99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS-UY 4563、Python程序語言代做
代寫CS-UY 4563、Python程序語言代做

時間:2024-12-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Final Project
CS-UY 4563 - Introduction to Machine Learning
Overview
• Partner with one student and select a machine learning problem of your choice.
• Apply the machine learning techniques you’ve learned during the course to
your chosen problem.
• Present your project to the class at the semester’s end.
Submission Requirements on Gradescope
Submit the following on Gradescope by the evening before the first presentation (exact
date to be announced):
• Presentation slides.
• Project write-up (PDF format).
• Project code as a Jupyter Notebook. If necessary, a GitHub link is acceptable.
• If using a custom dataset, upload it to Gradescope (or provide a GitHub link, if
necessary).
1Project Guidelines
Write-Up Requirements
Your project write-up should include the following:
1. Introduction: Describe your data set and the problem you aim to solve.
2. Perform some unsupervised analysis:
• Explore pattern or structure in the data using clustering and dimensionality (e.g
PCA).
• Visualize the training data
1
:
– Plot individual features to understand their distribution (e.g., histograms
or density plots).
– Plot individual features and their relationship with the target variable.
– Create a correlation matrix to analyze relationships between features.
• Discuss any interesting structure is present in the data. If you don’t find any
interesting structure, describe what you tried.
3. Supervised analysis: Train at least three distinct learning models
2 discussed in
the class (such as Linear Regression, Logistic Regression, SVM, Neural Networks,
CNN).
3
For implementation, you may:
• Use your own implementation from homework or developed independently.
• Use libraries such as Keras, scikit-learn, or TensorFlow.
For each model,
4 you must:
• Try different feature transformations. You should have at least three transformations.
 For example, try the polynomial, PCA, or radial-basis function kernel.
For neural networks, different architectures (e.g., neural networks with varying
numbers of layers) can also be considered forms of feature transformations, as
they learn complex representations of the input data.
• Use different regularization techniques. You should have at least 6 different
regularization values per model
1Do not look at the validation or test data.
2You can turn a regression task into a classification task by binning, or for the same dataset, select a
different feature as the target for your model. Or you can use SVR.
3
If you wish to use a model not discussed in class, you must discuss it with me first, or you will not
receive any points for that model.
4Even if you get a very high accuracy, perform these transformations to see what happens.
24. Table of Results:
• Provide a table with training accuracy and validation metrics for every model.
Include results for the different parameter settings (e.g., different regularization
values).
– For classification include metrics such as precision/recall.
– For regression modes, report metrics like MSE, R2
. For example, suppose
you’re using Ridge Regression and manipulating the value of λ. In that
case, your table should contain the training and validation accuracy for
every lambda value you used.
• Plot and analyze how performance metrics (like accuracy, precision, recall, MSE)
change with different feature transformations, hyperparameters (e.g.regularization
settings, learning rate).
5. Analytical Discussion:
• Analyze the experimental results and explain key findings. Provide a chart of
your key findings.
• Highlight the impact of feature transformations, regularization, and other hyperparameters
 on the model’s performance. Refer to the graphs provide in earlier
sections to support your analysis. Focus on interpreting:
– Whether the models overfit or underfit the data.
– How bias and variance affect performance, and which parameter choices
helped achieve better generalization.
Presentation Guidelines
• You and your partner will give a six-minute presentation to the class.
• Presentations will be held during the last 2 or 3 class periods and during the final
exam period for this class. You will be assigned a day for your presentation. If we
run out of time the day you are to present your project, you will present the next
day reserved for presentations.
• Attendance during all presentations is required. A part of your project grade
will be based on your attendance for everyone else’s presentation.
Important Notes on Academic Integrity
• Your submission will undergo plagiarism checks.
• If we suspect you of cheating, you will receive 0 for your final project grade. See the
syllabus for additional penalties that may be applied.
3Dataset Resources
Below are some resources where you can search for datasets. As a rough guideline, your
dataset should have at least 200 training examples and at least 10 features. You
are free to use these resources, look elsewhere, or create your own dataset.
• https://www.kaggle.com/competitions
• https://www.openml.org/
• https://paperswithcode.com/datasets
• https://registry.opendata.aws/
• https://dataportals.org/
• https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research
• https://www.reddit.com/r/datasets/
• https://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public
Modifications
• If you have a project idea that doesn’t satisfy all the requirements mentioned above,
please inform me, and we can discuss its viability as your final project.
• If you use techniques not covered in class, you must demonstrate your understanding
of these ideas.
