99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

DTS101TC代做、代寫Python語言程序
DTS101TC代做、代寫Python語言程序

時間:2025-04-09  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



DTS101TC Coursework
This coursework is designed to assess your understanding of neural networks and machine learning concepts, as well as your ability to implement, analyze, and evaluate models effectively. It consists of two main components: five assignments and an image object detection project. Detailed instructions, marking criteria, and submission requirements are outlined below. AIGC tools are not allowed.

Part 1: Assignments (50 Marks)
This section includes five individual assignments, each focusing on different neural network techniques and datasets. The breakdown for each task includes marks for code execution, analysis, evaluation, and reporting quality.
Submission Requirements
Please submit your notebooks to Gradescope. Each assignment must be completed according to the instructions provided in the Python Jupyter Notebook, with all output cells saved alongside the code. You don’t need to write a report for this part. Please put all the analysis and results in your notebook.
Weekly TA checks during lab sessions and office hours are mandatory. Assignments will not be graded without TA verification.
Question 1: Digit Recognition with Neural Networks
Task: Implement a basic neural network using TensorFlow/PyTorch to train a digit recognition model on the MNIST dataset.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oTest cases: 2 marks
oReport quality (comments and formatting): 1 mark
Question 2: Logistic Regression for Flower Classification
Task: Build and implement a Logistic Regression model to classify three types of iris flowers using the dataset in sklearn.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oTest cases: 2 marks
oReport quality (comments and formatting): 1 mark

Question 3: House Price Prediction with ANN/MLP
Task: Design and implement an ANN/MLP model to predict house prices in California using the dataset in sklearn.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oTest cases: 2 marks
oReport quality (comments and formatting): 1 mark
Question 4: Stock Price Prediction with RNN
Task: Create an RNN model to predict stock prices for companies like Apple and Amazon from the Nasdaq market using the provided dataset.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oModel evaluation: 2 marks
oReport quality (comments and formatting): 1 mark
Question 5: Image Classification with CNN
Task: Develop a CNN model to classify images into 10 classes using the CIFAR-10 dataset.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oModel evaluation: 2 marks
oReport quality (comments and formatting): 1 mark

Part 2: Project (50 Marks)
The project involves building a custom image dataset and implementing an object detection neural network. This is a comprehensive task that evaluates multiple skills, from data preparation to model evaluation. 
Submission Requirements
All of your dataset, code (Python files and ipynb files) should be a package in a single ZIP file, with a PDF of your report (notebook with output cells, analysis, and answers). INCLUDE your dataset in the zip file.
Step 1: Dataset Creation (10 Marks)
Task: Collect images and use tools like Label Studio or LabelMe to create labeled datasets for object detection. You can add one more class into the provided dataset. The dataset should have up to 10 classes. Each contains at least 200 images.
Deliverable: Include the dataset in the ZIP file submission.
Mark Breakdown:
oCorrect images and labels: 6 marks
oData collection and labeling process explanation: 2 marks
oDataset information summary: 2 marks
Step 2: Data Loading and Exploration (10 Marks)
Task: Organize data into train, validation, and test sets. Display dataset statistics, such as class distributions, image shapes, and random samples with labels. Randomly plot 5 images in the training set with their corresponding labels.
Mark Breakdown:
oCorrect dataset splitting: 6 marks
oDataset statistics: 2 marks
oSample images and labels visualization: 2 marks
Step 3: Model Implementation (10 Marks)
Task: Implement an object detection model, such as YOLOv8. Include a calculation of the total number of parameters in your model. You must include calculation details.
Mark Breakdown:
oCode and comments: 6 marks
oParameter calculation details and result: 4 marks
Step 4: Model Training (10 Marks)
Task: Train the model using appropriate hyperparameters (e.g., epoch number, optimizer, learning rate). Visualize training and validation performance through graphs of loss and accuracy.
Mark Breakdown:
oCode and comments: 6 marks
oHyperparameters analysis: 2 marks
oPerformance analysis: 2 marks
Step 5: Model Evaluation and Testing (10 Marks)
Task: Evaluate the model on the test set, displaying predictions (visual result) and calculating metrics like mean Average Precision (mAP) and a confusion matrix.
Mark Breakdown:
oCode and comments: 6 marks
oPrediction results: 2 marks
oEvaluation metrics: 2 marks
Submission Guidelines
1.Assignments: Submit your Jupyter Notebooks via Gradescope. Ensure all output cells are saved and visible.
2.Project: Submit your ZIP file containing the dataset, Python files, Jupyter Notebooks, and a PDF report via Learning Mall Core.
General Notes and Policies
1.Plagiarism: Submissions must be your own work. Avoid copying from external sources without proper attribution. Sharing code is prohibited.
2.Late Submissions: Follow the university's policy on late submissions; penalties may apply.
3.Support: Utilize lab sessions and TA office hours for guidance.

