99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代寫 MSE 609、代做 Java,C++設計程序
代寫 MSE 609、代做 Java,C++設計程序

時間:2024-11-11  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Instructions:
MSE 609 Quantitative Data Analysis Midterm 3
1. Prepare your answers using Jupyter Notebook or R Markdown, and submit as a PDF or HTML document. Ensure your submission is clear, organized, and well-formatted.
2. Use complete sentences when explaining, commenting, or discussing. Provide thorough answers within the context of the problem for full credit.
3. Show all work and reasoning in your submission. Your grade will depend on the clarity, detail, and correctness of your answers.
4. The exam is open book and open notes. You may use textbooks, course notes, and approved coding tools (e.g., Jupyter Notebook or R Studio). However, using generative AI tools (e.g., large language models) is not permitted.
5. Total points = 100.
6. The exam duration is 1 week. Submit your completed exam by Thursday, November 14, at 11:59 PM. Late submissions will not be accepted.
7. Upload your submission to Crowdmark in PDF or HTML format.
Good Luck!
Problem 1 2 3 Total Max 42 40 18 100
   Points
 1

1. (42 points total) The data file question1.csv contains information about the economies of 366 metropolitan areas (MSAs) in the United States for the year 2006. The dataset includes variables such as the population, the total value of all goods and services produced for sale in the city that year per person (“per capita gross metropolitan product”, pcgmp), and the share of economic output coming from four selected industries.
a. (1 points) Load the data file and confirm that it contains 366 rows and 7 columns. Explain why there are seven columns when only six variables are described in the dataset.
b. (1 points) Compute summary statistics for the six numerical columns.
c. (4 points) Create univariate exploratory data analysis (EDA) plots for population and per capita GMP. Use histograms and boxplots, and describe the distributions of these variables.
d. (4 points) Generate a bivariate EDA plot showing per capita GMP as a function of population. Describe the relationship observed in the plot.
e. (3 points) Using only basic functions like mean, var, cov, sum, and arithmetic operations, cal- culate the slope and intercept of the least-squares regression line for predicting per capita GMP based on population.
f. (3 points) Compare the slope and intercept from your calculations to those returned by the lm function in R. Are they the same? Should they be?
g. (3 points) Add both regression lines to the bivariate EDA plot. Comment on the fit and whether the assumptions of the simple linear regression model appear to hold. Are there areas where the fit seems particularly good or poor?
h. (3 points) Identify Pittsburgh in the dataset. Report its population, per capita GMP, the per capita GMP predicted by your model, and the residual for Pittsburgh.
i. (2 points) Calculate the mean squared error (MSE) of the regression model. That is, compute n1 􏰀ni=1 e2i , where ei = Yi − Yˆi is the residual.
j. (2 points) Discuss whether the residual for Pittsburgh is large, small, or typical relative to the MSE.
2

k. (4 points) Create a plot of residuals (vertical axis) against population (horizontal axis). What pattern should you expect if the assumptions of the simple linear regression model are valid? Does the plot you generated align with these assumptions? Explain.
l. (3 points) Create a plot of squared residuals (vertical axis) against population (horizontal axis). What pattern should you expect if the assumptions of the simple linear regression model are valid? Does the plot you generated align with these assumptions? Explain.
m. (3 points) Carefully interpret the estimated slope in the context of the actual variables involved in this problem, rather than using abstract terms like ”predictor variable” or ”X”.
n. (3 points) Using the model, predict the per capita GMP for a city with a population that is 105 higher than Pittsburgh’s.
o. (3 points) Discuss what the model predicts would happen to Pittsburgh’s per capita GMP if a policy intervention were to increase its population by 105 people.
3

2. (40 points total) In real-world data analysis, the process goes beyond simply generating a model and reporting the results. It’s essential to accurately frame the problem, select appropriate analytical methods, interpret the findings, and communicate them in a way that is accessible to an audience that may not be familiar with advanced statistical methods.
Research Scenario: Coral shells, known scientifically as Lithoria crusta, are marine mollusks that inhabit rocky coastal areas. Their meat is highly valued as a delicacy, eaten raw or cooked in many cultures. Estimating the age of Lithoria crusta, however, is difficult since their shell size is influenced not only by age but also by environmental factors, such as food supply. The traditional method for age estimation involves applying stain to a shell sample and counting rings under a microscope. A team of researchers is exploring whether certain physical characteristics of Lithoria crusta, particularly their height, might serve as indicators of age. They propose using a simple linear regression model with normally distributed errors to examine the association between shell height and age, positing that taller shells are generally older. The dataset for this research is available at question2.csv.
a. (3 points) Load the data. Describe the research hypothesis.
b. (4 points) Examine the two variables individually (univariate). Find summary measures for each (mean, variance, range, etc.). Graphically display each and describe your graphs. What is the unit of height?
c. (4 points) Generate a labeled scatterplot of the data. Describe interesting features or trends you observe.
d. (2 points) Fit a simple linear regression to the data, predicting the number of rings using the height of the Lithoria crusta.
e. (4 points) Generate a labeled scatterplot that displays the data and the estimated regression function line (you may add this to the previous scatterplot). Describe the fit of the line.
f. (5 points) Perform diagnostics to assess whether the model assumptions are met. If not, appro- priately transform the height and/or number of rings and re-fit your model. Justify your decisions and re-check your diagnostics.
g. (4 points) Interpret your final parameter estimates in context. Provide 95% confidence intervals for β0 and β1, and interpret these in the context of the problem.
h. (3 points) Determine whether there is a statistically significant relationship between the height
4

