99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

STAT4602代寫、代做Java/Python編程
STAT4602代寫、代做Java/Python編程

時間:2025-04-26  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



STAT4602 Multivariate Data Analysis Assignment 2
Hand in solutions for ALL questions by April 23 (Wednesday), 2025,
11:59pm
1. The file IRIS.DAT gives a dataset containing 4 measurements for 3 species
of iris. In the dataset, each row corresponds to one observation. The first 4
columns gives the 4 measurements, and the last column takes values 1, 2, 3,
corresponding to the 3 species of iris.
(a) Perform multivariate regression for each species separately, treating the
two sepal measures (x1 and x2) as response variables, and the two petal
measures (x3 and x4) as indepedent variables. Report the fitted models.
(b) For the species “versicolour” (serial number 2), test whether the two sets of
regression coefficients (excluding intercepts) are the same in the regression
equations for x1 and for x2.
(c) Consider a multivariate linear model as in (a), but incorporate the
3 species in the model with the aid of additional dummy variables.
Specifically, intorduce new variables:
• s ∈ {0, 1}: s = 1 if species = 1, and s = 0 otherwise.
• v ∈ {0, 1}: v = 1 if species = 2, and v = 0 otherwise.
• sx3 = s · x3: sx3 = x3 if species = 1, and sx3 = 0 otherwise.
• sx4 = s · x4: sx4 = x4 if species = 1, and sx4 = 0 otherwise.
• vx3 = v · x3: vx3 = x3 if species = 2, and vx3 = 0 otherwise.
• vx4 = v · x4: vx4 = x4 if species = 2, and vx4 = 0 otherwise.
Perform the regression and test the hypothesis that the 3 species have
the same model.
(d) For a input with species = 1, 2, 3, is the model obtained in (c) equivalent
to the 3 separate multivariate regression models obtained in (a)?
2. Consider the data given by CORKDATA.sas in Question 1 of Assignment 1:
N E S W N E S W
72 66 76 77 91 79 100 75
60 53 66 63 56 68 47 50
56 57 64 58 79 65 70 61
41 29 36 38 81 80 68 58
32 32 35 36 78 55 67 60
30 35 34 26 46 38 37 38
39 39 31 27 39 35 34 37
42 43 31 25 32 30 30 32
37 40 31 25 60 50 67 54
33 29 27 36 35 37 48 39
32 30 34 28 39 36 39 31
63 45 74 63 50 34 37 40
54 46 60 52 43 37 39 50
47 51 52 45 48 54 57 43
(a) Find the principal components based on the covariance matrix. Interpret
them if possible.
HKU STAT4602 (2024-25, Semester 2) 1
STAT4602 Multivariate Data Analysis Assignment 2
(b) How many principal components would you suggest to retain in
summarizing the total variability of the data? Give reasons, including
results of statistical tests if appropriate.
(c) Repeat (a) and (b) using the correlation matrix instead.
(d) Compare and comment on the two sets of results for covariance and
correlation matrices. Recommend a set of results and explain why.
3. Annual financial data are collected for bankrupt firms approximately 2 years
prior to their bankruptcy and for financially sound firms at about the same
time. The data on four variables, X1 = (cash flow) / (total debt), X2 = (net
income) / (total assets), X3 = (current assets) / (current liabilities) and X4 =
(current assets) / (net sales) are stored in the file FINANICALDATA.TXT. In
addition, a categorical variable Y identifies whether a firm is bankrupt (Y = 1)
or non-bankrupt (Y = 2).
(a) Apply the linear discriminant analysis (LDA) to classify the firms into
a bankrupt group and a non-bankrupt group. Calculate the error rates
with cross-validation and report the results.
(b) Apply quadratic discriminant analysis (QDA) to classify the firms,
perform cross-validation and report the results.
4. The distances between pairs of five items are as follows:
Cluster the five items using the single linkage, complete linkage, and average
linkage hierarchical methods. Compare the results.
5. Consider multivariate linear regression with the following data structure:
individual Y1 Y2 · · · Yp X1 X2 · · · Xk
1 y11 y12 · · · y1p x11 x12 · · · x1k
2 y21 y22 · · · y2p x21 x22 x2k
n yn1 yn2 · · · ynp xn1 xn2 · · · xnk
The regression model is given as
Y
n×p
= Xn×k
B
k×p
+ Un×p
,
HKU STAT4602 (2024-25, Semester 2) 2
STAT4602 Multivariate Data Analysis Assignment 2
where the matrices Y , X, B and U are given as follows:
Here for i = 1, . . . , n, the vector of errors of observation i is εi =
(εj1, εj2, · · · , εjp)

, and we assume that ε1, . . . , εn
iid∼ Np(0, Σ).
(a) We know that the maximum likelihood estimator of B and Σ are:
Bˆ = (X′X)
−1 X′Y , Σˆ =
1
n


