99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代寫 MSE 609、代做 Java,C++設計程序
代寫 MSE 609、代做 Java,C++設計程序

時間:2024-11-11  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Instructions:
MSE 609 Quantitative Data Analysis Midterm 3
1. Prepare your answers using Jupyter Notebook or R Markdown, and submit as a PDF or HTML document. Ensure your submission is clear, organized, and well-formatted.
2. Use complete sentences when explaining, commenting, or discussing. Provide thorough answers within the context of the problem for full credit.
3. Show all work and reasoning in your submission. Your grade will depend on the clarity, detail, and correctness of your answers.
4. The exam is open book and open notes. You may use textbooks, course notes, and approved coding tools (e.g., Jupyter Notebook or R Studio). However, using generative AI tools (e.g., large language models) is not permitted.
5. Total points = 100.
6. The exam duration is 1 week. Submit your completed exam by Thursday, November 14, at 11:59 PM. Late submissions will not be accepted.
7. Upload your submission to Crowdmark in PDF or HTML format.
Good Luck!
Problem 1 2 3 Total Max 42 40 18 100
   Points
 1

1. (42 points total) The data file question1.csv contains information about the economies of 366 metropolitan areas (MSAs) in the United States for the year 2006. The dataset includes variables such as the population, the total value of all goods and services produced for sale in the city that year per person (“per capita gross metropolitan product”, pcgmp), and the share of economic output coming from four selected industries.
a. (1 points) Load the data file and confirm that it contains 366 rows and 7 columns. Explain why there are seven columns when only six variables are described in the dataset.
b. (1 points) Compute summary statistics for the six numerical columns.
c. (4 points) Create univariate exploratory data analysis (EDA) plots for population and per capita GMP. Use histograms and boxplots, and describe the distributions of these variables.
d. (4 points) Generate a bivariate EDA plot showing per capita GMP as a function of population. Describe the relationship observed in the plot.
e. (3 points) Using only basic functions like mean, var, cov, sum, and arithmetic operations, cal- culate the slope and intercept of the least-squares regression line for predicting per capita GMP based on population.
f. (3 points) Compare the slope and intercept from your calculations to those returned by the lm function in R. Are they the same? Should they be?
g. (3 points) Add both regression lines to the bivariate EDA plot. Comment on the fit and whether the assumptions of the simple linear regression model appear to hold. Are there areas where the fit seems particularly good or poor?
h. (3 points) Identify Pittsburgh in the dataset. Report its population, per capita GMP, the per capita GMP predicted by your model, and the residual for Pittsburgh.
i. (2 points) Calculate the mean squared error (MSE) of the regression model. That is, compute n1 􏰀ni=1 e2i , where ei = Yi − Yˆi is the residual.
j. (2 points) Discuss whether the residual for Pittsburgh is large, small, or typical relative to the MSE.
2

k. (4 points) Create a plot of residuals (vertical axis) against population (horizontal axis). What pattern should you expect if the assumptions of the simple linear regression model are valid? Does the plot you generated align with these assumptions? Explain.
l. (3 points) Create a plot of squared residuals (vertical axis) against population (horizontal axis). What pattern should you expect if the assumptions of the simple linear regression model are valid? Does the plot you generated align with these assumptions? Explain.
m. (3 points) Carefully interpret the estimated slope in the context of the actual variables involved in this problem, rather than using abstract terms like ”predictor variable” or ”X”.
n. (3 points) Using the model, predict the per capita GMP for a city with a population that is 105 higher than Pittsburgh’s.
o. (3 points) Discuss what the model predicts would happen to Pittsburgh’s per capita GMP if a policy intervention were to increase its population by 105 people.
3

2. (40 points total) In real-world data analysis, the process goes beyond simply generating a model and reporting the results. It’s essential to accurately frame the problem, select appropriate analytical methods, interpret the findings, and communicate them in a way that is accessible to an audience that may not be familiar with advanced statistical methods.
Research Scenario: Coral shells, known scientifically as Lithoria crusta, are marine mollusks that inhabit rocky coastal areas. Their meat is highly valued as a delicacy, eaten raw or cooked in many cultures. Estimating the age of Lithoria crusta, however, is difficult since their shell size is influenced not only by age but also by environmental factors, such as food supply. The traditional method for age estimation involves applying stain to a shell sample and counting rings under a microscope. A team of researchers is exploring whether certain physical characteristics of Lithoria crusta, particularly their height, might serve as indicators of age. They propose using a simple linear regression model with normally distributed errors to examine the association between shell height and age, positing that taller shells are generally older. The dataset for this research is available at question2.csv.
a. (3 points) Load the data. Describe the research hypothesis.
b. (4 points) Examine the two variables individually (univariate). Find summary measures for each (mean, variance, range, etc.). Graphically display each and describe your graphs. What is the unit of height?
c. (4 points) Generate a labeled scatterplot of the data. Describe interesting features or trends you observe.
d. (2 points) Fit a simple linear regression to the data, predicting the number of rings using the height of the Lithoria crusta.
e. (4 points) Generate a labeled scatterplot that displays the data and the estimated regression function line (you may add this to the previous scatterplot). Describe the fit of the line.
f. (5 points) Perform diagnostics to assess whether the model assumptions are met. If not, appro- priately transform the height and/or number of rings and re-fit your model. Justify your decisions and re-check your diagnostics.
g. (4 points) Interpret your final parameter estimates in context. Provide 95% confidence intervals for β0 and β1, and interpret these in the context of the problem.
h. (3 points) Determine whether there is a statistically significant relationship between the height
4

