99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS-UY 4563、Python程序語言代做
代寫CS-UY 4563、Python程序語言代做

時間:2024-12-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Final Project
CS-UY 4563 - Introduction to Machine Learning
Overview
• Partner with one student and select a machine learning problem of your choice.
• Apply the machine learning techniques you’ve learned during the course to
your chosen problem.
• Present your project to the class at the semester’s end.
Submission Requirements on Gradescope
Submit the following on Gradescope by the evening before the first presentation (exact
date to be announced):
• Presentation slides.
• Project write-up (PDF format).
• Project code as a Jupyter Notebook. If necessary, a GitHub link is acceptable.
• If using a custom dataset, upload it to Gradescope (or provide a GitHub link, if
necessary).
1Project Guidelines
Write-Up Requirements
Your project write-up should include the following:
1. Introduction: Describe your data set and the problem you aim to solve.
2. Perform some unsupervised analysis:
• Explore pattern or structure in the data using clustering and dimensionality (e.g
PCA).
• Visualize the training data
1
:
– Plot individual features to understand their distribution (e.g., histograms
or density plots).
– Plot individual features and their relationship with the target variable.
– Create a correlation matrix to analyze relationships between features.
• Discuss any interesting structure is present in the data. If you don’t find any
interesting structure, describe what you tried.
3. Supervised analysis: Train at least three distinct learning models
2 discussed in
the class (such as Linear Regression, Logistic Regression, SVM, Neural Networks,
CNN).
3
For implementation, you may:
• Use your own implementation from homework or developed independently.
• Use libraries such as Keras, scikit-learn, or TensorFlow.
For each model,
4 you must:
• Try different feature transformations. You should have at least three transformations.
 For example, try the polynomial, PCA, or radial-basis function kernel.
For neural networks, different architectures (e.g., neural networks with varying
numbers of layers) can also be considered forms of feature transformations, as
they learn complex representations of the input data.
• Use different regularization techniques. You should have at least 6 different
regularization values per model
1Do not look at the validation or test data.
2You can turn a regression task into a classification task by binning, or for the same dataset, select a
different feature as the target for your model. Or you can use SVR.
3
If you wish to use a model not discussed in class, you must discuss it with me first, or you will not
receive any points for that model.
4Even if you get a very high accuracy, perform these transformations to see what happens.
24. Table of Results:
• Provide a table with training accuracy and validation metrics for every model.
Include results for the different parameter settings (e.g., different regularization
values).
– For classification include metrics such as precision/recall.
– For regression modes, report metrics like MSE, R2
. For example, suppose
you’re using Ridge Regression and manipulating the value of λ. In that
case, your table should contain the training and validation accuracy for
every lambda value you used.
• Plot and analyze how performance metrics (like accuracy, precision, recall, MSE)
change with different feature transformations, hyperparameters (e.g.regularization
settings, learning rate).
5. Analytical Discussion:
• Analyze the experimental results and explain key findings. Provide a chart of
your key findings.
• Highlight the impact of feature transformations, regularization, and other hyperparameters
 on the model’s performance. Refer to the graphs provide in earlier
sections to support your analysis. Focus on interpreting:
– Whether the models overfit or underfit the data.
– How bias and variance affect performance, and which parameter choices
helped achieve better generalization.
Presentation Guidelines
• You and your partner will give a six-minute presentation to the class.
• Presentations will be held during the last 2 or 3 class periods and during the final
exam period for this class. You will be assigned a day for your presentation. If we
run out of time the day you are to present your project, you will present the next
day reserved for presentations.
• Attendance during all presentations is required. A part of your project grade
will be based on your attendance for everyone else’s presentation.
Important Notes on Academic Integrity
• Your submission will undergo plagiarism checks.
• If we suspect you of cheating, you will receive 0 for your final project grade. See the
syllabus for additional penalties that may be applied.
3Dataset Resources
Below are some resources where you can search for datasets. As a rough guideline, your
dataset should have at least 200 training examples and at least 10 features. You
are free to use these resources, look elsewhere, or create your own dataset.
• https://www.kaggle.com/competitions
• https://www.openml.org/
• https://paperswithcode.com/datasets
• https://registry.opendata.aws/
• https://dataportals.org/
• https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research
• https://www.reddit.com/r/datasets/
• https://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public
Modifications
• If you have a project idea that doesn’t satisfy all the requirements mentioned above,
please inform me, and we can discuss its viability as your final project.
