99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫AI3013編程、代做Python設計程序
代寫AI3013編程、代做Python設計程序

時間:2025-04-09  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



AI3013 Machine Learning Course Project
Description:
This is a GROUP project (each group should have 4-6 students), which aims at applying 
machine learning models as well as machine learning techniques (including but not limited 
to those covered in our lectures) to solve complex real-world tasks using Python.
Notice: This project should differ from the one you are undertaking in the Machine Learning 
Workshop Course.
Notice on Deep Learning Models:
You may decide to work on Deep learning models, and since our course mainly focus on 
machine learning models and techniques, deep learning model not be considered as more 
superior than other machine learning models if you just repeat a model that is designed by 
others. Also, training deep learning models can be very time consuming, so make sure you have 
the necessary computing resources.
Project Requirement:
Problem Selection:
• Choose a real-world problem from a domain of interest (e.g., healthcare, finance, 
image recognition, natural language processing, etc.).
• Describe the problem, including data sources and the type of machine learning model 
that will be applied (e.g., regression, classification, clustering, etc.).
Dataset Selection:
• Choose a dataset from public repositories (e.g., UCI Machine Learning Repository, 
Kaggle) suitable for this topic.
• Ensure the dataset has a sufficient number of samples and features to allow for 
meaningful analysis and model comparison.
• Apply appropriate data preprocessing steps (e.g., handling missing values, encoding 
categorical features, scaling).
Model Theory and Implementation:
• Select and implement at least 2 machine learning models for comparison.
• Provide a comprehensive explanation of the theoretical background of the chosen 
models (e.g., loss functions, optimization techniques, and assumptions).
• Discuss the strengths and weaknesses of the chosen models.
• Include mathematical derivations where relevant (e.g., gradient descent for linear 
regression).
• Implement the selected models From Scratch without using any existing machine 
learning libraries (e.g., scikit-learn, TensorFlow, Keras, etc.). The implementation 
should be done in Python using only basic libraries such as NumPy, Pandas, and 
Matplotlib.
Model Evaluation:
• Evaluate each model using suitable metrics (e.g., accuracy, precision, recall, F1 score, 
RMSE) for the problem.
• Use cross-validation to ensure model robustness and avoid overfitting.
• Analyze the behavior of the models based on the dataset, including bias-variance 
trade-offs, overfitting, and underfitting.
Analysis and Comparison:
• Compare the models in terms of:
o Performance (accuracy, precision, etc.).
o Computational complexity (training time, memory usage).
o Suitability for the dataset (e.g., which model performs best, why).
• Provide a comparison of the models' performances with appropriate visualizations 
(e.g., bar plots or tables comparing metrics).
• Discuss how the assumptions of each model affect its suitability for the problem.
Submission Requirement:
Upon completion, each group must submit the following materials:
1. Progress report
a) Abstract
b) Introduction: problem statement, motivation and background of the topic
c) Related works and existing techniques of the topic
d) Methodology
e) Progress/Current Status
f) Next Steps and Plan for Completion
2. Project report, your report should contain but not limited to the followingcontent:
a) Abstract
b) Introduction: problem statement, motivation and background of the topic
c) Related works and existing techniques of the topic
d) Methodology
e) Experimental study and result analysis
f) Future work and conclusion
g) References
h) Contribution of each team member
3. Link and description to the Dataset and the implementation code.
4. Your final report should be a minimum of 9 pages and a maximum of 12 pages
5. For the final report, the similarity check Must Not exceed 20%, and the AI generation 
content check Must Not exceed 25%.
6. Put all files (including: source code, presentation ppt and project report) into a ZIP file, 
then submit it on iSpace.
Deadlines:
 Team Information should be submitted by the end of Week 3.
 The Progress Report should be submitted by the end of Week 10.
 The Presentation will be arranged in Weeks 13 and 14 of this semester.
 Final Project Report should be submitted by Friday of Week 15 (May.23.2025).