Brightspace Submissions Guidelines
• Dataset and Partner: Submit the link to your chosen dataset and your partner’s
name by October 30th.
• Final Submissions: Upload your presentation slides, project write-up, and code to
Gradescope by the evening before the first scheduled presentation. The exact date
will be announced once the total number of projects is confirmed. (I expect the due
date to be December 4th or December 9th.)
Potential Challenges and Resources
As you work with your dataset, you may encounter specific challenges that require additional
 techniques or tools. Below are some topics and resources that might be useful.
Please explore these topics further through online research.
4• Feature Reduction: Consider using PCA (which will be covered in class). PCA is
especially useful when working with SVMs, as they can be slow with high-dimensional
data.
If you choose to use SelectKBest from scikit-learn, you must understand why it works
before you use it.
• Creating Synthetic Examples: When using SMOTE or other methods to generate
synthetic data, ensure that only real data is used in the validation and test sets.
- If using synthetic data, make sure your validation set and test set mirrors the true
class proportions from the original dataset. A balanced test set for naturally unbalanced
 data can give misleading impressions of your model’s real-world performance.
For more details, see: Handling Imbalanced Classes
• Working with Time Series Data: For insights on working with time series data,
visit: NIST Handbook on Time Series
• Handling Missing Feature Values:
– See Lecture 16 at Stanford STATS 306B
– Techniques to Handle Missing Data Values
– How to Handle Missing Data in Python
– Statistical Imputation for Missing Data
• Multiclass Classification:
– Understanding Softmax in Multiclass Classification
– Precision and Recall for Multiclass Metrics
• Optimizers for Neural Networks: You may use Adam or other optimizers for
training neural networks.
• Centering Image Data with Bounding Boxes: If you are working with image
data, you are allowed to use bounding boxes to center the objects in your images. You
can use libraries like OpenCV (‘cv2’).
Tips
Don’t forget to scale your data as part of preprocessing. Be sure to document any modifications
 you made, including the scaling or normalization techniques you applied.
The following resource might be helpful. Please stick to topics we discussed in class or
those mentioned above: CS229: Practical Machine Learning Advice

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓萊特省旅游經濟好嗎(景點推薦)
