99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

STAT4602代寫、代做Java/Python編程
STAT4602代寫、代做Java/Python編程

時間:2025-04-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



STAT4602 Multivariate Data Analysis Assignment 2
Hand in solutions for ALL questions by April 23 (Wednesday), 2025,
11:59pm
1. The file IRIS.DAT gives a dataset containing 4 measurements for 3 species
of iris. In the dataset, each row corresponds to one observation. The first 4
columns gives the 4 measurements, and the last column takes values 1, 2, 3,
corresponding to the 3 species of iris.
(a) Perform multivariate regression for each species separately, treating the
two sepal measures (x1 and x2) as response variables, and the two petal
measures (x3 and x4) as indepedent variables. Report the fitted models.
(b) For the species “versicolour” (serial number 2), test whether the two sets of
regression coefficients (excluding intercepts) are the same in the regression
equations for x1 and for x2.
(c) Consider a multivariate linear model as in (a), but incorporate the
3 species in the model with the aid of additional dummy variables.
Specifically, intorduce new variables:
• s ∈ {0, 1}: s = 1 if species = 1, and s = 0 otherwise.
• v ∈ {0, 1}: v = 1 if species = 2, and v = 0 otherwise.
• sx3 = s · x3: sx3 = x3 if species = 1, and sx3 = 0 otherwise.
• sx4 = s · x4: sx4 = x4 if species = 1, and sx4 = 0 otherwise.
• vx3 = v · x3: vx3 = x3 if species = 2, and vx3 = 0 otherwise.
• vx4 = v · x4: vx4 = x4 if species = 2, and vx4 = 0 otherwise.
Perform the regression and test the hypothesis that the 3 species have
the same model.
(d) For a input with species = 1, 2, 3, is the model obtained in (c) equivalent
to the 3 separate multivariate regression models obtained in (a)?
2. Consider the data given by CORKDATA.sas in Question 1 of Assignment 1:
N E S W N E S W
72 66 76 77 91 79 100 75
60 53 66 63 56 68 47 50
56 57 64 58 79 65 70 61
41 29 36 38 81 80 68 58
32 32 35 36 78 55 67 60
30 35 34 26 46 38 37 38
39 39 31 27 39 35 34 37
42 43 31 25 32 30 30 32
37 40 31 25 60 50 67 54
33 29 27 36 35 37 48 39
32 30 34 28 39 36 39 31
63 45 74 63 50 34 37 40
54 46 60 52 43 37 39 50
47 51 52 45 48 54 57 43
(a) Find the principal components based on the covariance matrix. Interpret
them if possible.
HKU STAT4602 (2024-25, Semester 2) 1
STAT4602 Multivariate Data Analysis Assignment 2
(b) How many principal components would you suggest to retain in
summarizing the total variability of the data? Give reasons, including
results of statistical tests if appropriate.
(c) Repeat (a) and (b) using the correlation matrix instead.
(d) Compare and comment on the two sets of results for covariance and
correlation matrices. Recommend a set of results and explain why.
3. Annual financial data are collected for bankrupt firms approximately 2 years
prior to their bankruptcy and for financially sound firms at about the same
time. The data on four variables, X1 = (cash flow) / (total debt), X2 = (net
income) / (total assets), X3 = (current assets) / (current liabilities) and X4 =
(current assets) / (net sales) are stored in the file FINANICALDATA.TXT. In
addition, a categorical variable Y identifies whether a firm is bankrupt (Y = 1)
or non-bankrupt (Y = 2).
(a) Apply the linear discriminant analysis (LDA) to classify the firms into
a bankrupt group and a non-bankrupt group. Calculate the error rates
with cross-validation and report the results.
(b) Apply quadratic discriminant analysis (QDA) to classify the firms,
perform cross-validation and report the results.
4. The distances between pairs of five items are as follows:
Cluster the five items using the single linkage, complete linkage, and average
linkage hierarchical methods. Compare the results.
5. Consider multivariate linear regression with the following data structure:
individual Y1 Y2 · · · Yp X1 X2 · · · Xk
1 y11 y12 · · · y1p x11 x12 · · · x1k
2 y21 y22 · · · y2p x21 x22 x2k
n yn1 yn2 · · · ynp xn1 xn2 · · · xnk
The regression model is given as
Y
n×p
= Xn×k
B
k×p
+ Un×p
,
HKU STAT4602 (2024-25, Semester 2) 2
STAT4602 Multivariate Data Analysis Assignment 2
where the matrices Y , X, B and U are given as follows:
Here for i = 1, . . . , n, the vector of errors of observation i is εi =
(εj1, εj2, · · · , εjp)

, and we assume that ε1, . . . , εn
iid∼ Np(0, Σ).
(a) We know that the maximum likelihood estimator of B and Σ are:
Bˆ = (X′X)
−1 X′Y , Σˆ =
1
n


