99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫AI3013編程、代做Python設計程序
代寫AI3013編程、代做Python設計程序

時間:2025-04-09  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



AI3013 Machine Learning Course Project
Description:
This is a GROUP project (each group should have 4-6 students), which aims at applying 
machine learning models as well as machine learning techniques (including but not limited 
to those covered in our lectures) to solve complex real-world tasks using Python.
Notice: This project should differ from the one you are undertaking in the Machine Learning 
Workshop Course.
Notice on Deep Learning Models:
You may decide to work on Deep learning models, and since our course mainly focus on 
machine learning models and techniques, deep learning model not be considered as more 
superior than other machine learning models if you just repeat a model that is designed by 
others. Also, training deep learning models can be very time consuming, so make sure you have 
the necessary computing resources.
Project Requirement:
Problem Selection:
• Choose a real-world problem from a domain of interest (e.g., healthcare, finance, 
image recognition, natural language processing, etc.).
• Describe the problem, including data sources and the type of machine learning model 
that will be applied (e.g., regression, classification, clustering, etc.).
Dataset Selection:
• Choose a dataset from public repositories (e.g., UCI Machine Learning Repository, 
Kaggle) suitable for this topic.
• Ensure the dataset has a sufficient number of samples and features to allow for 
meaningful analysis and model comparison.
• Apply appropriate data preprocessing steps (e.g., handling missing values, encoding 
categorical features, scaling).
Model Theory and Implementation:
• Select and implement at least 2 machine learning models for comparison.
• Provide a comprehensive explanation of the theoretical background of the chosen 
models (e.g., loss functions, optimization techniques, and assumptions).
• Discuss the strengths and weaknesses of the chosen models.
• Include mathematical derivations where relevant (e.g., gradient descent for linear 
regression).
• Implement the selected models From Scratch without using any existing machine 
learning libraries (e.g., scikit-learn, TensorFlow, Keras, etc.). The implementation 
should be done in Python using only basic libraries such as NumPy, Pandas, and 
Matplotlib.
Model Evaluation:
• Evaluate each model using suitable metrics (e.g., accuracy, precision, recall, F1 score, 
RMSE) for the problem.
• Use cross-validation to ensure model robustness and avoid overfitting.
• Analyze the behavior of the models based on the dataset, including bias-variance 
trade-offs, overfitting, and underfitting.
Analysis and Comparison:
• Compare the models in terms of:
o Performance (accuracy, precision, etc.).
o Computational complexity (training time, memory usage).
o Suitability for the dataset (e.g., which model performs best, why).
• Provide a comparison of the models' performances with appropriate visualizations 
(e.g., bar plots or tables comparing metrics).
• Discuss how the assumptions of each model affect its suitability for the problem.
Submission Requirement:
Upon completion, each group must submit the following materials:
1. Progress report
a) Abstract
b) Introduction: problem statement, motivation and background of the topic
c) Related works and existing techniques of the topic
d) Methodology
e) Progress/Current Status
f) Next Steps and Plan for Completion
2. Project report, your report should contain but not limited to the followingcontent:
a) Abstract
b) Introduction: problem statement, motivation and background of the topic
c) Related works and existing techniques of the topic
d) Methodology
e) Experimental study and result analysis
f) Future work and conclusion
g) References
h) Contribution of each team member
3. Link and description to the Dataset and the implementation code.
4. Your final report should be a minimum of 9 pages and a maximum of 12 pages
5. For the final report, the similarity check Must Not exceed 20%, and the AI generation 
content check Must Not exceed 25%.
6. Put all files (including: source code, presentation ppt and project report) into a ZIP file, 
then submit it on iSpace.
Deadlines:
 Team Information should be submitted by the end of Week 3.
 The Progress Report should be submitted by the end of Week 10.
 The Presentation will be arranged in Weeks 13 and 14 of this semester.
 Final Project Report should be submitted by Friday of Week 15 (May.23.2025).