Marking Criteria
Assignments
Code execution by Gradescope: 5 marks
Data and model analysis: 2 marks
Test cases or model evaluation: 2 marks
Report quality (comments and formatting): 1 mark
Project
Code (60%):
oFully functional code with clear layout and comments: 6 marks
oPartially functional code with some outputs: 4 marks
oCode that partially implements the solution but does not produce outcomes: 2 marks
oIncomplete or non-functional code: 0 marks
Analysis (40%):
oComplete and accurate answers with clear understanding: 4 marks
oPartial answers showing some understanding: 2 marks
oLimited understanding or incorrect answers:: 0 marks

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代寫AI3013編程、代做Python設計程序
  • 下一篇:代寫MEC 302、代做python編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产欧美日韩另类视频免费观看| 欧美网站一区二区| 欧美大片在线观看一区二区| 国产亚洲精品精华液| 国产午夜精品一区二区三区嫩草| 亚洲电影你懂得| 亚洲欧美另类久久久精品2019| 久久看人人爽人人| 精品国产一区久久| 日韩西西人体444www| 欧美精品一级二级三级| 欧美吻胸吃奶大尺度电影| 欧洲亚洲国产日韩| 蜜臂av日日欢夜夜爽一区| 日本在线不卡一区| 日本欧美一区二区| 人人狠狠综合久久亚洲| 国产超碰在线一区| 亚洲一区二区五区| 亚洲摸摸操操av| 久久亚洲综合av| 亚洲精品在线网站| 日韩欧美国产精品| 欧美mv日韩mv国产网站app| 日韩你懂的在线播放| 欧美视频在线不卡| 欧美理论片在线| aaa国产一区| 日韩1区2区3区| 国产aⅴ精品一区二区三区色成熟| jlzzjlzz欧美大全| 色呦呦日韩精品| 在线观看国产一区二区| 国产成人精品三级麻豆| 国产精品乱码妇女bbbb| 国产视频一区二区在线观看| 日日摸夜夜添夜夜添国产精品| 亚洲国产一区二区a毛片| 精品成人佐山爱一区二区| 亚洲国产精品成人综合色在线婷婷 | 国产欧美综合色| 亚洲麻豆国产自偷在线| 亚洲大型综合色站| 蜜桃视频一区二区三区| 成人精品国产一区二区4080| 五月激情综合色| 激情久久五月天| 成人妖精视频yjsp地址| 99久久99久久综合| 色婷婷一区二区| 日韩av网站免费在线| 一区二区三区四区视频精品免费 | 亚洲欧美在线观看| 国产精品每日更新| 亚洲国产裸拍裸体视频在线观看乱了 | 亚洲精选免费视频| 亚洲国产中文字幕| 成人激情免费电影网址| 国产成人在线看| 一区二区久久久| |精品福利一区二区三区| 日本中文一区二区三区| 色婷婷精品大在线视频| 成人综合在线视频| 亚洲人成网站色在线观看| 国产精品成人一区二区三区夜夜夜 | 久久久久久久久久电影| 