Uˆ , where Uˆ = Y − XBˆ .
Calculate the maximum value of the log-likelihood function
ℓ(B, Σ) = −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[(Y − XB)Σ
−1
(Y − XB)

]
= −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[Σ
−1
(Y − XB)

(Y − XB)].
(b) Plug in the definition of Bˆ and express Uˆ as a matrix calculated based
on X and Y . Calculate X⊤Uˆ and Uˆ

X.
(c) Prove the identity
(Y − XB)

(Y − XB)
= (Y − XBˆ )

(Y − XBˆ ) + (XBˆ − XB)

(XBˆ − XB).
Hint: by definition, Y − XBˆ = Uˆ , and we have
(Y − XB)

(Y − XB)
= (Y − XBˆ + XBˆ − XB)

(Y − XBˆ + XBˆ − XB).
6. Consider p random variables X1, . . . , Xp. Suppose that Y1, . . . , Yp are the first
to the p-th population principle components of X1, . . . , Xp.
(a) What are the population principle components of the random variables
Y1, . . . , Yp? Why?
(b) Suppose that the population covariance matrix of (X1, . . . , Xp)

is Σ and
its eigenvalue decomposition is
Σ =
p
X
i=1
λiαiα

i
,
where α1, . . . , αp are orthogonal unit vectors. What is the covariance
bewteen X1 and Y1?
7. Consider a k-class classification task with ni observations in class i, i =
1, . . . , k. Define matrices
H =
k
X
j=1
nj (x¯·j − x¯··)(x¯·j − x¯··)

, E =
k
X
j=1
nj
X
i=1
(xij − x¯·j )(xij − x¯·j )

, S =
n
E
− k
.
HKU STAT4602 (2024-25, Semester 2) 3
STAT4602 Multivariate Data Analysis Assignment 2
In LDA for multiclass classification, we consider the eigenvalue decompostion
E
−1Hai = ℓiai
, i = 1, . . . , s, s = rank(E
−1H).
where a1, . . . , as satisfy a

iSai = 1 and a

iSai
′ = 0 for all i, i′ = 1, . . . , s, i = i

.
(a) While the above definitions were introduced in the case of multiclass
classification (k > 2), we may check to what extent these definitions are
reasonable in binary classification (k = 2). In this case, we have the
sample means within class 1 and class 2 as x¯·1 and x¯·2 respectively. Can
you calculate the overall mean x¯·· based on x¯·1, x¯·2 and n1, n2?
(b) For k = 2, express H as a matrix calculated based on x¯·1, x¯·2 and n1, n2.
(c) What is the rank of the matrix H when k = 2?
(d) We mentioned in the lecture that we can simply use one Fisher
discriminant function for binary classification. Can we adopt the
definitions above to define more than one Fisher discriminant functions
for binary classification? Why?
HKU STAT4602 (2024-25, Semester 2) 4

