99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

STAT4602代寫、代做Java/Python編程
STAT4602代寫、代做Java/Python編程

時間:2025-04-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



STAT4602 Multivariate Data Analysis Assignment 2
Hand in solutions for ALL questions by April 23 (Wednesday), 2025,
11:59pm
1. The file IRIS.DAT gives a dataset containing 4 measurements for 3 species
of iris. In the dataset, each row corresponds to one observation. The first 4
columns gives the 4 measurements, and the last column takes values 1, 2, 3,
corresponding to the 3 species of iris.
(a) Perform multivariate regression for each species separately, treating the
two sepal measures (x1 and x2) as response variables, and the two petal
measures (x3 and x4) as indepedent variables. Report the fitted models.
(b) For the species “versicolour” (serial number 2), test whether the two sets of
regression coefficients (excluding intercepts) are the same in the regression
equations for x1 and for x2.
(c) Consider a multivariate linear model as in (a), but incorporate the
3 species in the model with the aid of additional dummy variables.
Specifically, intorduce new variables:
• s ∈ {0, 1}: s = 1 if species = 1, and s = 0 otherwise.
• v ∈ {0, 1}: v = 1 if species = 2, and v = 0 otherwise.
• sx3 = s · x3: sx3 = x3 if species = 1, and sx3 = 0 otherwise.
• sx4 = s · x4: sx4 = x4 if species = 1, and sx4 = 0 otherwise.
• vx3 = v · x3: vx3 = x3 if species = 2, and vx3 = 0 otherwise.
• vx4 = v · x4: vx4 = x4 if species = 2, and vx4 = 0 otherwise.
Perform the regression and test the hypothesis that the 3 species have
the same model.
(d) For a input with species = 1, 2, 3, is the model obtained in (c) equivalent
to the 3 separate multivariate regression models obtained in (a)?
2. Consider the data given by CORKDATA.sas in Question 1 of Assignment 1:
N E S W N E S W
72 66 76 77 91 79 100 75
60 53 66 63 56 68 47 50
56 57 64 58 79 65 70 61
41 29 36 38 81 80 68 58
32 32 35 36 78 55 67 60
30 35 34 26 46 38 37 38
39 39 31 27 39 35 34 37
42 43 31 25 32 30 30 32
37 40 31 25 60 50 67 54
33 29 27 36 35 37 48 39
32 30 34 28 39 36 39 31
63 45 74 63 50 34 37 40
54 46 60 52 43 37 39 50
47 51 52 45 48 54 57 43
(a) Find the principal components based on the covariance matrix. Interpret
them if possible.
HKU STAT4602 (2024-25, Semester 2) 1
STAT4602 Multivariate Data Analysis Assignment 2
(b) How many principal components would you suggest to retain in
summarizing the total variability of the data? Give reasons, including
results of statistical tests if appropriate.
(c) Repeat (a) and (b) using the correlation matrix instead.
(d) Compare and comment on the two sets of results for covariance and
correlation matrices. Recommend a set of results and explain why.
3. Annual financial data are collected for bankrupt firms approximately 2 years
prior to their bankruptcy and for financially sound firms at about the same
time. The data on four variables, X1 = (cash flow) / (total debt), X2 = (net
income) / (total assets), X3 = (current assets) / (current liabilities) and X4 =
(current assets) / (net sales) are stored in the file FINANICALDATA.TXT. In
addition, a categorical variable Y identifies whether a firm is bankrupt (Y = 1)
or non-bankrupt (Y = 2).
(a) Apply the linear discriminant analysis (LDA) to classify the firms into
a bankrupt group and a non-bankrupt group. Calculate the error rates
with cross-validation and report the results.
(b) Apply quadratic discriminant analysis (QDA) to classify the firms,
perform cross-validation and report the results.
4. The distances between pairs of five items are as follows:
Cluster the five items using the single linkage, complete linkage, and average
linkage hierarchical methods. Compare the results.
5. Consider multivariate linear regression with the following data structure:
individual Y1 Y2 · · · Yp X1 X2 · · · Xk
1 y11 y12 · · · y1p x11 x12 · · · x1k
2 y21 y22 · · · y2p x21 x22 x2k
n yn1 yn2 · · · ynp xn1 xn2 · · · xnk
The regression model is given as
Y
n×p
= Xn×k
B
k×p
+ Un×p
,
HKU STAT4602 (2024-25, Semester 2) 2
STAT4602 Multivariate Data Analysis Assignment 2
where the matrices Y , X, B and U are given as follows:
Here for i = 1, . . . , n, the vector of errors of observation i is εi =
(εj1, εj2, · · · , εjp)

, and we assume that ε1, . . . , εn
iid∼ Np(0, Σ).
(a) We know that the maximum likelihood estimator of B and Σ are:
Bˆ = (X′X)
−1 X′Y , Σˆ =
1
n


