorporate the
3 species in the model with the aid of additional dummy variables.
Specifically, intorduce new variables:
• s ∈ {0, 1}: s = 1 if species = 1, and s = 0 otherwise.
• v ∈ {0, 1}: v = 1 if species = 2, and v = 0 otherwise.
• sx3 = s · x3: sx3 = x3 if species = 1, and sx3 = 0 otherwise.
• sx4 = s · x4: sx4 = x4 if species = 1, and sx4 = 0 otherwise.
• vx3 = v · x3: vx3 = x3 if species = 2, and vx3 = 0 otherwise.
• vx4 = v · x4: vx4 = x4 if species = 2, and vx4 = 0 otherwise.
Perform the regression and test the hypothesis that the 3 species have
the same model.
(d) For a input with species = 1, 2, 3, is the model obtained in (c) equivalent
to the 3 separate multivariate regression models obtained in (a)?
2. Consider the data given by CORKDATA.sas in Question 1 of Assignment 1:
N E S W N E S W
72 66 76 77 91 79 100 75
60 53 66 63 56 68 47 50
56 57 64 58 79 65 70 61
41 29 36 38 81 80 68 58
32 32 35 36 78 55 67 60
30 35 34 26 46 38 37 38
39 39 31 27 39 35 34 37
42 43 31 25 32 30 30 32
37 40 31 25 60 50 67 54
33 29 27 36 35 37 48 39
32 30 34 28 39 36 39 31
63 45 74 63 50 34 37 40
54 46 60 52 43 37 39 50
47 51 52 45 48 54 57 43
(a) Find the principal components based on the covariance matrix. Interpret
them if possible.
HKU STAT4602 (2024-25, Semester 2) 1
STAT4602 Multivariate Data Analysis Assignment 2
(b) How many principal components would you suggest to retain in
summarizing the total variability of the data? Give reasons, including
results of statistical tests if appropriate.
(c) Repeat (a) and (b) using the correlation matrix instead.
(d) Compare and comment on the two sets of results for covariance and
correlation matrices. Recommend a set of results and explain why.
3. Annual financial data are collected for bankrupt firms approximately 2 years
prior to their bankruptcy and for financially sound firms at about the same
time. The data on four variables, X1 = (cash flow) / (total debt), X2 = (net
income) / (total assets), X3 = (current assets) / (current liabilities) and X4 =
(current assets) / (net sales) are stored in the file FINANICALDATA.TXT. In
addition, a categorical variable Y identifies whether a firm is bankrupt (Y = 1)
or non-bankrupt (Y = 2).
(a) Apply the linear discriminant analysis (LDA) to classify the firms into
a bankrupt group and a non-bankrupt group. Calculate the error rates
with cross-validation and report the results.
(b) Apply quadratic discriminant analysis (QDA) to classify the firms,
perform cross-validation and report the results.
4. The distances between pairs of five items are as follows:
Cluster the five items using the single linkage, complete linkage, and average
linkage hierarchical methods. Compare the results.
5. Consider multivariate linear regression with the following data structure:
individual Y1 Y2 · · · Yp X1 X2 · · · Xk
1 y11 y12 · · · y1p x11 x12 · · · x1k
2 y21 y22 · · · y2p x21 x22 x2k
n yn1 yn2 · · · ynp xn1 xn2 · · · xnk
The regression model is given as
Y
n×p
= Xn×k
B
k×p
+ Un×p
,
HKU STAT4602 (2024-25, Semester 2) 2
STAT4602 Multivariate Data Analysis Assignment 2
where the matrices Y , X, B and U are given as follows:
Here for i = 1, . . . , n, the vector of errors of observation i is εi =
(εj1, εj2, · · · , εjp)

, and we assume that ε1, . . . , εn
iid∼ Np(0, Σ).
(a) We know that the maximum likelihood estimator of B and Σ are:
Bˆ = (X′X)
−1 X′Y , Σˆ =
1
n


Uˆ , where Uˆ = Y − XBˆ .
Calculate the maximum value of the log-likelihood function
ℓ(B, Σ) = −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[(Y − XB)Σ
−1
(Y − XB)

]
= −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[Σ
−1
(Y − XB)

(Y − XB)].
(b) Plug in the definition of Bˆ and express Uˆ as a matrix calculated based
on X and Y . Calculate X⊤Uˆ and Uˆ

X.
(c) Prove the identity
(Y − XB)

(Y − XB)
= (Y − XBˆ )

(Y − XBˆ ) + (XBˆ − XB)

(XBˆ − XB).
Hint: by definition, Y − XBˆ = Uˆ , and we have
(Y − XB)