and the number of rings (and hence, the age) of Lithoria crusta. Explain your findings in the context of the problem.
i. (4 points) Find the point estimate and the 95% confidence interval for the average number of rings for a Lithoria crusta with a height of 0.128 (in the same unit as other observations of height). Interpret this in the context of the problem.
j. (4 points) We are interested in predicting the number of rings for a Lithoria crusta with a height of 0.1** (in the same unit as other observations of height). Find the predicted value and a 99% prediction interval.
k. (3 points) What are your conclusions? Identify a key finding and discuss its validity. Can you come up with any reasons for what you observe? Do you have any suggestions or recommen- dations for the researchers? How could this analysis be improved? (Provide 6–8 sentences in total.)
5

3. (18 points total) Load the stackloss data:
  data(stackloss)
  names(stackloss)
  help(stackloss)
a. (3 points) Plot the data and describe any noticeable patterns or trends.
b. (5 points) Fit a multiple regression model to predict stack loss from the three other variables. The model is
Y =β0 +β1X1 +β2X2 +β3X3 +ε
where Y is stack loss, X1 is airflow, X2 is water temperature, and X3 is acid concentration. Sum- marize the results of the regression analysis, including the estimated coefficients and their interpre- tation.
c. (3 points) Construct ** percent confidence intervals for the coefficients of the linear regression model. Interpret these intervals in the context of the problem.
d. (3 points) Construct a 99 percent prediction interval for a new observation when Airflow = 58, Water temperature = 20, and Acid = 86. Interpret the prediction interval.
e. (4 points) Test the null hypothesis H0 : β3 = 0. What is the p-value? Based on a significance level of α = 0.10, what is your conclusion? Explain your reasoning.
6