Uˆ , where Uˆ = Y − XBˆ .
Calculate the maximum value of the log-likelihood function
ℓ(B, Σ) = −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[(Y − XB)Σ
−1
(Y − XB)

]
= −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[Σ
−1
(Y − XB)

(Y − XB)].
(b) Plug in the definition of Bˆ and express Uˆ as a matrix calculated based
on X and Y . Calculate X⊤Uˆ and Uˆ

X.
(c) Prove the identity
(Y − XB)

(Y − XB)
= (Y − XBˆ )

(Y − XBˆ ) + (XBˆ − XB)

(XBˆ − XB).
Hint: by definition, Y − XBˆ = Uˆ , and we have
(Y − XB)

(Y − XB)
= (Y − XBˆ + XBˆ − XB)

(Y − XBˆ + XBˆ − XB).
6. Consider p random variables X1, . . . , Xp. Suppose that Y1, . . . , Yp are the first
to the p-th population principle components of X1, . . . , Xp.
(a) What are the population principle components of the random variables
Y1, . . . , Yp? Why?
(b) Suppose that the population covariance matrix of (X1, . . . , Xp)

is Σ and
its eigenvalue decomposition is
Σ =
p
X
i=1
λiαiα

i
,
where α1, . . . , αp are orthogonal unit vectors. What is the covariance
bewteen X1 and Y1?
7. Consider a k-class classification task with ni observations in class i, i =
1, . . . , k. Define matrices
H =
k
X
j=1
nj (x¯·j − x¯··)(x¯·j − x¯··)

, E =
k
X
j=1
nj
X
i=1
(xij − x¯·j )(xij − x¯·j )

, S =
n
E
− k
.
HKU STAT4602 (2024-25, Semester 2) 3
STAT4602 Multivariate Data Analysis Assignment 2
In LDA for multiclass classification, we consider the eigenvalue decompostion
E
−1Hai = ℓiai
, i = 1, . . . , s, s = rank(E
−1H).
where a1, . . . , as satisfy a

iSai = 1 and a

iSai
′ = 0 for all i, i′ = 1, . . . , s, i = i

.
(a) While the above definitions were introduced in the case of multiclass
classification (k > 2), we may check to what extent these definitions are
reasonable in binary classification (k = 2). In this case, we have the
sample means within class 1 and class 2 as x¯·1 and x¯·2 respectively. Can
you calculate the overall mean x¯·· based on x¯·1, x¯·2 and n1, n2?
(b) For k = 2, express H as a matrix calculated based on x¯·1, x¯·2 and n1, n2.
(c) What is the rank of the matrix H when k = 2?
(d) We mentioned in the lecture that we can simply use one Fisher
discriminant function for binary classification. Can we adopt the
definitions above to define more than one Fisher discriminant functions
for binary classification? Why?
HKU STAT4602 (2024-25, Semester 2) 4

