99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS-UY 4563、Python程序語言代做
代寫CS-UY 4563、Python程序語言代做

時間:2024-12-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Final Project
CS-UY 4563 - Introduction to Machine Learning
Overview
• Partner with one student and select a machine learning problem of your choice.
• Apply the machine learning techniques you’ve learned during the course to
your chosen problem.
• Present your project to the class at the semester’s end.
Submission Requirements on Gradescope
Submit the following on Gradescope by the evening before the first presentation (exact
date to be announced):
• Presentation slides.
• Project write-up (PDF format).
• Project code as a Jupyter Notebook. If necessary, a GitHub link is acceptable.
• If using a custom dataset, upload it to Gradescope (or provide a GitHub link, if
necessary).
1Project Guidelines
Write-Up Requirements
Your project write-up should include the following:
1. Introduction: Describe your data set and the problem you aim to solve.
2. Perform some unsupervised analysis:
• Explore pattern or structure in the data using clustering and dimensionality (e.g
PCA).
• Visualize the training data
1
:
– Plot individual features to understand their distribution (e.g., histograms
or density plots).
– Plot individual features and their relationship with the target variable.
– Create a correlation matrix to analyze relationships between features.
• Discuss any interesting structure is present in the data. If you don’t find any
interesting structure, describe what you tried.
3. Supervised analysis: Train at least three distinct learning models
2 discussed in
the class (such as Linear Regression, Logistic Regression, SVM, Neural Networks,
CNN).
3
For implementation, you may:
• Use your own implementation from homework or developed independently.
• Use libraries such as Keras, scikit-learn, or TensorFlow.
For each model,
4 you must:
• Try different feature transformations. You should have at least three transformations.
 For example, try the polynomial, PCA, or radial-basis function kernel.
For neural networks, different architectures (e.g., neural networks with varying
numbers of layers) can also be considered forms of feature transformations, as
they learn complex representations of the input data.
• Use different regularization techniques. You should have at least 6 different
regularization values per model
1Do not look at the validation or test data.
2You can turn a regression task into a classification task by binning, or for the same dataset, select a
different feature as the target for your model. Or you can use SVR.
3
If you wish to use a model not discussed in class, you must discuss it with me first, or you will not
receive any points for that model.
4Even if you get a very high accuracy, perform these transformations to see what happens.
24. Table of Results:
• Provide a table with training accuracy and validation metrics for every model.
Include results for the different parameter settings (e.g., different regularization
values).
– For classification include metrics such as precision/recall.
– For regression modes, report metrics like MSE, R2
. For example, suppose
you’re using Ridge Regression and manipulating the value of λ. In that
case, your table should contain the training and validation accuracy for
every lambda value you used.
• Plot and analyze how performance metrics (like accuracy, precision, recall, MSE)
change with different feature transformations, hyperparameters (e.g.regularization
settings, learning rate).
5. Analytical Discussion:
• Analyze the experimental results and explain key findings. Provide a chart of
your key findings.
• Highlight the impact of feature transformations, regularization, and other hyperparameters
 on the model’s performance. Refer to the graphs provide in earlier
sections to support your analysis. Focus on interpreting:
– Whether the models overfit or underfit the data.
– How bias and variance affect performance, and which parameter choices
helped achieve better generalization.
Presentation Guidelines
• You and your partner will give a six-minute presentation to the class.
• Presentations will be held during the last 2 or 3 class periods and during the final
exam period for this class. You will be assigned a day for your presentation. If we
run out of time the day you are to present your project, you will present the next
day reserved for presentations.
• Attendance during all presentations is required. A part of your project grade
will be based on your attendance for everyone else’s presentation.
Important Notes on Academic Integrity
• Your submission will undergo plagiarism checks.
• If we suspect you of cheating, you will receive 0 for your final project grade. See the
syllabus for additional penalties that may be applied.
3Dataset Resources
Below are some resources where you can search for datasets. As a rough guideline, your
dataset should have at least 200 training examples and at least 10 features. You
are free to use these resources, look elsewhere, or create your own dataset.
• https://www.kaggle.com/competitions
• https://www.openml.org/
• https://paperswithcode.com/datasets
• https://registry.opendata.aws/
• https://dataportals.org/
• https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research
• https://www.reddit.com/r/datasets/
• https://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public
Modifications
• If you have a project idea that doesn’t satisfy all the requirements mentioned above,
please inform me, and we can discuss its viability as your final project.