Assessment:
In general, projects will be evaluated based on:
 Significance. (Did the authors choose an interesting or a “real" problem to work on, or 
only a small “toy" problem? Is this work likely to be useful and/or haveimpact?)
 The technical quality of the work. (i.e., Does the technical material make sense? Are 
the things tried reasonable? Are the proposed algorithms or applications clever and 
interesting? Do the student convey novel insight about the problem and/or algorithms?)
 The novelty of the work. (Do you have any novel contributions, e.g., new model, new 
technique, new method, etc.? Is this project applying a common technique to a well studied problem, or is the problem or method relatively unexplored?)
 The workload of the project. (The workload of your project may depend on but not 
limit to the following aspects: the complexity of the problem; the complexity of your 
method; the complexity of the dataset; do you test your model on one or multiple 
datasets? do you conduct a thorough experimental analysis on your model?)
Evaluation Percentage:
 Progress Report: 5%
 Final Report: 40%
 Presentation: 40% (Each group will have 15-20 minutesfor presentation, and
each student must present no less than 3 minutes)
 Code: 15%
It is YOUR responsibility to make sure:
 Your submitted files can be correctly opened. 
 Your code can be compiled and run. 
Late submission = 0; Plagiarism (cheating) = F

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代寫APSC 142、代做C/C++程序設計
  • 下一篇:DTS101TC代做、代寫Python語言程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          日韩一区二区免费高清| 久久三级视频| 国产亚洲精品成人av久久ww| 久久精品国产精品亚洲| 亚洲精品乱码久久久久久蜜桃91| 国产精品免费网站在线观看| 欧美大片免费观看在线观看网站推荐| 亚洲香蕉视频| 亚洲乱码精品一二三四区日韩在线 | 亚洲国产一区二区精品专区| 国产精品视频999| 欧美啪啪一区| 麻豆国产精品一区二区三区 | 欧美精品首页| 久久精品在线免费观看| 亚洲伊人伊色伊影伊综合网| 亚洲精品国产精品乱码不99按摩| 国产综合欧美| 国产视频在线观看一区二区| 欧美午夜视频一区二区| 欧美日韩国产天堂| 欧美日韩福利视频| 欧美精品激情| 免费在线观看成人av| 久久伊人亚洲| 欧美成人资源网| 欧美黑人一区二区三区| 欧美xart系列在线观看| 欧美xx69| 欧美日韩亚洲三区| 