99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

STAT4602代寫、代做Java/Python編程
STAT4602代寫、代做Java/Python編程

時間:2025-04-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



STAT4602 Multivariate Data Analysis Assignment 2
Hand in solutions for ALL questions by April 23 (Wednesday), 2025,
11:59pm
1. The file IRIS.DAT gives a dataset containing 4 measurements for 3 species
of iris. In the dataset, each row corresponds to one observation. The first 4
columns gives the 4 measurements, and the last column takes values 1, 2, 3,
corresponding to the 3 species of iris.
(a) Perform multivariate regression for each species separately, treating the
two sepal measures (x1 and x2) as response variables, and the two petal
measures (x3 and x4) as indepedent variables. Report the fitted models.
(b) For the species “versicolour” (serial number 2), test whether the two sets of
regression coefficients (excluding intercepts) are the same in the regression
equations for x1 and for x2.
(c) Consider a multivariate linear model as in (a), but incorporate the
3 species in the model with the aid of additional dummy variables.
Specifically, intorduce new variables:
• s ∈ {0, 1}: s = 1 if species = 1, and s = 0 otherwise.
• v ∈ {0, 1}: v = 1 if species = 2, and v = 0 otherwise.
• sx3 = s · x3: sx3 = x3 if species = 1, and sx3 = 0 otherwise.
• sx4 = s · x4: sx4 = x4 if species = 1, and sx4 = 0 otherwise.
• vx3 = v · x3: vx3 = x3 if species = 2, and vx3 = 0 otherwise.
• vx4 = v · x4: vx4 = x4 if species = 2, and vx4 = 0 otherwise.
Perform the regression and test the hypothesis that the 3 species have
the same model.
(d) For a input with species = 1, 2, 3, is the model obtained in (c) equivalent
to the 3 separate multivariate regression models obtained in (a)?
2. Consider the data given by CORKDATA.sas in Question 1 of Assignment 1:
N E S W N E S W
72 66 76 77 91 79 100 75
60 53 66 63 56 68 47 50
56 57 64 58 79 65 70 61
41 29 36 38 81 80 68 58
32 32 35 36 78 55 67 60
30 35 34 26 46 38 37 38
39 39 31 27 39 35 34 37
42 43 31 25 32 30 30 32
37 40 31 25 60 50 67 54
33 29 27 36 35 37 48 39
32 30 34 28 39 36 39 31
63 45 74 63 50 34 37 40
54 46 60 52 43 37 39 50
47 51 52 45 48 54 57 43
(a) Find the principal components based on the covariance matrix. Interpret
them if possible.
HKU STAT4602 (2024-25, Semester 2) 1
STAT4602 Multivariate Data Analysis Assignment 2
(b) How many principal components would you suggest to retain in
summarizing the total variability of the data? Give reasons, including
results of statistical tests if appropriate.
(c) Repeat (a) and (b) using the correlation matrix instead.
(d) Compare and comment on the two sets of results for covariance and
correlation matrices. Recommend a set of results and explain why.
3. Annual financial data are collected for bankrupt firms approximately 2 years
prior to their bankruptcy and for financially sound firms at about the same
time. The data on four variables, X1 = (cash flow) / (total debt), X2 = (net
income) / (total assets), X3 = (current assets) / (current liabilities) and X4 =
(current assets) / (net sales) are stored in the file FINANICALDATA.TXT. In
addition, a categorical variable Y identifies whether a firm is bankrupt (Y = 1)
or non-bankrupt (Y = 2).
(a) Apply the linear discriminant analysis (LDA) to classify the firms into
a bankrupt group and a non-bankrupt group. Calculate the error rates
with cross-validation and report the results.
(b) Apply quadratic discriminant analysis (QDA) to classify the firms,
perform cross-validation and report the results.
4. The distances between pairs of five items are as follows:
Cluster the five items using the single linkage, complete linkage, and average
linkage hierarchical methods. Compare the results.
5. Consider multivariate linear regression with the following data structure:
individual Y1 Y2 · · · Yp X1 X2 · · · Xk
1 y11 y12 · · · y1p x11 x12 · · · x1k
2 y21 y22 · · · y2p x21 x22 x2k
n yn1 yn2 · · · ynp xn1 xn2 · · · xnk
The regression model is given as
Y
n×p
= Xn×k
B
k×p
+ Un×p
,
HKU STAT4602 (2024-25, Semester 2) 2
STAT4602 Multivariate Data Analysis Assignment 2
where the matrices Y , X, B and U are given as follows:
Here for i = 1, . . . , n, the vector of errors of observation i is εi =
(εj1, εj2, · · · , εjp)

, and we assume that ε1, . . . , εn
iid∼ Np(0, Σ).
(a) We know that the maximum likelihood estimator of B and Σ are:
Bˆ = (X′X)
−1 X′Y , Σˆ =
1
n