Uˆ , where Uˆ = Y − XBˆ .
Calculate the maximum value of the log-likelihood function
ℓ(B, Σ) = −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[(Y − XB)Σ
−1
(Y − XB)

]
= −
np
2
log(2π) −
n
2
log |Σ| − 1
2
tr[Σ
−1
(Y − XB)

(Y − XB)].
(b) Plug in the definition of Bˆ and express Uˆ as a matrix calculated based
on X and Y . Calculate X⊤Uˆ and Uˆ

X.
(c) Prove the identity
(Y − XB)

(Y − XB)
= (Y − XBˆ )

(Y − XBˆ ) + (XBˆ − XB)

(XBˆ − XB).
Hint: by definition, Y − XBˆ = Uˆ , and we have
(Y − XB)

(Y − XB)
= (Y − XBˆ + XBˆ − XB)

(Y − XBˆ + XBˆ − XB).
6. Consider p random variables X1, . . . , Xp. Suppose that Y1, . . . , Yp are the first
to the p-th population principle components of X1, . . . , Xp.
(a) What are the population principle components of the random variables
Y1, . . . , Yp? Why?
(b) Suppose that the population covariance matrix of (X1, . . . , Xp)

is Σ and
its eigenvalue decomposition is
Σ =
p
X
i=1
λiαiα

i
,
where α1, . . . , αp are orthogonal unit vectors. What is the covariance
bewteen X1 and Y1?
7. Consider a k-class classification task with ni observations in class i, i =
1, . . . , k. Define matrices
H =
k
X
j=1
nj (x¯·j − x¯··)(x¯·j − x¯··)

, E =
k
X
j=1
nj
X
i=1
(xij − x¯·j )(xij − x¯·j )

, S =
n
E
− k
.
HKU STAT4602 (2024-25, Semester 2) 3
STAT4602 Multivariate Data Analysis Assignment 2
In LDA for multiclass classification, we consider the eigenvalue decompostion
E
−1Hai = ℓiai
, i = 1, . . . , s, s = rank(E
−1H).
where a1, . . . , as satisfy a

iSai = 1 and a

iSai
′ = 0 for all i, i′ = 1, . . . , s, i = i

.
(a) While the above definitions were introduced in the case of multiclass
classification (k > 2), we may check to what extent these definitions are
reasonable in binary classification (k = 2). In this case, we have the
sample means within class 1 and class 2 as x¯·1 and x¯·2 respectively. Can
you calculate the overall mean x¯·· based on x¯·1, x¯·2 and n1, n2?
(b) For k = 2, express H as a matrix calculated based on x¯·1, x¯·2 and n1, n2.
(c) What is the rank of the matrix H when k = 2?
(d) We mentioned in the lecture that we can simply use one Fisher
discriminant function for binary classification. Can we adopt the
definitions above to define more than one Fisher discriminant functions
for binary classification? Why?
HKU STAT4602 (2024-25, Semester 2) 4