  • 下一篇:ENG6編程代寫、代做MATLAB語言程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                久久精品亚洲国产奇米99| 国产日韩精品久久久| 免费成人在线影院| 三级精品在线观看| 国产精品亚洲专一区二区三区 | 色呦呦一区二区三区| 69精品人人人人| 亚洲国产精品99久久久久久久久 | 最新久久zyz资源站| 中文字幕av不卡| 国产91精品一区二区麻豆网站| av在线不卡网| 777午夜精品免费视频| 日韩电影在线观看一区| 91丨porny丨国产入口| 精品国产三级a在线观看| 亚洲午夜精品网| 99免费精品视频| 一区二区三区在线看| 成人激情免费网站| 2020国产精品自拍| 日韩av在线发布| 国产亚洲成aⅴ人片在线观看| 色综合天天综合色综合av| 国产精品国产自产拍高清av王其| 麻豆精品视频在线观看| 3d成人h动漫网站入口| 韩国成人福利片在线播放| 日韩免费观看2025年上映的电影| 亚洲制服丝袜一区| 91女厕偷拍女厕偷拍高清| 日韩精品一二三四| 综合久久一区二区三区| 精品va天堂亚洲国产| 在线免费观看日韩欧美| 一级中文字幕一区二区| 精品少妇一区二区三区免费观看| 日本欧美在线观看| 久久精品人人做人人综合| 7777精品伊人久久久大香线蕉完整版 | 欧美高清视频在线高清观看mv色露露十八| 国产人伦精品一区二区| 欧美午夜电影在线播放| 亚洲欧美色图小说| 91视频一区二区三区| 狠狠色狠狠色综合| 日韩电影在线免费看| 亚洲国产欧美在线| 一区二区激情小说| 玉足女爽爽91| 正在播放一区二区| 色老汉一区二区三区| 亚洲一区二区三区中文字幕 | 成人污污视频在线观看| 1区2区3区国产精品| 精品三级av在线| 欧美一级一级性生活免费录像| 另类小说综合欧美亚洲| 久久久久97国产精华液好用吗| 国内精品伊人久久久久av影院| 亚洲桃色在线一区| 夜夜精品浪潮av一区二区三区| 亚洲欧美怡红院| 亚洲激情图片qvod| 亚洲资源在线观看| 免费成人你懂的| 国产中文字幕一区| 白白色 亚洲乱淫| 91丨porny丨国产入口| 色综合久久中文字幕综合网| 在线视频观看一区| 欧美一区二区三区四区高清| 欧美成人高清电影在线| 国产人伦精品一区二区| 一区二区三区欧美激情| 日韩激情一二三区| 国产精品中文字幕日韩精品| 色偷偷一区二区三区| 天天综合网 天天综合色| 综合激情成人伊人| 亚洲另类在线一区| 国产精品久久久久久久久动漫| 国产精品乱子久久久久| 欧美调教femdomvk| 欧美日本一区二区| 成人黄色软件下载| 色婷婷久久久综合中文字幕 | 国产在线国偷精品免费看| 亚洲精品国产一区二区精华液| 亚洲综合图片区| 奇米四色…亚洲| www.欧美.com| 欧美精品乱码久久久久久| 国产亚洲欧美一区在线观看| 自拍偷拍亚洲激情| 麻豆国产精品一区二区三区 | 国产真实乱偷精品视频免| 不卡区在线中文字幕| 欧美精品vⅰdeose4hd| 国产精品素人视频| 琪琪一区二区三区| 色综合久久综合网欧美综合网| 欧美一区二区三区色| 亚洲视频一区在线| 精品无码三级在线观看视频| 蜜桃视频一区二区| 成人激情校园春色| 91精品国产综合久久精品app| 中文字幕精品在线不卡| 青青国产91久久久久久| 91亚洲精品久久久蜜桃| 久久久高清一区二区三区| 日韩精品免费专区| 欧美亚州韩日在线看免费版国语版| 国产亚洲欧美一区在线观看| 麻豆成人av在线| 欧美日韩中文字幕一区二区| 欧美日韩久久久久久| 国产精品视频一二三区| 精品一区二区免费视频| 日韩欧美一区二区视频| 香蕉成人伊视频在线观看| 美美哒免费高清在线观看视频一区二区| 成人18精品视频| 久久久精品免费观看| 精品一区二区三区在线播放 | 欧美aaa在线| 欧美中文一区二区三区| 成人欧美一区二区三区黑人麻豆| 国产精品一区一区三区| 日韩精品资源二区在线| 蜜臀va亚洲va欧美va天堂| 欧美一区二区黄色| 日韩电影免费在线看| 91精品国产综合久久久蜜臀图片 | 国产成人av电影在线| 久久亚洲一区二区三区四区| 蜜臀av一级做a爰片久久| 欧美精品日韩综合在线| 日韩高清不卡一区二区| 欧美一区二区三区影视| 精品一区二区三区不卡| 国产精品全国免费观看高清 | 成人不卡免费av| 中文一区二区在线观看| 高清免费成人av| 亚洲人成在线观看一区二区| 欧美日韩专区在线| 精品一区二区三区免费观看 | 国产目拍亚洲精品99久久精品| 高潮精品一区videoshd| 中文字幕精品一区二区精品绿巨人| 成人av免费网站| 亚洲一区二区视频在线观看| 日韩欧美高清在线| 国产高清成人在线| 欧美日韩国产片| 免费看日韩精品| 国产网红主播福利一区二区| 91一区二区三区在线播放| 午夜a成v人精品| 久久影院视频免费| 色哦色哦哦色天天综合| 日产国产欧美视频一区精品| 国产人成一区二区三区影院| 欧美在线观看18| 国产一区二区在线免费观看| 有码一区二区三区| 337p粉嫩大胆噜噜噜噜噜91av| 色哟哟国产精品| 国产久卡久卡久卡久卡视频精品| 一区二区三区中文在线观看| 亚洲精品一线二线三线| 欧美在线观看一区二区| 国产成人亚洲综合a∨婷婷| 午夜一区二区三区视频| 久久久久国产精品厨房| 69堂国产成人免费视频| 91在线porny国产在线看| 国产在线不卡一区| 视频精品一区二区| 亚洲精品国产视频| 欧美激情一区二区| 久久视频一区二区| 日韩久久免费av| 欧美一级夜夜爽| 欧美精品乱人伦久久久久久| 色综合欧美在线视频区| jizzjizzjizz欧美| 国产九色sp调教91| 国产综合久久久久影院| 免费观看在线色综合| 午夜视频久久久久久| 亚洲综合色丁香婷婷六月图片| 国产精品久久久久久久久久久免费看 | 久久国产精品露脸对白| 一区二区在线观看免费| 综合久久综合久久| 亚洲欧美激情在线| 日韩美女视频一区|