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:STAT4602代寫、代做Java/Python編程
  • 下一篇:代做 ECE391、代寫 C/C++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          狠狠色丁香婷综合久久| 欧美日韩一卡| 一区二区三区欧美亚洲| 国产日韩在线亚洲字幕中文| 欧美精品福利视频| 久久男人av资源网站| 亚洲视频免费观看| 一本色道久久99精品综合 | 欧美资源在线观看| 中文亚洲字幕| 99热这里只有精品8| 亚洲国产欧美一区二区三区久久| 国产精品资源| 国产精品羞羞答答| 欧美日韩美女一区二区| 蜜臀久久久99精品久久久久久| 欧美亚洲三级| 亚洲欧美综合另类中字| 亚洲小说欧美另类婷婷| 亚洲美女av网站| 亚洲日本中文字幕免费在线不卡| 亚洲电影成人| 亚洲国产精品一区二区www| 伊人久久大香线| 黄色成人av网站| 国内自拍视频一区二区三区| 国产在线一区二区三区四区 | 国产精品扒开腿爽爽爽视频| 欧美日韩国产三区| 欧美日韩成人在线播放| 欧美日韩免费观看一区=区三区| 免费日韩视频| 欧美日本不卡| 欧美午夜不卡影院在线观看完整版免费 | 国产三区二区一区久久| 国产视频欧美视频| 在线观看欧美日本| 亚洲日本va午夜在线电影| 亚洲人成绝费网站色www| 亚洲日本中文字幕区| 亚洲免费大片| 性娇小13――14欧美| 久久久亚洲欧洲日产国码αv| 久久成人在线| 欧美激情久久久久| 国产精品免费一区豆花| 国产一区二区三区久久 | 亚洲国产欧美国产综合一区| 亚洲精品日韩在线| 亚洲欧美在线一区二区| 久久久五月婷婷| 欧美日韩一区二区在线观看| 国产农村妇女精品一二区| 精品1区2区| 亚洲校园激情| 开元免费观看欧美电视剧网站| 欧美激情精品久久久久久久变态| 国产精品久久久久久久久久三级 | 久久久噜噜噜久久| 欧美另类女人| 黄网站色欧美视频| 一区二区三区视频在线| 久久久久国产一区二区| 欧美精品日韩www.p站| 国产亚洲精品成人av久久ww| 91久久亚洲| 久久在线免费观看视频| 国产精品乱码久久久久久| **欧美日韩vr在线| 欧美在线综合| 国产精品进线69影院| 亚洲国产精品一区二区三区| 欧美在线亚洲一区| 欧美三区免费完整视频在线观看| 一区二区三区在线免费播放| 午夜在线一区| 国产精品国色综合久久| 亚洲精品一区二区在线| 久久婷婷国产综合精品青草| 国产精品久久久久av免费| 亚洲精品美女在线| 欧美成人dvd在线视频| 国产一区二区久久久| 亚洲一区二区在线看| 欧美日韩一区二区免费视频| 亚洲国产经典视频| 久久综合国产精品| 精品成人国产| 久久久久久久波多野高潮日日 | 亚洲一区自拍| 欧美性生交xxxxx久久久| 日韩视频―中文字幕| 欧美韩日一区二区三区| 亚洲肉体裸体xxxx137| 免费成人性网站| 亚洲国产精品va在线看黑人| 免费成人在线观看视频| 亚洲国产精品福利| 欧美精品尤物在线| 日韩性生活视频| 欧美亚洲成人网| 亚洲一区二区三区乱码aⅴ蜜桃女| 欧美日韩视频| 亚洲专区一区| 国产伊人精品| 久久综合亚州| 亚洲最新中文字幕| 国产精品亚洲а∨天堂免在线| 亚洲欧美日本精品| 国产欧美一区二区三区久久人妖| 午夜精品视频一区| 韩国精品久久久999| 欧美 日韩 国产精品免费观看| 亚洲肉体裸体xxxx137| 国产精品久久久久高潮| 久久九九热re6这里有精品| 亚洲国产精品久久久久| 欧美视频在线免费看| 久久成人国产| 亚洲精品一线二线三线无人区| 国产精品成人午夜| 久久久噜噜噜久噜久久| 日韩视频免费观看| 国产欧美日韩综合一区在线播放| 久久久久久久久久看片| 亚洲免费av观看| 国产日韩欧美一区二区三区四区| 久久夜色精品国产亚洲aⅴ| 亚洲精品免费在线播放| 国产亚洲午夜高清国产拍精品| 欧美福利一区| 欧美一区观看| 9l国产精品久久久久麻豆| 狠狠狠色丁香婷婷综合激情| 欧美精品一区三区| 久久裸体艺术| 亚洲欧美一级二级三级| 亚洲人成在线观看| 精品999在线观看| 国产精品乱码妇女bbbb| 欧美日韩精品免费观看| 久久综合给合| 久久www成人_看片免费不卡| 一区二区日韩欧美| 亚洲人精品午夜| 黄色亚洲在线| 好吊色欧美一区二区三区视频| 欧美日韩在线播放| 欧美激情在线狂野欧美精品| 亚洲欧美日韩精品久久| 中文国产成人精品久久一| 亚洲第一区在线观看| 国产一区二区三区在线播放免费观看| 久久久亚洲精品一区二区三区 | 午夜精品久久久久久久99水蜜桃| 亚洲日韩欧美视频| 一区二区三区在线看| 国产婷婷色一区二区三区在线| 欧美三区在线视频| 欧美日韩精品一区视频| 欧美精品一区二| 免费在线日韩av| 免费看的黄色欧美网站| 女女同性精品视频| 欧美11—12娇小xxxx| 欧美成人国产一区二区| 欧美/亚洲一区| 欧美电影在线观看完整版| 免费日韩一区二区| 欧美激情第9页| 欧美精品午夜| 欧美视频网站| 国产精品亚洲综合久久| 国产欧美一区二区精品婷婷 | 国产婷婷97碰碰久久人人蜜臀| 国产精品乱看| 国产日韩欧美制服另类| 国产一区二区三区不卡在线观看| 国产一区在线看| 在线不卡中文字幕| 亚洲精品黄网在线观看| 一区二区三区四区五区视频 | 国产欧美日韩综合一区在线观看 | 男女视频一区二区| 欧美人交a欧美精品| 国产精品久久久久久久久久直播| 国产精品久久一级| 国产一区999| 亚洲九九爱视频| 午夜精品视频一区| 免费观看一区| 国产精品久久影院| 韩国美女久久| 中文国产一区| 久久精品99久久香蕉国产色戒 | 一区电影在线观看| 欧美在线不卡| 欧美日韩精选| 在线观看视频一区二区| 一区二区免费在线观看|