• If you use techniques not covered in class, you must demonstrate your understanding
of these ideas.
Brightspace Submissions Guidelines
• Dataset and Partner: Submit the link to your chosen dataset and your partner’s
name by October 30th.
• Final Submissions: Upload your presentation slides, project write-up, and code to
Gradescope by the evening before the first scheduled presentation. The exact date
will be announced once the total number of projects is confirmed. (I expect the due
date to be December 4th or December 9th.)
Potential Challenges and Resources
As you work with your dataset, you may encounter specific challenges that require additional
 techniques or tools. Below are some topics and resources that might be useful.
Please explore these topics further through online research.
4• Feature Reduction: Consider using PCA (which will be covered in class). PCA is
especially useful when working with SVMs, as they can be slow with high-dimensional
data.
If you choose to use SelectKBest from scikit-learn, you must understand why it works
before you use it.
• Creating Synthetic Examples: When using SMOTE or other methods to generate
synthetic data, ensure that only real data is used in the validation and test sets.
- If using synthetic data, make sure your validation set and test set mirrors the true
class proportions from the original dataset. A balanced test set for naturally unbalanced
 data can give misleading impressions of your model’s real-world performance.
For more details, see: Handling Imbalanced Classes
• Working with Time Series Data: For insights on working with time series data,
visit: NIST Handbook on Time Series
• Handling Missing Feature Values:
– See Lecture 16 at Stanford STATS 306B
– Techniques to Handle Missing Data Values
– How to Handle Missing Data in Python
– Statistical Imputation for Missing Data
• Multiclass Classification:
– Understanding Softmax in Multiclass Classification
– Precision and Recall for Multiclass Metrics
• Optimizers for Neural Networks: You may use Adam or other optimizers for
training neural networks.
• Centering Image Data with Bounding Boxes: If you are working with image
data, you are allowed to use bounding boxes to center the objects in your images. You
can use libraries like OpenCV (‘cv2’).
Tips
Don’t forget to scale your data as part of preprocessing. Be sure to document any modifications
 you made, including the scaling or normalization techniques you applied.