• If you use techniques not covered in class, you must demonstrate your understanding
of these ideas.
Brightspace Submissions Guidelines
• Dataset and Partner: Submit the link to your chosen dataset and your partner’s
name by October 30th.
• Final Submissions: Upload your presentation slides, project write-up, and code to
Gradescope by the evening before the first scheduled presentation. The exact date
will be announced once the total number of projects is confirmed. (I expect the due
date to be December 4th or December 9th.)
Potential Challenges and Resources
As you work with your dataset, you may encounter specific challenges that require additional
 techniques or tools. Below are some topics and resources that might be useful.
Please explore these topics further through online research.
4• Feature Reduction: Consider using PCA (which will be covered in class). PCA is
especially useful when working with SVMs, as they can be slow with high-dimensional
data.
If you choose to use SelectKBest from scikit-learn, you must understand why it works
before you use it.
• Creating Synthetic Examples: When using SMOTE or other methods to generate
synthetic data, ensure that only real data is used in the validation and test sets.
- If using synthetic data, make sure your validation set and test set mirrors the true
class proportions from the original dataset. A balanced test set for naturally unbalanced
 data can give misleading impressions of your model’s real-world performance.
For more details, see: Handling Imbalanced Classes
• Working with Time Series Data: For insights on working with time series data,
visit: NIST Handbook on Time Series
• Handling Missing Feature Values:
– See Lecture 16 at Stanford STATS 306B
– Techniques to Handle Missing Data Values
– How to Handle Missing Data in Python
– Statistical Imputation for Missing Data
• Multiclass Classification:
– Understanding Softmax in Multiclass Classification
– Precision and Recall for Multiclass Metrics
• Optimizers for Neural Networks: You may use Adam or other optimizers for
training neural networks.
• Centering Image Data with Bounding Boxes: If you are working with image
data, you are allowed to use bounding boxes to center the objects in your images. You
can use libraries like OpenCV (‘cv2’).
Tips
Don’t forget to scale your data as part of preprocessing. Be sure to document any modifications
 you made, including the scaling or normalization techniques you applied.
The following resource might be helpful. Please stick to topics we discussed in class or