and the number of rings (and hence, the age) of Lithoria crusta. Explain your findings in the context of the problem.
i. (4 points) Find the point estimate and the 95% confidence interval for the average number of rings for a Lithoria crusta with a height of 0.128 (in the same unit as other observations of height). Interpret this in the context of the problem.
j. (4 points) We are interested in predicting the number of rings for a Lithoria crusta with a height of 0.1** (in the same unit as other observations of height). Find the predicted value and a 99% prediction interval.
k. (3 points) What are your conclusions? Identify a key finding and discuss its validity. Can you come up with any reasons for what you observe? Do you have any suggestions or recommen- dations for the researchers? How could this analysis be improved? (Provide 6–8 sentences in total.)
5

3. (18 points total) Load the stackloss data:
  data(stackloss)
  names(stackloss)
  help(stackloss)
a. (3 points) Plot the data and describe any noticeable patterns or trends.
b. (5 points) Fit a multiple regression model to predict stack loss from the three other variables. The model is
Y =β0 +β1X1 +β2X2 +β3X3 +ε
where Y is stack loss, X1 is airflow, X2 is water temperature, and X3 is acid concentration. Sum- marize the results of the regression analysis, including the estimated coefficients and their interpre- tation.
c. (3 points) Construct ** percent confidence intervals for the coefficients of the linear regression model. Interpret these intervals in the context of the problem.
d. (3 points) Construct a 99 percent prediction interval for a new observation when Airflow = 58, Water temperature = 20, and Acid = 86. Interpret the prediction interval.
e. (4 points) Test the null hypothesis H0 : β3 = 0. What is the p-value? Based on a significance level of α = 0.10, what is your conclusion? Explain your reasoning.
6