The following resource might be helpful. Please stick to topics we discussed in class or
those mentioned above: CS229: Practical Machine Learning Advice

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓萊特省旅游經濟好嗎(景點推薦)
  • 下一篇:ENG6編程代寫、代做MATLAB語言程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美人与禽猛交乱配视频| 一区二区三区国产盗摄| 欧美日韩亚洲国产精品| 亚洲尤物在线视频观看| 亚洲国产成人精品女人久久久 | 欧美国产欧美综合| 欧美一区二区播放| 一区二区三区免费观看| 亚洲成色777777在线观看影院| 国产精品青草综合久久久久99| 欧美精品v日韩精品v国产精品 | 欧美一区网站| 日韩一级黄色片| 亚洲精美视频| 亚洲福利视频一区| 国产专区一区| 国产欧美日韩免费| 国产精品入口| 欧美亚男人的天堂| 欧美日韩亚洲一区二区三区在线| 免费视频一区| 免费日韩成人| 欧美激情精品久久久久久久变态 | 激情久久一区| 国内精品免费在线观看| 国产美女精品视频| 国产欧美日韩在线观看| 国产精品美女久久久| 欧美视频专区一二在线观看| 欧美日韩福利在线观看| 欧美精品一区二区三区蜜桃 | 洋洋av久久久久久久一区| 亚洲国产一区二区三区在线播| 亚洲国产另类 国产精品国产免费| 一区二区三区在线免费播放| 伊甸园精品99久久久久久| 激情视频亚洲| 亚洲精品乱码| 夜夜嗨av一区二区三区| 亚洲一区在线免费观看| 亚洲一区二区三区国产| 欧美一区二区三区四区在线| 久久青草久久| 欧美精品九九| 国产精品午夜av在线| 韩国av一区| 亚洲日本va午夜在线影院| 99精品国产高清一区二区| 亚洲一区二区免费视频| 久久成人资源| 国产日韩欧美精品在线| 狠狠爱综合网| 99国产精品久久久久久久成人热| 亚洲一区二区成人| 久久综合久久久| 欧美日韩一区二区在线| 国产一区二区日韩| 亚洲精品久久久久久一区二区 | 欧美日韩欧美一区二区| 国产私拍一区| 日韩午夜黄色| 久久国产精品一区二区三区| 欧美高清成人| 国产精品夜色7777狼人| 亚洲精品裸体| 久久久伊人欧美| 国产精品裸体一区二区三区| 亚洲第一黄网| 欧美在线播放视频| 欧美婷婷在线| 亚洲国产日韩欧美在线图片| 新狼窝色av性久久久久久| 欧美成人精品不卡视频在线观看 | 国产农村妇女精品一二区| 亚洲国产成人在线| 欧美一级免费视频| 欧美午夜寂寞影院| 亚洲精品欧美在线| 麻豆精品在线视频| 国内精品**久久毛片app| 亚洲一级高清| 欧美视频成人| 日韩视频―中文字幕| 免费成人你懂的| 黄色亚洲网站| 久久久久国产精品www| 国产精品有限公司| 亚洲欧美日本伦理| 欧美视频在线观看一区二区| 日韩亚洲在线| 欧美人在线视频| 亚洲精品中文字| 麻豆精品在线播放| 亚洲大胆女人| 你懂的成人av| 亚洲精品久久久久久久久久久久久| 久久伊人精品天天| 国语精品一区| 久久免费偷拍视频| 在线视频观看日韩| 欧美成年人视频| 亚洲人成在线播放| 欧美日韩国产在线播放| 一片黄亚洲嫩模| 国产精品久久久久aaaa| 亚洲欧美日本视频在线观看| 国产欧美午夜| 久久综合中文色婷婷| 欧美mv日韩mv国产网站app| 在线精品在线| 欧美精品久久久久久久久老牛影院| 亚洲黄色免费| 欧美天堂亚洲电影院在线播放| 中文精品视频| 国产视频一区在线| 麻豆91精品91久久久的内涵| 亚洲精品一区二区三区婷婷月| 欧美精品日本| 性欧美精品高清| 黄色亚洲精品| 欧美日韩一区视频| 欧美亚洲在线| 亚洲国产精品一区二区久| 欧美日韩高清在线播放| 香蕉视频成人在线观看| 黄色一区三区| 欧美午夜在线观看| 久久色在线观看| 亚洲色图制服丝袜| 欧美激情精品久久久久久久变态| 亚洲精品久久久久久下一站| 国产精品成人一区二区| 久久国产精彩视频| 日韩视频专区| 在线播放日韩专区| 国产精品久久久久秋霞鲁丝| 老**午夜毛片一区二区三区| 亚洲视频一区在线| 亚洲高清毛片| 国产欧美一区二区三区久久人妖 | 狠狠狠色丁香婷婷综合激情| 欧美日韩国产经典色站一区二区三区| 午夜宅男欧美| 在线亚洲欧美专区二区| 在线精品视频一区二区| 国产精品羞羞答答| 欧美日韩不卡| 欧美91视频| 久久久噜噜噜久噜久久| 亚洲一区亚洲二区| 亚洲美女诱惑| 欧美日本亚洲| 另类图片综合电影| 久久精品日韩欧美| 亚洲在线观看视频| 亚洲最新视频在线播放| 亚洲国产精品免费| 一区二区视频欧美| 狠狠色综合日日| 国产亚洲欧美aaaa| 国产私拍一区| 国产日韩欧美一区二区三区四区| 欧美三区美女| 欧美无乱码久久久免费午夜一区| 欧美精品一区二区久久婷婷| 欧美国产一区二区| 欧美黄色一区| 欧美日韩国产成人在线观看| 欧美成人午夜免费视在线看片| 久热这里只精品99re8久| 久久另类ts人妖一区二区| 久久综合国产精品| 久久久久久**毛片大全| 久久久噜噜噜久久| 美日韩丰满少妇在线观看| 欧美 日韩 国产 一区| 欧美成人一区二区在线| 欧美激情一区| 欧美天堂亚洲电影院在线播放| 欧美三级第一页| 国产精品亚洲综合一区在线观看| 国产精品九九| 伊人成年综合电影网| 亚洲黄一区二区| 亚洲视频在线观看| 久久久7777| 欧美精品在线看| 国产精品黄页免费高清在线观看| 国产精品专区h在线观看| 国产午夜精品久久| 亚洲韩日在线| 亚洲自拍电影| 美女精品在线| 国产精品国色综合久久| 狠狠综合久久| 中文av一区特黄| 久久精品二区三区| 亚洲免费在线视频| 老**午夜毛片一区二区三区| 欧美精品一区二区三区一线天视频 |