Uˆ , where Uˆ = Y − XBˆ .
Calculate the maximum value of the log-likelihood function
ℓ(B, Σ) = −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[(Y − XB)Σ
−1
(Y − XB)

]
= −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[Σ
−1
(Y − XB)

(Y − XB)].
(b) Plug in the definition of Bˆ and express Uˆ as a matrix calculated based
on X and Y . Calculate X⊤Uˆ and Uˆ

X.
(c) Prove the identity
(Y − XB)

(Y − XB)
= (Y − XBˆ )

(Y − XBˆ ) + (XBˆ − XB)

(XBˆ − XB).
Hint: by definition, Y − XBˆ = Uˆ , and we have
(Y − XB)

(Y − XB)
= (Y − XBˆ + XBˆ − XB)

(Y − XBˆ + XBˆ − XB).
6. Consider p random variables X1, . . . , Xp. Suppose that Y1, . . . , Yp are the first
to the p-th population principle components of X1, . . . , Xp.
(a) What are the population principle components of the random variables
Y1, . . . , Yp? Why?
(b) Suppose that the population covariance matrix of (X1, . . . , Xp)

is Σ and
its eigenvalue decomposition is
Σ =
p
X
i=1
λiαiα

i
,
where α1, . . . , αp are orthogonal unit vectors. What is the covariance
bewteen X1 and Y1?
7. Consider a k-class classification task with ni observations in class i, i =
1, . . . , k. Define matrices
H =
k
X
j=1
nj (x¯·j − x¯··)(x¯·j − x¯··)

, E =
k
X
j=1
nj
X
i=1
(xij − x¯·j )(xij − x¯·j )

, S =
n
E
− k
.
HKU STAT4602 (2024-25, Semester 2) 3
STAT4602 Multivariate Data Analysis Assignment 2
In LDA for multiclass classification, we consider the eigenvalue decompostion
E
−1Hai = ℓiai
, i = 1, . . . , s, s = rank(E
−1H).
where a1, . . . , as satisfy a

iSai = 1 and a

iSai
′ = 0 for all i, i′ = 1, . . . , s, i = i

.
(a) While the above definitions were introduced in the case of multiclass
classification (k > 2), we may check to what extent these definitions are
reasonable in binary classification (k = 2). In this case, we have the
sample means within class 1 and class 2 as x¯·1 and x¯·2 respectively. Can
you calculate the overall mean x¯·· based on x¯·1, x¯·2 and n1, n2?
(b) For k = 2, express H as a matrix calculated based on x¯·1, x¯·2 and n1, n2.
(c) What is the rank of the matrix H when k = 2?
(d) We mentioned in the lecture that we can simply use one Fisher
discriminant function for binary classification. Can we adopt the
definitions above to define more than one Fisher discriminant functions
for binary classification? Why?
HKU STAT4602 (2024-25, Semester 2) 4