(Y − XB)
= (Y − XBˆ + XBˆ − XB)

(Y − XBˆ + XBˆ − XB).
6. Consider p random variables X1, . . . , Xp. Suppose that Y1, . . . , Yp are the first
to the p-th population principle components of X1, . . . , Xp.
(a) What are the population principle components of the random variables
Y1, . . . , Yp? Why?
(b) Suppose that the population covariance matrix of (X1, . . . , Xp)

is Σ and
its eigenvalue decomposition is
Σ =
p
X
i=1
λiαiα

i
,
where α1, . . . , αp are orthogonal unit vectors. What is the covariance
bewteen X1 and Y1?
7. Consider a k-class classification task with ni observations in class i, i =
1, . . . , k. Define matrices
H =
k
X
j=1
nj (x¯·j − x¯··)(x¯·j − x¯··)

, E =
k
X
j=1
nj
X
i=1
(xij − x¯·j )(xij − x¯·j )

, S =
n
E
− k
.
HKU STAT4602 (2024-25, Semester 2) 3
STAT4602 Multivariate Data Analysis Assignment 2
In LDA for multiclass classification, we consider the eigenvalue decompostion
E
−1Hai = ℓiai
, i = 1, . . . , s, s = rank(E
−1H).
where a1, . . . , as satisfy a

iSai = 1 and a

iSai
′ = 0 for all i, i′ = 1, . . . , s, i = i

.
(a) While the above definitions were introduced in the case of multiclass
classification (k > 2), we may check to what extent these definitions are
reasonable in binary classification (k = 2). In this case, we have the
sample means within class 1 and class 2 as x¯·1 and x¯·2 respectively. Can
you calculate the overall mean x¯·· based on x¯·1, x¯·2 and n1, n2?
(b) For k = 2, express H as a matrix calculated based on x¯·1, x¯·2 and n1, n2.
(c) What is the rank of the matrix H when k = 2?
(d) We mentioned in the lecture that we can simply use one Fisher
discriminant function for binary classification. Can we adopt the
definitions above to define more than one Fisher discriminant functions
for binary classification? Why?
HKU STAT4602 (2024-25, Semester 2) 4