Assessment:
In general, projects will be evaluated based on:
 Significance. (Did the authors choose an interesting or a “real" problem to work on, or 
only a small “toy" problem? Is this work likely to be useful and/or haveimpact?)
 The technical quality of the work. (i.e., Does the technical material make sense? Are 
the things tried reasonable? Are the proposed algorithms or applications clever and 
interesting? Do the student convey novel insight about the problem and/or algorithms?)
 The novelty of the work. (Do you have any novel contributions, e.g., new model, new 
technique, new method, etc.? Is this project applying a common technique to a well studied problem, or is the problem or method relatively unexplored?)
 The workload of the project. (The workload of your project may depend on but not 
limit to the following aspects: the complexity of the problem; the complexity of your 
method; the complexity of the dataset; do you test your model on one or multiple 
datasets? do you conduct a thorough experimental analysis on your model?)
Evaluation Percentage:
 Progress Report: 5%
 Final Report: 40%
 Presentation: 40% (Each group will have 15-20 minutesfor presentation, and
each student must present no less than 3 minutes)
 Code: 15%
It is YOUR responsibility to make sure:
 Your submitted files can be correctly opened. 
 Your code can be compiled and run. 
Late submission = 0; Plagiarism (cheating) = F

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代寫APSC 142、代做C/C++程序設計
  • 下一篇:DTS101TC代做、代寫Python語言程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                日本韩国一区二区| 欧美天堂亚洲电影院在线播放| 91老师片黄在线观看| 精品国产免费视频| 视频一区二区三区入口| 欧美三级一区二区| 亚洲天堂福利av| 99精品欧美一区| 一区二区三区日韩欧美精品| 91视频xxxx| 欧美精品丝袜久久久中文字幕| 性做久久久久久免费观看| 欧美日韩综合不卡| 日本亚洲最大的色成网站www| 欧美三级欧美一级| 蜜臀av性久久久久蜜臀aⅴ | 最新高清无码专区| 99综合电影在线视频| 一个色综合网站| 日韩一区二区三区视频| 国产盗摄精品一区二区三区在线 | 欧美日韩精品综合在线| 日韩电影免费在线观看网站| 久久九九影视网| 国产一区二三区好的| 成人免费一区二区三区视频| 色综合久久天天| 美女久久久精品| 国产嫩草影院久久久久| 欧美性生活久久| 国产成人亚洲综合a∨婷婷| 一个色在线综合| 日韩欧美一级在线播放| 成人国产精品免费观看动漫 | 中文字幕av一区 二区| 色综合中文综合网| 精品伦理精品一区| 色88888久久久久久影院野外| 青青草视频一区| 久久综合色鬼综合色| 在线日韩国产精品| 国产成人夜色高潮福利影视| 日日夜夜免费精品视频| 国产精品人成在线观看免费| 欧美高清一级片在线| 免费人成在线不卡| 亚洲免费伊人电影| 国产欧美精品在线观看| 欧美一级在线视频| 欧美午夜精品一区| voyeur盗摄精品| 国产一区不卡视频| 亚洲免费资源在线播放| 久久视频一区二区| 在线不卡欧美精品一区二区三区| 成人免费观看视频| 国产成人午夜视频| 国产美女一区二区| 亚洲精品国产成人久久av盗摄| 国产校园另类小说区| 精品对白一区国产伦| 欧美优质美女网站| 色嗨嗨av一区二区三区| 91美女片黄在线观看91美女| 国产成人在线视频网站| 国产69精品一区二区亚洲孕妇| 青青青伊人色综合久久| 亚洲电影一区二区三区| 亚洲综合色网站| 亚洲美女免费在线| 亚洲激情校园春色| 亚洲品质自拍视频| 亚洲欧美日本韩国| 亚洲手机成人高清视频| 亚洲人吸女人奶水| 亚洲综合丁香婷婷六月香| 亚洲最新视频在线观看| 亚洲专区一二三| 亚洲乱码国产乱码精品精小说| 国产精品毛片无遮挡高清| 国产日韩亚洲欧美综合| 国产精品全国免费观看高清| 国产视频一区二区三区在线观看| 欧美高清在线视频| 亚洲综合在线视频| 免费看精品久久片| 国产一区二区影院| 国产一区不卡视频| 91免费精品国自产拍在线不卡| 欧美视频一二三区| 精品日韩一区二区三区| 国产精品人妖ts系列视频| 亚洲男人天堂av| 日韩福利视频网| 国产suv精品一区二区883| 国产精品一区在线观看乱码| 成人av资源在线| 欧美一区二区私人影院日本| 中文字幕 久热精品 视频在线| 亚洲一卡二卡三卡四卡五卡| 亚洲欧美一区二区三区久本道91 | 在线观看免费亚洲| 欧美精选一区二区| 国产夜色精品一区二区av| 亚洲午夜羞羞片| 成人激情黄色小说| 国产网站一区二区三区| 免费观看30秒视频久久| 欧美精品乱人伦久久久久久| 亚洲图片欧美激情| 成人精品国产一区二区4080| 日韩欧美国产一区二区三区 | 欧美精品欧美精品系列| 亚洲视频 欧洲视频| 成人高清视频在线观看| 国产亚洲va综合人人澡精品| 免费人成精品欧美精品| 91精品国产入口在线| 欧洲色大大久久| 亚洲欧洲国产日本综合| 国产.欧美.日韩| 国产日韩欧美一区二区三区乱码 | 国产成人高清在线| 欧美xxxxxxxx| 精品综合免费视频观看| 欧美一区二区在线免费播放| 美女视频黄免费的久久| 日韩三级在线观看| 极品美女销魂一区二区三区| 91精品欧美一区二区三区综合在| 五月天网站亚洲| 欧美放荡的少妇| 国产一区二区三区四| 国产网红主播福利一区二区| 不卡一区在线观看| 亚洲免费在线视频| 91精品中文字幕一区二区三区| 日韩成人午夜精品| 久久久久九九视频| 波多野结衣中文一区| 亚洲精品国产一区二区精华液 | 国产精品123区| 国产欧美精品一区二区色综合| www.亚洲免费av| 亚洲精品成人a在线观看| 欧美日韩一区二区三区四区五区| 亚洲成人在线免费| 日韩一本二本av| 成人av影视在线观看| 亚洲成人免费av| 久久一日本道色综合| caoporm超碰国产精品| 亚洲一区二区三区在线| 日韩一级视频免费观看在线| 成人成人成人在线视频| 午夜精品久久久久久久久久 | 久久精品日产第一区二区三区高清版| eeuss影院一区二区三区| 婷婷亚洲久悠悠色悠在线播放| 久久久精品免费网站| 在线精品观看国产| 国产.欧美.日韩| 视频一区二区三区入口| 国产精品久久久久久久久久久免费看 | 中文字幕一区二区三区四区| 欧美色视频在线观看| 国产精品一品二品| 亚洲电影你懂得| 国产欧美日韩亚州综合 | 欧美高清视频一二三区| 成人综合在线观看| 久久精品国产99| 一区二区三区四区精品在线视频 | 久久免费偷拍视频| 欧美日韩国产另类不卡| 不卡一区在线观看| 国产传媒欧美日韩成人| 三级精品在线观看| 亚洲一区在线观看网站| 国产喂奶挤奶一区二区三区| 欧美一卡二卡三卡四卡| 在线观看av一区| 99国产麻豆精品| 国产成人在线视频播放| 蜜臀va亚洲va欧美va天堂| 亚洲第一激情av| 尤物av一区二区| 亚洲精品免费播放| 亚洲日本一区二区三区| 国产精品视频线看| 成人激情免费电影网址| 国产精品影视天天线| 日韩激情av在线| 视频一区二区欧美| 亚洲成人自拍一区| 亚洲国产中文字幕| 伊人色综合久久天天| 一区二区高清免费观看影视大全| 国产精品激情偷乱一区二区∴| 国产精品网站在线播放|