99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

DTS101TC代做、代寫Python語言程序
DTS101TC代做、代寫Python語言程序

時間:2025-04-09  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



DTS101TC Coursework
This coursework is designed to assess your understanding of neural networks and machine learning concepts, as well as your ability to implement, analyze, and evaluate models effectively. It consists of two main components: five assignments and an image object detection project. Detailed instructions, marking criteria, and submission requirements are outlined below. AIGC tools are not allowed.

Part 1: Assignments (50 Marks)
This section includes five individual assignments, each focusing on different neural network techniques and datasets. The breakdown for each task includes marks for code execution, analysis, evaluation, and reporting quality.
Submission Requirements
Please submit your notebooks to Gradescope. Each assignment must be completed according to the instructions provided in the Python Jupyter Notebook, with all output cells saved alongside the code. You don’t need to write a report for this part. Please put all the analysis and results in your notebook.
Weekly TA checks during lab sessions and office hours are mandatory. Assignments will not be graded without TA verification.
Question 1: Digit Recognition with Neural Networks
Task: Implement a basic neural network using TensorFlow/PyTorch to train a digit recognition model on the MNIST dataset.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oTest cases: 2 marks
oReport quality (comments and formatting): 1 mark
Question 2: Logistic Regression for Flower Classification
Task: Build and implement a Logistic Regression model to classify three types of iris flowers using the dataset in sklearn.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oTest cases: 2 marks
oReport quality (comments and formatting): 1 mark

Question 3: House Price Prediction with ANN/MLP
Task: Design and implement an ANN/MLP model to predict house prices in California using the dataset in sklearn.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oTest cases: 2 marks
oReport quality (comments and formatting): 1 mark
Question 4: Stock Price Prediction with RNN
Task: Create an RNN model to predict stock prices for companies like Apple and Amazon from the Nasdaq market using the provided dataset.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oModel evaluation: 2 marks
oReport quality (comments and formatting): 1 mark
Question 5: Image Classification with CNN
Task: Develop a CNN model to classify images into 10 classes using the CIFAR-10 dataset.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oModel evaluation: 2 marks
oReport quality (comments and formatting): 1 mark

Part 2: Project (50 Marks)
The project involves building a custom image dataset and implementing an object detection neural network. This is a comprehensive task that evaluates multiple skills, from data preparation to model evaluation. 
Submission Requirements
All of your dataset, code (Python files and ipynb files) should be a package in a single ZIP file, with a PDF of your report (notebook with output cells, analysis, and answers). INCLUDE your dataset in the zip file.
Step 1: Dataset Creation (10 Marks)
Task: Collect images and use tools like Label Studio or LabelMe to create labeled datasets for object detection. You can add one more class into the provided dataset. The dataset should have up to 10 classes. Each contains at least 200 images.
Deliverable: Include the dataset in the ZIP file submission.
Mark Breakdown:
oCorrect images and labels: 6 marks
oData collection and labeling process explanation: 2 marks
oDataset information summary: 2 marks
Step 2: Data Loading and Exploration (10 Marks)
Task: Organize data into train, validation, and test sets. Display dataset statistics, such as class distributions, image shapes, and random samples with labels. Randomly plot 5 images in the training set with their corresponding labels.
Mark Breakdown:
oCorrect dataset splitting: 6 marks
oDataset statistics: 2 marks
oSample images and labels visualization: 2 marks
Step 3: Model Implementation (10 Marks)
Task: Implement an object detection model, such as YOLOv8. Include a calculation of the total number of parameters in your model. You must include calculation details.
Mark Breakdown:
oCode and comments: 6 marks
oParameter calculation details and result: 4 marks
Step 4: Model Training (10 Marks)
Task: Train the model using appropriate hyperparameters (e.g., epoch number, optimizer, learning rate). Visualize training and validation performance through graphs of loss and accuracy.
Mark Breakdown:
oCode and comments: 6 marks
oHyperparameters analysis: 2 marks
oPerformance analysis: 2 marks
Step 5: Model Evaluation and Testing (10 Marks)
Task: Evaluate the model on the test set, displaying predictions (visual result) and calculating metrics like mean Average Precision (mAP) and a confusion matrix.
Mark Breakdown:
oCode and comments: 6 marks
oPrediction results: 2 marks
oEvaluation metrics: 2 marks
Submission Guidelines
1.Assignments: Submit your Jupyter Notebooks via Gradescope. Ensure all output cells are saved and visible.
2.Project: Submit your ZIP file containing the dataset, Python files, Jupyter Notebooks, and a PDF report via Learning Mall Core.
General Notes and Policies
1.Plagiarism: Submissions must be your own work. Avoid copying from external sources without proper attribution. Sharing code is prohibited.
2.Late Submissions: Follow the university's policy on late submissions; penalties may apply.
3.Support: Utilize lab sessions and TA office hours for guidance.