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:代寫CS1010S、代做Python編程語言
  • 下一篇:STAT4602代寫、代做Java/Python編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網(wǎng)頁版入口 目錄網(wǎng) 排行網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                94-欧美-setu| 成人黄色av网站在线| 久久在线观看免费| 欧美性生活影院| 不卡一区中文字幕| 粉嫩一区二区三区性色av| 视频一区二区不卡| 亚洲成av人在线观看| 亚洲网友自拍偷拍| 亚洲永久免费av| 亚洲色大成网站www久久九九| 国产精品久久免费看| 亚洲欧美日韩中文播放 | 成人免费看片app下载| 国产精品一区2区| 国产成人在线视频网站| 高清beeg欧美| 色琪琪一区二区三区亚洲区| 欧美亚洲综合在线| 欧美性大战久久| 欧美xxxxx裸体时装秀| 欧美精品一区二| 中文字幕国产一区二区| 亚洲码国产岛国毛片在线| 亚洲国产视频网站| 一区二区三区欧美日韩| 一区二区三区四区中文字幕| 亚洲成人av在线电影| 精品一区二区av| 成人美女在线观看| 欧美视频在线观看一区| 日韩亚洲国产中文字幕欧美| 久久久一区二区三区捆绑**| 亚洲色图视频免费播放| 免费日本视频一区| 成人激情免费视频| 欧美精品第1页| 国产精品福利电影一区二区三区四区| 亚洲九九爱视频| 久久99精品久久久久久| 91在线云播放| 91精品国产色综合久久ai换脸| 精品盗摄一区二区三区| 一区二区三区精品| 国内成人免费视频| 欧美三级电影在线看| 国产欧美中文在线| 日韩精品电影在线| 不卡一区在线观看| 欧美第一区第二区| 亚洲午夜久久久久久久久电影网| 国产精品自产自拍| 5月丁香婷婷综合| 亚洲美女精品一区| 成人精品小蝌蚪| 久久婷婷色综合| 天堂va蜜桃一区二区三区| 91亚洲精品久久久蜜桃| 久久精品视频网| 激情综合一区二区三区| 欧美日韩精品三区| 亚洲黄色免费电影| 成人性生交大片免费| 日韩精品一区二区三区蜜臀| 亚洲一二三区视频在线观看| eeuss影院一区二区三区| 亚洲精品在线电影| 美腿丝袜在线亚洲一区| 欧美嫩在线观看| 亚洲综合色丁香婷婷六月图片| 成人黄色在线看| 中文字幕久久午夜不卡| 国产成人免费在线视频| 久久久久久一级片| 国产乱人伦精品一区二区在线观看| 7777精品伊人久久久大香线蕉 | 91麻豆swag| 欧美韩国日本一区| 成人免费va视频| 国产精品天美传媒沈樵| 成人网在线免费视频| 欧美激情中文不卡| 成人精品电影在线观看| 欧美国产精品中文字幕| 国产91丝袜在线播放九色| 国产日韩精品视频一区| 国产很黄免费观看久久| 国产精品美女久久久久aⅴ| 成人黄色777网| 国产精品国产精品国产专区不蜜| 成人午夜电影网站| 亚洲精品一二三区| 欧美日韩黄色一区二区| 另类专区欧美蜜桃臀第一页| 久久久久久久久久看片| 精品一区二区三区在线播放| 国产午夜亚洲精品理论片色戒| 国产成人精品一区二区三区四区 | 日韩国产在线观看一区| 欧美久久婷婷综合色| 日韩av不卡一区二区| 亚洲精品一区二区三区在线观看| 国产v综合v亚洲欧| 一区二区三区中文字幕| 欧美一级二级在线观看| 国产风韵犹存在线视精品| 国产精品区一区二区三| 日本韩国精品在线| 日韩1区2区日韩1区2区| 国产网站一区二区| 91丨国产丨九色丨pron| 性久久久久久久| 精品国产免费人成在线观看| aaa欧美大片| 免费成人美女在线观看| 国产精品日韩成人| 69堂国产成人免费视频| 成人精品高清在线| 全部av―极品视觉盛宴亚洲| 国产日产欧美一区二区三区| 欧美影院午夜播放| 国产一区二区精品在线观看| 一区二区免费在线播放| 久久久久久久性| 日韩一级黄色大片| 91精品国产91久久综合桃花| 狠狠色狠狠色综合| 一区二区三区国产| 欧美xfplay| 一本大道av伊人久久综合| 久久91精品国产91久久小草| 日韩毛片视频在线看| 欧美不卡一区二区三区四区| 色婷婷亚洲婷婷| 国产一区二区三区久久久| 亚洲国产日韩综合久久精品| 亚洲国产精品99久久久久久久久 | 日韩欧美一区在线观看| 91麻豆国产福利在线观看| 久久国产福利国产秒拍| 亚洲午夜电影在线| 国产精品久久久久久久久免费丝袜| 欧美日韩一区小说| 色拍拍在线精品视频8848| 成人丝袜高跟foot| 国产一区福利在线| 美美哒免费高清在线观看视频一区二区 | 亚洲欧美日韩一区| 国产欧美精品一区aⅴ影院| 欧美电影免费观看高清完整版在 | 亚洲精品国产一区二区三区四区在线| 26uuu国产在线精品一区二区| 欧美日韩在线三级| 在线观看精品一区| 国产精品18久久久久久久久| 日本在线不卡一区| 一区二区三区四区在线免费观看| 日本一区二区三区电影| 久久久久久久精| 久久精品一区蜜桃臀影院| 欧美电影免费提供在线观看| 日韩你懂的在线观看| 日韩精品一区二区三区视频| 欧美大片国产精品| 久久久久88色偷偷免费| 国产亚洲精品免费| 国产精品伦理在线| 亚洲色图视频网| 亚洲午夜久久久久久久久电影网| 亚洲午夜精品在线| 日韩电影在线免费观看| 老司机一区二区| 国产一区久久久| av在线这里只有精品| 日本精品视频一区二区三区| 欧美在线短视频| 欧美一级日韩免费不卡| 久久影院视频免费| 亚洲三级电影全部在线观看高清| 亚洲一区在线观看视频| 日韩福利视频网| 精品一区二区在线播放| 北条麻妃国产九九精品视频| 色综合天天综合色综合av| 欧美日韩一区二区三区视频| 日韩无一区二区| 国产日韩欧美麻豆| 亚洲一区二区黄色| 久久99国产精品麻豆| 国产91综合一区在线观看| 欧美午夜精品电影| 精品国产乱码久久久久久免费 | 久久天天做天天爱综合色| 国产天堂亚洲国产碰碰| 一区二区三区在线看| 裸体一区二区三区| 91欧美一区二区| 日韩欧美aaaaaa| 亚洲欧美日韩一区二区三区在线观看| 亚洲国产日韩在线一区模特 |