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫 CP3405、代做 Python/C++語言編程
  • 下一篇:代做 CS 6613、代寫 c++,python 程序語言
  • ·代寫 CS 336、代做 java/c++設計程序
  • ·代做CMPT 401、代寫 c++設計程序
  • ·代做CS 259、Java/c++設計程序代寫
  • ·CSCI1120代寫、代做C++設計程序
  • ·COMP30026代做、C/C++設計程序代寫
  • ·MAST30027代做、Java/C++設計程序代寫
  • ·代寫COMP30026、C++設計程序代做
  • ·COS110代做、代寫C/C++設計程序
  • ·DDES9903代做、代寫Python/c++設計程序
  • ·代寫COMP282、代做C++設計程序
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                99久免费精品视频在线观看| 精品国产免费视频| 亚洲成人av免费| 亚洲色图20p| 在线综合亚洲欧美在线视频| 韩国av一区二区| 国产制服丝袜一区| 国产大片一区二区| 亚洲色图欧洲色图| 99re在线精品| 婷婷综合久久一区二区三区| 欧美日韩国产精品成人| 日韩二区在线观看| 日本一区二区在线不卡| 高清在线不卡av| 亚洲一区在线观看网站| 国产精品一区二区无线| 91一区二区三区在线观看| av在线一区二区三区| 欧美日韩精品一区二区三区| 亚洲精品一区二区三区四区高清| 欧美激情一区三区| 亚洲成人tv网| 99久久精品情趣| 欧美在线啊v一区| av在线播放不卡| 欧美性色综合网| 欧美人妖巨大在线| 中文一区二区完整视频在线观看| 亚洲国产精品av| 日本午夜一本久久久综合| 成人av网站大全| 欧美精品一区二区三区蜜臀| 天天色天天爱天天射综合| 精品制服美女久久| 欧美乱妇23p| 日韩影视精彩在线| 在线观看日韩精品| 一色桃子久久精品亚洲| 精品亚洲aⅴ乱码一区二区三区| 91久久香蕉国产日韩欧美9色| 国产精品黄色在线观看| 不卡一区二区在线| 国产欧美一区二区在线观看| 国产乱码精品1区2区3区| 欧美成人精品3d动漫h| 日韩av一级片| 欧美电影免费观看高清完整版在线 | 久久这里只有精品首页| 久久久亚洲高清| 成人视屏免费看| 久久亚洲二区三区| 五月天网站亚洲| 精品国产乱码久久久久久浪潮| 日本va欧美va精品发布| 欧美综合色免费| 日韩电影在线免费看| 欧洲精品一区二区三区在线观看| 国产精品国产三级国产aⅴ入口| 欧美亚洲尤物久久| 久久av资源站| 亚洲午夜激情av| 欧美成人国产一区二区| 舔着乳尖日韩一区| 777奇米成人网| 久久成人av少妇免费| 国产精品福利在线播放| 欧美日韩精品一区二区| 国产一区二区成人久久免费影院| 中文字幕一区在线| 国产精品日韩成人| 欧美男人的天堂一二区| 欧洲av一区二区嗯嗯嗯啊| 国产白丝网站精品污在线入口| 日韩电影在线一区| 国产乱码精品一区二区三区av| 久草热8精品视频在线观看| 麻豆国产精品视频| 毛片不卡一区二区| 久久精品久久久精品美女| 国产高清成人在线| 懂色av中文一区二区三区| 国产一区二区在线观看免费| 日韩av在线播放中文字幕| 日本视频一区二区三区| 亚洲精品五月天| 午夜伦理一区二区| 亚洲第一福利一区| 日韩中文欧美在线| 九九视频精品免费| 国产精品一区二区在线观看不卡| 天天操天天干天天综合网| 日产精品久久久久久久性色| 国产一区二区三区免费看| 国产99精品国产| 99精品久久只有精品| 成人免费观看男女羞羞视频| 99精品欧美一区二区三区小说| 成人午夜av电影| 色呦呦国产精品| 欧美一区日本一区韩国一区| 日韩欧美久久久| 久久精子c满五个校花| 国产拍揄自揄精品视频麻豆| 中文字幕av资源一区| 麻豆一区二区三区| 欧美日韩一区精品| 亚洲精品成a人| 成人免费黄色在线| 欧美成人精品1314www| 亚洲精品国产第一综合99久久| 免费成人结看片| 欧美日韩成人综合天天影院| 国产欧美一区二区精品婷婷| 日韩不卡在线观看日韩不卡视频| 国产精品自产自拍| 欧美精品一区二区蜜臀亚洲| 日韩黄色免费电影| 51精品秘密在线观看| 日韩激情一二三区| 日韩欧美亚洲国产另类| 日日夜夜免费精品| 884aa四虎影成人精品一区| 日本亚洲天堂网| 久久综合狠狠综合久久激情 | 久久这里只有精品首页| 日韩av一区二区三区四区| 欧美老肥妇做.爰bbww| 毛片一区二区三区| 国产欧美日韩在线视频| 蜜臀99久久精品久久久久久软件 | 久久久国产精品麻豆| 懂色av一区二区三区免费看| 国产精品国产三级国产普通话三级 | 美女免费视频一区二区| 精品久久五月天| 91亚洲精品久久久蜜桃| 日韩一区有码在线| 欧美日韩成人一区| 福利91精品一区二区三区| 午夜成人在线视频| 国产精品免费丝袜| 日韩欧美资源站| 97超碰欧美中文字幕| 中文字幕亚洲综合久久菠萝蜜| 欧洲精品中文字幕| 成人av集中营| 国精产品一区一区三区mba视频| 亚洲成人动漫在线免费观看| 欧美国产丝袜视频| 精品国产123| 日韩一区二区在线观看| 欧美精品乱码久久久久久| 欧美日韩精品欧美日韩精品一| 欧美性做爰猛烈叫床潮| 91丨porny丨户外露出| 91网站在线播放| 欧美一级高清片在线观看| 6080午夜不卡| 日韩精品在线看片z| 国产欧美精品一区二区三区四区| 久久在线观看免费| 国产精品美日韩| 亚洲成人黄色小说| 毛片一区二区三区| 处破女av一区二区| 91福利视频网站| 欧美日免费三级在线| 欧美精品视频www在线观看 | 欧美日韩国产另类一区| 欧美性一二三区| 日韩精品一区国产麻豆| 精品久久久久久久久久久院品网| 久久久精品免费免费| 一区精品在线播放| 午夜私人影院久久久久| 国产在线播放一区三区四| www.亚洲在线| 日韩三级视频在线观看| 国产精品欧美一区二区三区| 午夜精品久久久久久久99樱桃| 激情综合色综合久久| 96av麻豆蜜桃一区二区| 日韩午夜三级在线| 亚洲一区在线播放| 99国产精品久久久久久久久久久| 精品国产免费久久| 日韩影院免费视频| 欧美视频在线观看一区| 国产亚洲一区字幕| 国产一区福利在线| 日韩限制级电影在线观看| 亚洲影院免费观看| 色88888久久久久久影院按摩| 国产精品美女久久久久久久| 久久精品国产第一区二区三区| 欧美丰满少妇xxxbbb| 人人爽香蕉精品| 精品国产乱码久久久久久1区2区 | 最好看的中文字幕久久|