亚洲嫩草精品久久| 蜜桃av一区二区三区电影| 国产成人精品在线看| 欧美吻胸吃奶大尺度电影| www精品美女久久久tv| 亚洲美女少妇撒尿| 国产综合久久久久久鬼色| 在线视频综合导航| 国产亚洲欧洲997久久综合 | 丰满白嫩尤物一区二区| 国产高清不卡一区| 久久综合九色综合97婷婷 | 日韩欧美黄色影院| 亚洲欧美日韩久久| 色播五月激情综合网| 一区二区三区日韩精品| 欧美日韩亚洲另类| 久久国产欧美日韩精品| 中文字幕一区二区在线播放 | 国产农村妇女毛片精品久久麻豆 | 日本伦理一区二区| 亚洲成a人v欧美综合天堂| 欧美日韩一区二区不卡| 久久99精品久久久| 久久午夜国产精品| 性欧美疯狂xxxxbbbb| 日韩国产欧美三级| 色94色欧美sute亚洲13| 26uuu色噜噜精品一区二区| 一区二区欧美在线观看| 成人国产电影网| 欧美午夜精品一区二区三区| 色综合久久中文综合久久97| 91麻豆精品91久久久久同性| 久久精品国产久精国产| 亚洲另类在线制服丝袜| 一区二区三区在线视频免费观看| 久久99精品久久久久久动态图| 欧洲另类一二三四区| 综合婷婷亚洲小说| 91麻豆文化传媒在线观看| 综合色中文字幕| 99久久综合精品| 国产精品高清亚洲| 岛国精品在线观看| 国产精品乱码一区二三区小蝌蚪| 国产精品羞羞答答xxdd| 国产欧美精品区一区二区三区| 国产毛片精品视频| 国产日产精品一区| 99热精品国产| 一区二区激情视频| 3d成人h动漫网站入口| 麻豆专区一区二区三区四区五区| 日韩欧美国产三级电影视频| 国产精品一区二区无线| 亚洲欧洲日产国码二区| 日本高清不卡一区| 国产精品网友自拍| 奇米精品一区二区三区四区| 欧美体内she精视频| 亚洲激情图片小说视频| 国产精品18久久久久久vr| 91麻豆精品国产自产在线观看一区| 亚洲精品视频免费看| 99精品欧美一区| 国产精品二三区| 不卡在线视频中文字幕| 国产欧美日韩麻豆91| 成人自拍视频在线| 国产日韩成人精品| 精品一二三四区| 久久网站最新地址| 国产不卡在线播放| 久久精品视频免费| 一区二区三区视频在线看| 久久嫩草精品久久久精品| 欧美成人国产一区二区| 亚洲激情自拍偷拍| 国产乱码精品一区二区三区av| 国产99久久久国产精品免费看| 色呦呦日韩精品| 日韩欧美一区中文| 日韩精品免费专区| 成人国产亚洲欧美成人综合网 | 依依成人综合视频| 丝袜美腿亚洲一区| 欧美综合亚洲图片综合区| 亚洲国产精品久久人人爱| 久久久一区二区| 国产精品美女久久久久aⅴ| 久久久www成人免费无遮挡大片| 国产精品亲子乱子伦xxxx裸| 久久精品国产亚洲5555| 性做久久久久久免费观看| 国产精品一级二级三级| 欧美精品三级日韩久久| 国产成人自拍在线| 日产国产欧美视频一区精品| 中文字幕免费不卡| 日韩一区二区在线观看视频| 在线观看网站黄不卡| 成人久久18免费网站麻豆| 久久不见久久见中文字幕免费| 亚洲一级二级在线| 亚洲日本一区二区| 国产精品美女久久久久aⅴ| 日韩精品中文字幕在线一区| 欧美曰成人黄网| 91麻豆swag| 91丨九色丨蝌蚪丨老版| 成人午夜激情在线| 国产成人精品一区二| 国产精品中文字幕欧美| 九九视频精品免费| 激情小说欧美图片| 久热成人在线视频| 精品一区二区在线免费观看| 蜜臀av性久久久久av蜜臀妖精| 亚洲成人av电影| 午夜在线成人av| 亚洲成人免费av| 亚洲r级在线视频| 亚洲成人在线观看视频| 亚洲福利电影网| 丝袜a∨在线一区二区三区不卡| 亚洲一区在线观看免费观看电影高清| 综合自拍亚洲综合图不卡区| 亚洲va天堂va国产va久| 国产精品一卡二| 欧美日韩久久久| 国产精品伦理在线| 日韩vs国产vs欧美|