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:STAT4602代寫、代做Java/Python編程
  • 下一篇:代做 ECE391、代寫 C/C++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                日韩欧美国产三级| 成人性生交大片| aaa欧美色吧激情视频| 国产精品视频看| 91浏览器入口在线观看| 一区二区三区在线不卡| 欧美日韩免费高清一区色橹橹 | www.欧美色图| 亚洲国产一区在线观看| 精品国偷自产国产一区| 91网址在线看| 精品一二三四区| 亚洲日本中文字幕区| 欧美一区二区视频观看视频| 成人午夜大片免费观看| 亚洲在线视频免费观看| 久久亚洲一区二区三区明星换脸| va亚洲va日韩不卡在线观看| 亚洲国产精品一区二区尤物区| 久久伊人蜜桃av一区二区| 色综合天天综合网国产成人综合天| 免费观看一级欧美片| 亚洲丝袜美腿综合| 久久久亚洲国产美女国产盗摄| 欧美在线色视频| 成人h精品动漫一区二区三区| 蜜桃av一区二区在线观看| 亚洲综合激情另类小说区| 亚洲国产经典视频| 欧美成人性战久久| 欧美人妖巨大在线| 91福利在线导航| gogogo免费视频观看亚洲一| 韩日av一区二区| 久久精品国产精品亚洲精品| 日韩成人精品在线观看| 亚洲一二三四区不卡| 亚洲男人的天堂av| 亚洲精选一二三| 亚洲免费av在线| 亚洲色图制服诱惑 | 久久99久久精品欧美| 一区二区三区蜜桃网| 中文字幕一区二区三区精华液| 久久亚洲精华国产精华液| 欧美一区二区三区视频| 欧美日韩免费不卡视频一区二区三区| a在线播放不卡| 国产精品69久久久久水密桃| 精品综合久久久久久8888| 蜜桃视频在线观看一区二区| 日日夜夜精品视频免费| 图片区日韩欧美亚洲| 亚洲国产另类av| 日韩国产欧美在线播放| 青娱乐精品在线视频| 老司机精品视频导航| 久久99热99| 9色porny自拍视频一区二区| 色综合色综合色综合| 色94色欧美sute亚洲线路二| 欧美三级在线播放| 欧美日韩亚洲丝袜制服| 3d成人动漫网站| 精品国产百合女同互慰| 国产午夜精品久久久久久免费视| 国产婷婷一区二区| 亚洲乱码中文字幕| 天天操天天色综合| 国产一区二区三区最好精华液 | 国产aⅴ综合色| 粉嫩av一区二区三区在线播放| 成人激情免费电影网址| 欧美日韩国产综合视频在线观看| 在线播放一区二区三区| 久久久无码精品亚洲日韩按摩| 日韩免费看的电影| 国产精品久久久一本精品| 一区二区三区高清| 国产一区二区三区久久悠悠色av| 99国产麻豆精品| 欧美日韩中文字幕一区| 精品对白一区国产伦| 亚洲欧美电影一区二区| 久久国内精品视频| 91丨九色丨黑人外教| 91精品中文字幕一区二区三区| 中文字幕欧美激情一区| 亚洲va国产天堂va久久en| 丁香一区二区三区| 精品噜噜噜噜久久久久久久久试看 | 欧美videos中文字幕| 国产精品国产三级国产| 日韩精品一卡二卡三卡四卡无卡| 成人一区二区三区视频在线观看| 欧美欧美午夜aⅴ在线观看| 欧美国产精品一区二区| 日本免费新一区视频| 97精品久久久午夜一区二区三区| 欧美一级一区二区| 亚洲成人av中文| 色狠狠色狠狠综合| 国产精品成人在线观看| 精品亚洲国产成人av制服丝袜| 日本二三区不卡| 国产精品久久二区二区| 精品在线视频一区| 欧美高清视频www夜色资源网| 亚洲人吸女人奶水| 成人涩涩免费视频| 国产日产欧美精品一区二区三区| 秋霞影院一区二区| 日韩三级在线观看| 午夜精品在线看| 欧美日韩一级二级| 日韩1区2区3区| 欧美一级一区二区| 美女免费视频一区二区| 欧美一区二区福利视频| 奇米综合一区二区三区精品视频| 在线看国产一区| 亚洲在线观看免费| 欧美伊人久久大香线蕉综合69 | 丰满白嫩尤物一区二区| 久久久久久免费毛片精品| 久久69国产一区二区蜜臀| 日韩欧美卡一卡二| 国产精品888| 国产精品国产三级国产普通话99 | 亚洲免费在线视频| 在线欧美一区二区| 亚洲国产精品一区二区www | 日韩一区二区精品在线观看| 天堂久久一区二区三区| 欧美一级专区免费大片| 毛片基地黄久久久久久天堂| 91.麻豆视频| 美女www一区二区| 国产日产精品1区| 成人美女视频在线看| 一区二区三区国产豹纹内裤在线 | 久久久久88色偷偷免费| 国产精品123区| 国产精品美女久久久久久久网站| 国产1区2区3区精品美女| 国产精品美日韩| 99精品欧美一区| 亚洲精品久久嫩草网站秘色| 欧美性受极品xxxx喷水| 日韩精品欧美精品| 日韩一卡二卡三卡| 国产乱人伦偷精品视频不卡| 国产精品你懂的在线欣赏| 国产·精品毛片| 一区二区三区在线免费视频 | 国产一区美女在线| 亚洲精品国产一区二区精华液| 欧美日韩国产精品自在自线| 国产最新精品精品你懂的| 亚洲女同ⅹxx女同tv| 精品久久久久久久一区二区蜜臀| 国产99久久精品| 日本在线不卡一区| 亚洲精品亚洲人成人网| 国产片一区二区| 欧美一区二区三区免费在线看| 福利一区二区在线观看| 日韩av中文字幕一区二区| 中文字幕一区二区三区四区不卡| 欧美一级片在线| 欧美日韩一二三区| 91免费看`日韩一区二区| 麻豆国产欧美日韩综合精品二区| 夜夜嗨av一区二区三区四季av | 六月丁香婷婷久久| 一区二区三区在线视频观看| 国产丝袜欧美中文另类| 精品欧美乱码久久久久久1区2区| 欧美日韩视频在线一区二区 | 久久综合久久鬼色中文字| 在线日韩av片| 波多野结衣视频一区| 国产一区久久久| 久久99国产精品免费网站| 日韩国产精品久久久久久亚洲| 亚洲日本青草视频在线怡红院| 日韩女优制服丝袜电影| 欧美电影影音先锋| 95精品视频在线| 成人99免费视频| 国内精品国产成人| 日本成人超碰在线观看| 亚洲免费三区一区二区| 国产精品三级视频| wwwwww.欧美系列| 精品国产凹凸成av人导航| 日韩欧美一区在线| 欧美亚男人的天堂| 欧美日韩情趣电影| 欧美欧美欧美欧美|