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:STAT4602代寫、代做Java/Python編程
  • 下一篇:代做 ECE391、代寫 C/C++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    釘釘簽到打卡位置修改神器,2026怎么修改定位在范圍內
    釘釘簽到打卡位置修改神器,2026怎么修改定
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
  • 短信驗證碼 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美极品jizzhd欧美18| 国产极品999| 国产无遮挡又黄又爽又色视频| 日本视频在线观看免费| 91精品一区二区三区蜜桃| 免费中文字幕视频| 97免费公开视频| 日韩精品在线免费看| 国产 中文 字幕 日韩 在线| 少妇黄色一级片| 国产精品怡红院| 在线成人免费av| 久久久精品人妻一区二区三区四| 中文字幕一区二区三区人妻不卡 | 中文字幕人妻丝袜乱一区三区| 黑人粗进入欧美aaaaa| 最近中文字幕免费观看| 免费a级黄色片| 成人免费无码大片a毛片| 亚洲 精品 综合 精品 自拍| 久久久久99精品成人片试看| 99久久婷婷国产一区二区三区 | 国产91久久久| 无码精品人妻一区二区| 精品人妻伦一区二区三区久久| 亚洲午夜久久久久久久国产| 日本人dh亚洲人ⅹxx| 国产农村妇女精品久久| 亚洲欧美国产高清va在线播放| 日本aⅴ在线观看| 国产免费av电影| 一二三四国产精品| 性无码专区无码| 欧美三级网站在线观看| 国产亚洲精品久久久久久豆腐| 亚洲精品国产精| 少妇无码一区二区三区| 久久中文字幕免费| 国产喷水在线观看| 成年人二级毛片| 亚洲欧美一区二区三区四区五区| 少妇光屁股影院| 免费一级特黄特色大片| 国产美女网站视频| 成年人网站免费看| 91精品国产高清一区二区三蜜臀| 中文字幕 国产| 亚洲av成人精品一区二区三区| 日本特级黄色片| 免费观看一级一片| 久久午夜夜伦鲁鲁一区二区| 国产人妻精品午夜福利免费| av老司机久久| 91av久久久| 亚洲一线在线观看| 亚洲欧美aaa| 亚洲欧美自偷自拍| 亚洲精品无码专区| 亚洲黄色在线观看视频| 中文字幕人妻一区二| 一区二区久久精品66国产精品| 特黄视频免费看| 五月婷中文字幕| 小早川怜子一区二区三区| 亚洲AV成人精品| 一区二区三区视频网| 在线观看av大片| 中文字字幕在线中文乱码| 中文字幕五月天| 亚洲男人天堂色| 97人妻精品一区二区三区| 97人妻精品一区二区三区软件| 91视频综合网| 国产www免费观看| 国产伦精品一区三区精东| 国产三级精品三级在线观看| 国产三级在线观看完整版| 极品尤物一区二区| 久久精品视频8| 欧美一级特黄高清视频| 日韩三级av在线| 性欧美一区二区三区| 中文字幕一区二区三区波野结| 中文字幕永久在线| 91精品人妻一区二区| 成人免费毛片视频| 精品国产国产综合精品| 女同性αv亚洲女同志| 少妇献身老头系列| 亚洲国产av一区| 变态另类丨国产精品| 国产一级在线视频| 毛片视频网站在线观看| 日韩三级一区二区三区| 一区二区久久精品| 91国在线视频| 国内毛片毛片毛片毛片| 欧美图片第一页| 中文字幕欧美人妻精品一区蜜臀| 91禁在线观看| 精品黑人一区二区三区| 日韩视频在线观看一区二区三区 | 精品国产视频一区二区三区| 欧美激情一区二区三区免费观看| 无码黑人精品一区二区| 91狠狠综合久久久| 精品国产精品国产精品| 手机毛片在线观看| 亚洲一区二区三区四区五区六区| 国产理论在线播放| 欧洲在线免费视频| 亚洲精品国产91| 国产一区二区在线视频聊天| 日本一二三区不卡| 亚洲一级特黄毛片| 精品国产一二区| 又黄又色的网站| 国产视频123区| 天堂资源在线播放| www.精品视频| 日本理论中文字幕| 91福利国产成人精品播放| 九九热99视频| 亚洲高清精品视频| 精品人妻一区二区三区四区| 午夜视频你懂的| 国产乱国产乱老熟300| 天天色天天综合| 成人羞羞国产免费图片| 日韩一级视频在线观看| 91小视频在线播放| 欧美三级韩国三级日本三斤在线观看| 亚洲精品1区2区3区| 久久国产精品二区| 亚洲国产日韩在线一区| 久久综合在线观看| 亚洲天堂网一区| 欧美黑人一级片| 97超碰人人干| 三级在线观看网站| 国产午夜免费福利| 中文字幕66页| 免费在线观看你懂的| 999福利视频| 少妇毛片一区二区三区| 国产精品自偷自拍| 中文字幕av影院| 免费麻豆国产一区二区三区四区| 91精品中文字幕| 天天操天天干天天| 国产原创视频在线| 亚洲一区二区人妻| 手机免费av片| 久久99999| av一级在线观看| 亚洲av无码片一区二区三区| 黄色一级大片在线免费观看| 一二三区在线播放| 色婷婷av国产精品| 久久国产劲爆∧v内射| a在线观看免费视频| 午夜精品久久久久99蜜桃最新版| 久草精品视频在线观看| www.超碰com| 亚洲国产日韩在线一区| 日日噜噜噜噜久久久精品毛片| 国产香蕉视频在线| www.国产成人| 亚洲伦理一区二区三区| 深夜福利影院在线观看| 久久免费看少妇高潮v片特黄| 丰满人妻一区二区三区免费视频棣 | 亚洲黄色片免费| 日日噜噜夜夜狠狠久久波多野| 国内毛片毛片毛片毛片毛片| 91成人在线免费视频| 中日韩av在线播放| 神马一区二区三区| 欧美三级在线免费观看| 精品一区二区6| 高清一区在线观看| 91香蕉国产视频| 亚洲国产欧美视频| 亚洲AV无码成人精品区东京热 | 天堂网在线免费观看| 蜜臀视频一区二区三区| 国产一区二区视频在线观看免费| 99国产精品久久久久久久成人| 亚洲精品乱码久久久久久蜜桃欧美 | 在线观看色网站| 无码人妻aⅴ一区二区三区玉蒲团| 免费观看黄色一级视频| 久久久久久久久福利| 好看的av在线| 国精产品视频一二二区| 国产三级视频在线播放| 国产精品揄拍100视频| 国产不卡在线观看视频| 丰满熟女人妻一区二区三| 超碰人人cao|