欧美天堂亚洲电影院在线观看| 欧美日本三级| 国产精品v片在线观看不卡 | 欧美日韩亚洲在线| 欧美日韩综合久久| 欧美日韩亚洲一区二区三区| 欧美日本中文| 国产精品国产三级国产专区53| 欧美偷拍另类| 国产女主播一区二区三区| 国产视频一区在线| 国产精品福利网站| 欧美午夜精品久久久| 国产精品亚洲欧美| 国内视频一区| 在线观看av不卡| 亚洲另类自拍| 亚洲午夜在线观看视频在线| 欧美一进一出视频| 欧美成人精品1314www| 欧美日韩在线播放三区四区| 国产精品免费小视频| 激情视频亚洲| 一区二区三区四区五区精品视频| 午夜在线精品偷拍| 免费观看欧美在线视频的网站| 欧美激情一区二区三区成人| 国产精品h在线观看| 激情婷婷久久| 亚洲美女免费精品视频在线观看| 亚洲永久免费观看| 久久影院午夜论| 欧美视频你懂的| 在线看日韩av| 亚洲欧美日韩在线高清直播| 欧美v国产在线一区二区三区| 国产精品国产a级| 亚洲国产另类 国产精品国产免费| 亚洲小少妇裸体bbw| 欧美国产日韩xxxxx| 国产日韩视频一区二区三区| 一本久道久久综合狠狠爱| 香蕉成人久久| 欧美日韩亚洲一区| 亚洲国产精品久久久久婷婷884| 亚洲欧美精品在线观看| 欧美精品久久99| 影音先锋中文字幕一区| 亚洲欧美日本视频在线观看| 欧美激情一二区| 亚洲大片av| 久久久久久久网站| 国产精品一区久久久| 99re6这里只有精品视频在线观看| 久久久www成人免费精品| 国产精品久久久久久久久久免费| 最新国产の精品合集bt伙计| 久久久久国产精品人| 国产精品区一区二区三区| 日韩视频在线播放| 欧美二区在线观看| 亚洲国产一区二区视频| 久久久噜噜噜久噜久久| 狠狠色丁香久久婷婷综合丁香 | 欧美日本中文字幕| 亚洲国产欧美日韩| 欧美成人精品一区二区三区| 亚洲成人在线观看视频| 免费在线日韩av| 91久久在线视频| 欧美绝品在线观看成人午夜影视| 樱花yy私人影院亚洲| 老牛嫩草一区二区三区日本 | 久久久国产成人精品| 国产亚洲欧美日韩美女| 久久精品99国产精品酒店日本| 国产日韩欧美三级| 欧美中在线观看| 精品成人国产| 欧美激情一区| 亚洲一区在线观看视频| 国产日韩欧美高清| 久久久久久日产精品| 在线观看欧美视频| 欧美精彩视频一区二区三区| 99香蕉国产精品偷在线观看| 国产精品久久久久久久app| 亚洲影院色在线观看免费| 欧美色另类天堂2015| 亚洲欧美一区二区三区极速播放| 国产欧美在线视频| 蜜桃久久av| 一区二区高清视频| 国产欧美精品久久| 老司机精品导航| 亚洲天堂av高清| 国产亚洲精品成人av久久ww| 男女av一区三区二区色多| 一本色道88久久加勒比精品| 国产伦精品一区二区三| 欧美不卡视频一区| 亚洲欧美日韩精品一区二区| 悠悠资源网亚洲青| 国产精品久久久久av免费| 久久午夜电影| 亚洲自拍高清| 亚洲美女av黄| 永久555www成人免费| 国产精品久久久久久久9999| 免费国产自线拍一欧美视频| 午夜精品久久久久久99热软件| 在线观看视频一区二区欧美日韩| 欧美日韩综合久久| 欧美岛国在线观看| 久久精品国语| 亚洲女人天堂成人av在线| 亚洲激情成人网| 国内一区二区在线视频观看 | 在线电影国产精品| 国产精品午夜视频| 欧美日韩成人网| 免费不卡在线视频| 久久久噜噜噜久久| 欧美一二三视频| 亚洲素人在线| 一本色道久久综合| 最新精品在线| 亚洲高清不卡| 亚洲电影有码| 亚洲国产精品视频| 精品动漫一区| 黄色成人精品网站| 国产一区二区日韩精品欧美精品| 国产精品看片你懂得| 欧美性一二三区| 国产精品国产三级国产普通话99| 欧美日韩国产天堂| 欧美久久久久久久久久| 欧美精彩视频一区二区三区| 模特精品在线| 欧美极品一区| 欧美日韩午夜精品| 欧美网站在线观看| 国产精品青草久久| 国产亚洲va综合人人澡精品| 国产色产综合产在线视频| 国产欧美在线观看| 一区二区三区在线免费观看 | 激情久久久久久久久久久久久久久久| 国产女主播一区二区三区| 国产亚洲一级高清| 亚洲国产精品成人一区二区| 亚洲国产视频一区二区| 日韩视频专区| 亚洲在线一区二区三区| 欧美在线一区二区三区| 免费观看一区| 欧美日韩三级| 国产三级精品在线不卡| 在线日韩精品视频| 99天天综合性| 久久国产婷婷国产香蕉| 欧美成人xxx| 欧美午夜在线视频| 国产在线视频不卡二| 亚洲国产成人一区| 亚洲视频久久| 麻豆成人在线| 国产乱码精品1区2区3区| 亚洲第一主播视频|