Marking Criteria
Assignments
Code execution by Gradescope: 5 marks
Data and model analysis: 2 marks
Test cases or model evaluation: 2 marks
Report quality (comments and formatting): 1 mark
Project
Code (60%):
oFully functional code with clear layout and comments: 6 marks
oPartially functional code with some outputs: 4 marks
oCode that partially implements the solution but does not produce outcomes: 2 marks
oIncomplete or non-functional code: 0 marks
Analysis (40%):
oComplete and accurate answers with clear understanding: 4 marks
oPartial answers showing some understanding: 2 marks
oLimited understanding or incorrect answers:: 0 marks

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代寫AI3013編程、代做Python設計程序
  • 下一篇:代寫MEC 302、代做python編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美三级欧美一级| 国产精品自拍在线| 欧美日韩亚洲免费| 欧美性做爰毛片| 国产欧美日韩三区| 激情成人综合| 国产亚洲一级| 国产一区二区精品| 在线看视频不卡| 韩国av一区二区三区在线观看 | 欧美一进一出视频| 欧美在线黄色| 麻豆国产va免费精品高清在线| 久久国内精品自在自线400部| 久久精品国产99国产精品澳门| 久久久噜噜噜久噜久久| 亚洲综合色网站| 久久精品一区二区国产| 久久黄色影院| 午夜一区二区三区不卡视频| 亚洲一区免费网站| 亚洲欧美日韩在线观看a三区| 亚洲欧美国产高清va在线播| 羞羞视频在线观看欧美| 久久精品午夜| 久久五月婷婷丁香社区| 欧美成人免费在线视频| 欧美午夜精品久久久久久超碰| 国产精品系列在线| 亚洲国产毛片完整版 | 国产精品久久久久久妇女6080| 国产欧美激情| 亚洲精品资源| 欧美在线在线| 欧美另类久久久品| 国产精品女主播在线观看| 国产亚洲成av人片在线观看桃| 亚洲人成毛片在线播放女女| 亚洲欧美日韩天堂| 噜噜噜噜噜久久久久久91| 欧美理论大片| 国产精品亚洲а∨天堂免在线| 国产一区二区日韩| 玉米视频成人免费看| 日韩一区二区久久| 久久夜色精品国产欧美乱极品| 欧美大成色www永久网站婷| 国产精品99免费看| 亚洲国产精品va在看黑人| 亚洲欧美资源在线| 欧美日韩免费一区| 在线观看av不卡| 性欧美video另类hd性玩具| 欧美国产精品久久| 经典三级久久| 久久成年人视频| 国产精品五区| 一区二区三区日韩精品视频| 欧美a级理论片| 在线免费高清一区二区三区| 香蕉视频成人在线观看| 欧美三级黄美女| 一区二区三区欧美| 欧美日韩激情小视频| 亚洲高清视频的网址| 久久久伊人欧美| 国产一区二区三区四区五区美女| 