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:代寫CS1010S、代做Python編程語言
  • 下一篇:STAT4602代寫、代做Java/Python編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美三区在线视频| 正在播放日韩| 午夜精品在线观看| 欧美日韩成人一区二区三区| 国产精品久久久久av免费| 亚洲精品美女91| 美女任你摸久久| 伊人男人综合视频网| 欧美在线你懂的| 国产欧美日韩激情| 亚洲一区二区三区免费在线观看 | 欧美国产乱视频| 亚洲免费在线观看| 欧美成人在线免费观看| 狠狠干成人综合网| 性做久久久久久| 国产精品裸体一区二区三区| 中文日韩欧美| 欧美视频一区二区| 亚洲素人在线| 欧美日韩亚洲一区三区| 9人人澡人人爽人人精品| 欧美日本精品| 在线视频日韩精品| 国产精品高清免费在线观看| 亚洲视频免费看| 国产精品久久久亚洲一区| 亚洲色图制服丝袜| 国产乱码精品一区二区三区av| av不卡在线| 国产精品美女久久福利网站| 亚洲欧美日韩精品在线| 国产欧美日韩精品a在线观看| 欧美综合国产精品久久丁香| 国产在线麻豆精品观看| 玖玖玖国产精品| 日韩系列在线| 欧美日韩亚洲一区二区三区在线观看| 亚洲视频碰碰| 国产亚洲精品久久久久动| 久久久国产一区二区| 亚洲高清久久| 欧美视频在线观看视频极品| 亚洲一区二区在| 国产综合色产| 欧美精品aa| 欧美一区二区三区四区高清| 依依成人综合视频| 欧美视频中文在线看 | 国产欧美一区二区三区在线老狼| 欧美亚洲一区在线| 尤物九九久久国产精品的分类| 欧美大胆人体视频| 亚洲女同精品视频| 1000部国产精品成人观看| 欧美日韩一区二区三| 欧美在线视频一区| 亚洲美女性视频| 国产一区二区三区久久久| 老司机午夜精品视频在线观看| 99视频精品免费观看| 国产一区日韩欧美| 欧美丝袜第一区| 久久综合影视| 亚洲欧美日韩国产综合| 亚洲精品国产精品国自产观看浪潮 | 久久国产精品第一页| 日韩一区二区久久| 狠狠88综合久久久久综合网| 欧美视频第二页| 欧美aa国产视频| 欧美一区在线直播| 日韩一区二区精品葵司在线| 激情综合网址| 国产九区一区在线| 欧美视频一区在线| 欧美经典一区二区三区| 久久久www免费人成黑人精品 | 一本一本久久| 亚洲日本精品国产第一区| 黄色影院成人| 国产一区二区久久精品| 国产精品sss| 欧美日韩一区二区在线观看 | 亚洲国产美女精品久久久久∴| 国产精品色午夜在线观看| 欧美日本精品| 欧美精品一区二区三区很污很色的 | 国产日韩欧美夫妻视频在线观看| 欧美丝袜一区二区三区| 欧美日韩国产另类不卡| 欧美 日韩 国产精品免费观看| 久久香蕉国产线看观看av| 久久久久久久久久久成人| 欧美一区二区三区另类| 午夜免费久久久久| 午夜久久福利| 国产视频一区在线| 欧美精品自拍| 欧美精品18+| 欧美激情精品久久久久久变态| 欧美高清视频免费观看| 久久久www成人免费精品| 久久久精品国产一区二区三区| 久久aⅴ国产欧美74aaa| 久久精品国产欧美激情| 欧美中文字幕视频| 久久久五月婷婷| 麻豆久久精品| 欧美成人精品高清在线播放| 欧美成人精品高清在线播放| 欧美人与禽性xxxxx杂性| 欧美日韩亚洲高清一区二区| 欧美午夜精品一区| 国产婷婷色一区二区三区| 狠狠色狠狠色综合日日五| 激情综合色综合久久| 亚洲美女免费精品视频在线观看| 一本色道久久99精品综合| 亚洲欧美日韩网| 久久久精品一品道一区| 欧美大胆a视频| 国产精品久久久久影院亚瑟 | 亚洲电影免费观看高清完整版在线观看| 极品尤物一区二区三区| 亚洲精品欧美日韩专区| 亚洲一区欧美一区| 久久人人爽人人爽| 欧美精品二区| 国产精品一区二区在线观看| 国产有码一区二区| 亚洲精品国产系列| 亚洲欧美日韩国产一区二区三区| 久久久99爱| 欧美精品在线观看一区二区| 国产精品综合不卡av| 在线观看亚洲一区| 亚洲视频在线一区| 久久夜色精品国产亚洲aⅴ| 欧美日韩国产一级片| 国产亚洲欧美日韩在线一区 | 国产精品女人久久久久久| 一区在线电影| 亚洲免费在线视频| 欧美成人日韩| 国产午夜精品久久久久久久| 亚洲乱码国产乱码精品精天堂 | 亚洲午夜羞羞片| 麻豆精品网站| 国产午夜精品美女视频明星a级| 亚洲黄色性网站| 久久精品国产免费| 国产精品腿扒开做爽爽爽挤奶网站| 亚洲国产精品999| 欧美在线视频日韩| 国产精品成人播放| 亚洲人成网站在线播| 久久久久久91香蕉国产| 国产精品自在线| 亚洲性图久久| 欧美日韩国产另类不卡| 亚洲高清久久网| 久久精品一本| 国产亚洲美州欧州综合国| 一本一本久久a久久精品牛牛影视| 久久久夜夜夜| 国产综合久久久久久| 性18欧美另类| 国产精品入口夜色视频大尺度| 亚洲美女视频在线免费观看| 欧美大片18| 亚洲精品视频啊美女在线直播| 久久久久免费观看| 国语自产精品视频在线看| 午夜精品免费在线| 国产精品麻豆成人av电影艾秋| 夜夜爽99久久国产综合精品女不卡| 欧美成人精品在线| 亚洲激情黄色| 欧美区高清在线| 99视频精品| 欧美亚洲第一区| 亚洲一区中文| 国产精品永久免费视频| 午夜精品一区二区三区在线视| 国产精品大片免费观看| 亚洲私人影院| 国产伦精品一区二区三区高清版 | 这里是久久伊人| 欧美亚洲不卡| 午夜精品一区二区三区在线播放| 国产精品久久久久久久电影 | 国产精品国产三级国产专播精品人| 亚洲视频欧美视频| 国产日韩在线一区二区三区| 久久av资源网站| 亚洲第一福利在线观看| 欧美国产日韩精品| 亚洲一区二区三区激情| 国产日韩一区二区三区|