those mentioned above: CS229: Practical Machine Learning Advice

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓萊特省旅游經濟好嗎(景點推薦)
  • 下一篇:ENG6編程代寫、代做MATLAB語言程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          国产资源精品在线观看| 99在线精品免费视频九九视| 男女激情视频一区| 99亚洲视频| 激情久久综艺| 国产精品国产精品| 蜜臀a∨国产成人精品| 小嫩嫩精品导航| 日韩亚洲欧美成人一区| 精品动漫3d一区二区三区免费| 欧美视频在线一区| 欧美精品自拍| 免费日韩成人| 久久一区亚洲| 久久爱www久久做| 亚洲免费影视第一页| 亚洲激情成人网| 依依成人综合视频| 国产一区二区三区四区老人| 国产精品久久久久久久久久久久久| 另类天堂av| 乱中年女人伦av一区二区| 久久久精品国产一区二区三区| 亚洲欧美一区二区三区在线 | 欧美sm极限捆绑bd| 久久久伊人欧美| 久久亚裔精品欧美| 模特精品裸拍一区| 欧美不卡视频| 欧美日韩福利视频| 欧美色123| 国产精品成人aaaaa网站| 欧美视频国产精品| 国产精品美女午夜av| 国产精品视频免费| 国产一在线精品一区在线观看| 国产一区二区三区免费在线观看| 国产在线一区二区三区四区| 国产伊人精品| 亚洲理论电影网| 亚洲欧美日韩专区| 久久夜色精品| 欧美区亚洲区| 国产精品一区在线播放| 狠狠入ady亚洲精品| 亚洲国产成人tv| 99精品视频免费观看视频| 亚洲一区二区在线播放| 久久国产主播| 欧美日本在线| 国产视频一区在线观看一区免费| 国内精品视频666| 亚洲精品久久嫩草网站秘色| 亚洲视频在线观看| 久久久久久久综合色一本| 欧美国产乱视频| 国产精品亚洲аv天堂网| 久久亚洲私人国产精品va媚药 | 国产亚洲精品7777| 亚洲电影在线播放| 亚洲无线视频| 欧美成人精品影院| 国产三级精品在线不卡| 亚洲精品韩国| 久久久亚洲影院你懂的| 欧美视频在线观看一区二区| 在线成人免费观看| 亚洲欧美国产日韩中文字幕| 麻豆91精品| 国产日韩欧美中文| 亚洲图片激情小说| 欧美激情精品久久久久久黑人 | 狠狠色丁香久久婷婷综合_中| 亚洲精品国产品国语在线app| 小处雏高清一区二区三区 | 一区二区三区在线视频免费观看 | 狠狠色狠狠色综合人人| 亚洲欧洲一区二区三区| 久久久999成人| 国产精品久久久久一区二区三区共 | 久久精品一本久久99精品| 欧美日韩国产成人在线| 亚洲国产高清一区| 久久精品国产77777蜜臀| 国产精品久久97| 中文精品视频| 欧美日韩在线观看视频| 亚洲日本va午夜在线影院| 久久蜜臀精品av| 国产亚洲福利一区| 午夜久久电影网| 国产精品一区二区a| 亚洲一区二区网站| 国产精品久久久久毛片软件| 99视频精品| 久久久综合网站| 激情婷婷亚洲| 久久手机精品视频| 亚洲国产精品久久久久秋霞蜜臀 | 亚洲精品久久久久久久久久久久久| 久久婷婷成人综合色| 狠狠综合久久av一区二区老牛| 校园激情久久| 狠狠色狠狠色综合日日tαg| 久久久999精品免费| 精品动漫3d一区二区三区免费| 久久久亚洲一区| 最新亚洲激情| 欧美视频中文一区二区三区在线观看| 一区二区三区欧美在线| 国产精品久久久久999| 新狼窝色av性久久久久久| 国产日韩在线看| 欧美福利一区二区| 亚洲视频一区二区| 国产综合视频| 欧美成人精品在线视频| 一区二区三区精品视频在线观看| 欧美日韩一区二区三| 欧美亚洲综合在线| 亚洲激情电影中文字幕| 国产精品久久久久久久久久免费看| 欧美一级理论片| 亚洲国产精品一区二区第四页av| 欧美日本一区二区三区| 欧美一区二区三区久久精品| 在线观看成人一级片| 欧美视频中文字幕| 久久人人爽国产| 亚洲小视频在线| 亚洲福利久久| 国产日韩一区二区三区在线播放| 免费看成人av| 午夜精品视频在线观看| 亚洲国产婷婷香蕉久久久久久99| 国产精品区一区| 欧美电影免费观看大全| 香蕉国产精品偷在线观看不卡| 亚洲精品免费在线播放| 好吊妞**欧美| 国产精品视频久久| 欧美激情精品久久久久久| 亚洲欧美怡红院| 夜夜爽av福利精品导航 | 久久国产精品久久精品国产| 日韩午夜在线观看视频| 尤物精品在线| 国产农村妇女毛片精品久久莱园子| 欧美黑人多人双交| 久久九九99视频| 亚洲欧美日韩精品一区二区 | 亚洲小少妇裸体bbw| 亚洲国产欧美日韩精品| 国产一区自拍视频| 国产亚洲a∨片在线观看| 国产精品老牛| 欧美日韩日日夜夜| 欧美精品综合| 欧美激情免费在线| 欧美mv日韩mv国产网站| 欧美 日韩 国产在线| 麻豆精品视频在线观看| 老司机精品久久| 麻豆精品在线播放| 麻豆91精品91久久久的内涵| 久久精品午夜| 老色鬼久久亚洲一区二区| 久久精品亚洲精品| 久久久久久黄| 免费成人在线视频网站| 欧美成人精品1314www| 欧美 日韩 国产精品免费观看| 久久综合给合| 欧美国产精品久久| 欧美日韩国产专区| 国产精品男女猛烈高潮激情 | 欧美在线观看视频在线 | 极品尤物av久久免费看| 韩国三级在线一区| 亚洲国产精品久久久久久女王| 亚洲黄色有码视频| 中文日韩在线视频| 亚洲欧美日韩天堂| 久久不射2019中文字幕| 美女视频黄 久久| 欧美网站在线| 国产亚洲在线| 亚洲精品乱码久久久久| 亚洲午夜精品久久| 久久久国产成人精品| 欧美大片在线看| 国产精品国产馆在线真实露脸 | 欧美在线一区二区| 欧美成人久久| 国产精品av久久久久久麻豆网| 国产日韩欧美亚洲| …久久精品99久久香蕉国产| 宅男66日本亚洲欧美视频| 欧美在线日韩在线| 欧美日韩视频免费播放|