亚洲一区二区精品在线观看| 欧美大片免费久久精品三p | 最新国产成人av网站网址麻豆 | 欧美一区影院| 国产精品s色| 99精品国产在热久久下载| 欧美成人黑人xx视频免费观看| 国产精品网站一区| 亚洲欧美日韩成人| 国产精品日韩专区| 午夜免费日韩视频| 欧美体内谢she精2性欧美| 依依成人综合视频| 久久一日本道色综合久久| 国产亚洲一级高清| 久久久人成影片一区二区三区| 国产亚洲在线| 久久综合久久久| 国产一区二区精品久久99| 久久久久久伊人| 最新日韩中文字幕| 欧美日韩国产黄| 中文精品视频| 国产精品国产a级| 亚洲午夜久久久久久尤物| 国产欧美一区二区精品性色| 午夜视黄欧洲亚洲| 一区二区三区在线视频免费观看| 久久国产精品99国产精| 亚洲高清电影| 欧美另类在线观看| 亚洲一区网站| 国产精品久久久亚洲一区| 久久精品国产精品亚洲| 尤物精品国产第一福利三区| 欧美国产在线观看| 亚洲在线视频| 在线免费观看欧美| 国产精品成人一区二区| 久久福利资源站| 亚洲精品日韩激情在线电影| 欧美午夜一区二区三区免费大片 | 国产色产综合产在线视频| 久久这里有精品15一区二区三区| 亚洲精品激情| 韩国av一区二区三区四区| 欧美激情一区二区三区蜜桃视频 | 久久精品国产一区二区电影| 136国产福利精品导航| 欧美四级电影网站| 久久综合九色综合欧美就去吻| 亚洲网友自拍| 亚洲第一福利在线观看| 欧美三级视频在线| 久久人人97超碰国产公开结果 | 日韩亚洲成人av在线| 国产精品久久久久免费a∨| 老司机成人在线视频| 亚洲欧美国产不卡| 亚洲免费观看| 一区二区三区在线观看视频| 牛夜精品久久久久久久99黑人| 日韩午夜av在线| 激情五月***国产精品| 国产精品久久久久久久久搜平片| 牛牛国产精品| 久久国产免费| 午夜精品福利在线| 亚洲国产一区二区视频| 国产一区二区精品| 国产麻豆精品theporn| 欧美日韩一区二区高清| 欧美理论视频| 99精品99| 狠狠入ady亚洲精品| 国产精品入口日韩视频大尺度| 美女图片一区二区| 欧美在线观看视频一区二区| 日韩午夜激情av| 亚洲国产99| 国产精品久久久久三级| 老司机一区二区三区| 亚洲少妇最新在线视频| 一本色道久久综合狠狠躁的推荐| 亚洲国产精品va在线看黑人动漫| 国产视频一区二区三区在线观看| 国产精品免费视频xxxx| 欧美另类综合| 欧美日韩国产不卡| 欧美日韩三级视频| 国产精品久久国产精品99gif | 在线观看欧美亚洲| 在线观看亚洲a| 91久久精品国产91久久性色| 91久久精品美女| 亚洲国产精品欧美一二99| 在线观看久久av| 亚洲人成啪啪网站| 一区二区日韩精品| 亚洲主播在线| 久久久久国产一区二区三区四区| 久久免费的精品国产v∧| 快播亚洲色图| 欧美日韩免费看| 国产精品推荐精品| 韩国女主播一区| 亚洲伦理久久| 小黄鸭精品aⅴ导航网站入口| 久久米奇亚洲| 欧美日韩在线精品| 国产欧美精品日韩精品| 在线不卡亚洲| 一区二区国产精品| 先锋影音国产精品| 免费av成人在线| 国产精品久久国产精麻豆99网站| 国产曰批免费观看久久久| 激情久久婷婷| 一本久道久久综合婷婷鲸鱼| 亚洲性线免费观看视频成熟| 亚洲免费在线观看| 性8sex亚洲区入口| 男人的天堂亚洲| 国产精品视频久久一区| 亚洲国产高清自拍| 午夜在线a亚洲v天堂网2018| 蜜臀91精品一区二区三区| 欧美日韩综合视频| 亚洲高清视频一区二区| 亚洲在线国产日韩欧美| 欧美激情亚洲另类| 极品尤物一区二区三区| 国产精品99久久99久久久二8 |