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫 CP3405、代做 Python/C++語言編程
  • 下一篇:代做 CS 6613、代寫 c++,python 程序語言
  • ·代寫 CS 336、代做 java/c++設計程序
  • ·代做CMPT 401、代寫 c++設計程序
  • ·代做CS 259、Java/c++設計程序代寫
  • ·CSCI1120代寫、代做C++設計程序
  • ·COMP30026代做、C/C++設計程序代寫
  • ·MAST30027代做、Java/C++設計程序代寫
  • ·代寫COMP30026、C++設計程序代做
  • ·COS110代做、代寫C/C++設計程序
  • ·DDES9903代做、代寫Python/c++設計程序
  • ·代寫COMP282、代做C++設計程序
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          中文国产成人精品久久一| 精东粉嫩av免费一区二区三区| 先锋影音一区二区三区| 精品盗摄一区二区三区| 欧美性色视频在线| 美日韩在线观看| 欧美与黑人午夜性猛交久久久| 黄色成人av| 国产伦精品一区| 欧美三级日本三级少妇99| 美女精品国产| 久久久精品一品道一区| 亚洲深夜福利网站| 9色精品在线| 亚洲区欧美区| 亚洲高清视频中文字幕| 激情视频亚洲| 国产网站欧美日韩免费精品在线观看| 欧美日韩综合另类| 欧美激情网友自拍| 免费看黄裸体一级大秀欧美| 久久精品五月| 久久精品国产综合精品| 亚洲欧美日韩国产中文| 亚洲欧美激情视频在线观看一区二区三区| 亚洲激情视频在线| 亚洲国产高清在线| 亚洲第一免费播放区| 伊人久久亚洲美女图片| 极品少妇一区二区三区精品视频| 国内自拍一区| 好看的av在线不卡观看| 国产真实久久| 亚洲电影激情视频网站| 亚洲黄色尤物视频| 亚洲乱亚洲高清| 99精品国产高清一区二区| 亚洲毛片在线看| 亚洲天天影视| 欧美伊人久久大香线蕉综合69| 久久不射中文字幕| 免费不卡中文字幕视频| 欧美精品乱人伦久久久久久 | 亚洲精品免费观看| 一区二区av在线| 午夜精品久久久久99热蜜桃导演| 欧美一区二区视频在线观看| 久久久久久久网站| 欧美另类极品videosbest最新版本| 欧美国产精品中文字幕| 免费成人网www| 免费中文日韩| 国产精品扒开腿做爽爽爽视频| 国产日韩欧美精品一区| 亚洲丶国产丶欧美一区二区三区 | 欧美电影免费观看大全| 欧美午夜免费影院| 国产亚洲欧洲997久久综合| 亚洲高清色综合| 亚洲一区二区三区高清不卡| 久久人人看视频| 国产精品xxxxx| 在线观看福利一区| 亚洲永久精品大片| 欧美精品1区| 国内成人自拍视频| 亚洲无线视频| 欧美另类专区| 韩国三级在线一区| 亚洲特级毛片| 欧美精品一区二区在线观看| 国产午夜精品在线| 亚洲视频在线观看视频| 欧美xx69| 樱桃成人精品视频在线播放| 亚洲欧美日韩国产中文| 欧美激情综合色| 狠狠爱综合网| 欧美影院在线| 国产精品久久精品日日| 亚洲精品综合精品自拍| 久久亚洲精选| 黄色一区二区在线观看| 亚洲欧美日韩国产一区二区三区| 欧美日韩国产精品专区| 91久久国产综合久久| 久久久水蜜桃| 国内成+人亚洲| 久久精品国产久精国产爱| 国产女同一区二区| 亚洲一区二区在线看| 欧美激情视频在线播放| 亚洲日本aⅴ片在线观看香蕉| 久久久另类综合| 国产一区二区中文字幕免费看| 午夜精品视频| 国产一区二区激情| 久久精品国产99国产精品| 国产在线视频欧美一区二区三区| 欧美一区二区在线视频| 国产一区二区精品久久99| 久久精品免费看| 伊人成人网在线看| 欧美不卡在线视频| 亚洲欧洲综合| 国产精品jizz在线观看美国| 中日韩美女免费视频网站在线观看| 欧美日韩国产综合网| 亚洲已满18点击进入久久| 国产精品久久久久影院亚瑟| 亚洲欧美不卡| ●精品国产综合乱码久久久久| 欧美大胆成人| 亚洲综合色丁香婷婷六月图片| 国产视频精品xxxx| 美女视频黄 久久| 99re热这里只有精品视频| 国产精品激情电影| 久久久久九九九| 9久草视频在线视频精品| 欧美偷拍一区二区| 久久久噜噜噜久久中文字幕色伊伊 | 国产视频欧美视频| 男男成人高潮片免费网站| 一本色道久久综合亚洲精品婷婷 | 亚洲一区中文| 国内揄拍国内精品少妇国语| 欧美成va人片在线观看| 亚洲免费在线观看视频| 在线观看久久av| 国产精品久久波多野结衣| 久久久99精品免费观看不卡| 日韩一区二区免费高清| 国产区亚洲区欧美区| 欧美日本精品在线| 欧美一级播放| 一区二区三区欧美视频| 一区精品久久| 国产精品午夜在线| 欧美精品亚洲一区二区在线播放| 欧美亚洲视频一区二区| 亚洲美女黄色片| 在线看国产一区| 国产午夜精品一区二区三区欧美| 欧美精品一区三区在线观看| 欧美在线视频网站| 亚洲专区一区| 一本不卡影院| 亚洲精品日韩在线观看| 在线观看视频欧美| 国精品一区二区三区| 国产欧美日韩激情| 国产精品成人一区二区三区吃奶| 欧美成人中文| 免费成人黄色| 久久综合九色欧美综合狠狠| 欧美资源在线| 午夜精品久久久久久久久久久久久 | 亚洲激情在线播放| 激情久久久久久久| 国产麻豆综合| 国产乱码精品一区二区三| 国产精品男女猛烈高潮激情| 欧美日韩天堂| 欧美午夜女人视频在线| 欧美日韩一区二区三区视频| 欧美日韩国产综合新一区| 欧美精品在线视频| 欧美国产一区二区| 欧美欧美天天天天操| 欧美美女bbbb| 国产精品美女久久久久aⅴ国产馆| 欧美人与禽猛交乱配| 欧美日韩精品系列| 欧美午夜美女看片| 国产精品一区二区你懂的| 国产欧美一区二区精品性色| 国产精品自在线| 黄色精品网站| 亚洲精品久久| 亚洲视频电影在线| 欧美一区二区三区在线免费观看| 欧美在线精品免播放器视频| 久久久久成人精品| 欧美精品激情在线| 欧美日韩亚洲综合一区| 国产乱码精品| 亚洲高清资源综合久久精品| 亚洲美女电影在线| 午夜在线视频观看日韩17c| 久久全球大尺度高清视频| 欧美国产欧美亚洲国产日韩mv天天看完整| 欧美精品91| 国产欧美精品一区二区色综合| 伊人久久婷婷色综合98网| 99日韩精品| 久久成人精品无人区| 欧美成人精品在线观看| 国产精品久久7| 亚洲国产婷婷综合在线精品|