99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CS 259、Java/c++設計程序代寫
代做CS 259、Java/c++設計程序代寫

時間:2024-10-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Fall 2024 
CS 259 Lab 1 
Accelerating Convolutional Neural Network (CNN) on FPGAs using 
Merlin Compiler 
Due October 9 11:59pm 
Description 
Your task is to accelerate the computation of two layers in a convolutional neural network 
(CNN) using a high-level synthesis (HLS) tool on an FPGA. We encourage you to start with 
using the Merlin Compiler. For an input image with 228 × 228 pixels and 256 channels, you 
are going to calculate the tensor after going through a 2D convolution layer and a 2D max 
pooling layer. The convolution layer has 256 filters of shape 256 × 5 × 5, uses the ReLU 
activation relu(x) = max{x, 0} with a bias value for each output channel. The 2D maxpooling
 layer operates on 2 × 2 non-overlapping windows. You will need to implement this 
function using HLS: 
void CnnKernel(const float* input, const float* weight, const float* bias, float* 
output) 
where input is the input image of size [256][228][228], weight stores the weights of the 
convolution filters of size [256][256][5][5], bias stores the offset values of size [256] that 
will be added to the output channels, and output should be written to by you as defined 
above to store the result of maxpool(relu(conv2d(input, weight) + bias)). The output 
size is [256][112][112]. 
How-To 
FPGA accelerator compilation typically involves three (3) stages: high-level synthesis (HLS), 
bitstream generation, and onboard execution. The last two stages can take days to 
complete. Therefore, in this lab, we only focus on the first stage: HLS. Your performance will 
only be assessed using the estimation in the HLS reports, which is usually accurate. 
However, you are welcome to try out the last two steps if you are interested. 
 
 
 
Connecting to the Server: Method 1 
In this method, you won’t be able to run Merlin directly from your /home directory, so you’ll need 
to copy files back and forth. 
1. Connect to the server (VPN may be required). You can find VPN details here: 
https://www.it.ucla.edu/it-support-center/services/virtual-private-network-vpn-clients  
ssh <username>@brimstone.cs.ucla.edu 
 
2. Start the Docker container and share your home with –v: 
 
docker run -v /d0/class/:/home -it vitis2021 /bin/bash 
 
3. Source Vitis, navigate to the desired directory and clone the repository: 
 
source /tools/Xilinx/Vitis_HLS/2021.1/settings64.sh 
cd /opt 
git clone https://github.com/UCLA-VAST/cs-259-f24.git 
cd cs-259-f24/lab1 
 
4. Copy the necessary file to your home directory: 
 
cp /opt/cs-259-f24/lab1/cnn-krnl.cpp /home/<username> 
Connecting to the Server: Method 2 
In this method, you can run Merlin directly from your /home directory, but make sure to export your 
home directory. 
 
1. Connect to the server (VPN may be required). You can find VPN details here: 
https://www.it.ucla.edu/it-support-center/services/virtual-private-network-vpn-clients 
 
ssh <username>@brimstone.cs.ucla.edu 
 
2. Start the Docker container and share your home with –v: 
 
docker run --user $(id -u):100 -v /d0/class/:/home -it vitis2021 /bin/bash 
 
3. Export your home directory: 
 
export HOME=/home/<username> 
 
4. Source Vitis, navigate to your home directory and clone the repository: 
 
source /tools/Xilinx/Vitis_HLS/2021.1/settings64.sh 
cd /home/<username> 
git clone https://github.com/UCLA-VAST/cs-259-f24.git 
cd cs-259-f24/lab1 
Build and Run Baseline with Software Simulation 
We have prepared the starter kit for you. Please run: make 
This command will perform a software simulation of the provided starter FPGA HLS kernel. It 
should show “PASS”. You need to use FPGA Developer AMI in this lab unless you are using 
a computer with Xilinx Vitis HLS installation. However, you are still suggested to develop code 
and run software simulation locally to test the correctness. You can move to AWS once you 
enter the tuning stage. 
Understand the automatic Merlin’s optimization 
Before modifying the kernel and adding pragmas, synthesize the CNN kernel with Merlin and 
describe in your report the automatic optimizations made by Merlin and how this reduces 
latency. 
Modify the HLS CNN Kernel 
If you have successfully built and run the baseline HLS CNN kernel, you can now optimize 
the code to design your CNN kernel. Your task is to implement a fast, parallel version of the 
CNN kernel on FPGA. You should start with the provided starter kit. You should edit cnnkrnl.cpp
for this task. When editing, please use the given types input_t, weight_t, bias_t, 
and output_t for the corresponding data, and compute_t for your intermediate values. 
You can use them as if they are float numbers. 
Parallelism should be exploited by using Merlin pragmas and tiling. You are encouraged to 
focus on Merlin pragmas (#pragma ACCEL parallel, #pragma ACCEL pipeline and #pragma 
ACCEL tile). You can explicitly modify the code (tiling, loop permutation, …) but make sure 
the code modified is correct. 
In the starter kit, we simply wrap a sequential CNN code with #pragma ACCEL kernel, and 
Merlin automatically performs data caching, memory coalescing, pipelining and 
parallelization, which yield about 10 GFLOPs. 
Although the skeleton kernel is provided, you are also free to create your own by removing 
the header file inclusion of “lib/cnn-krnl.h” and implement the basic kernel from scratch. 
However, this would require specific expertise in Xilinx FPGA architecture and is not 
recommended for this course. 
Test Your HLS CNN Kernel with Software Simulation 
To perform software emulation of your FPGA implementation of CNN kernel: 
make 
If you see something similar to the following message, your implementation is incorrect. 
Found 21201** errors 
FAIL Since the software simulation step uses the CPU to emulate the hardware behavior, it only 
serves as correctness test and its execution time doesn’t reflect that of actual hardware. Your 
estimated execution time should be retrieved using the command below: 
make estimate 
This command will print out the estimated latency and resource usage of your kernel: 
+---------------------------+------------------------+----------+----------+---------+--------+-------+------+ 
| Kernel | Cycles | LUT | FF | BRAM | DSP | URAM |Detail| 
+---------------------------+------------------------+----------+----------+---------+--------+-------+------+ 
|CnnKernel (cnn-krnl.cpp:12)|4179564052 (16718.256ms)|49558 (4%)|49381 (2%)|810 (18%)|202 (2%)|25 (2%)|- | 
+---------------------------+------------------------+----------+----------+---------+--------+-------+------+ 
The time highlighted in yellow is the estimated execution time of your FPGA kernel. You can 
get the performance by “kNum*kNum*kImSize*kImSize*kKernel*kKernel*2/latency”, or 
164.4/latency (in s) to get the performance in GFLOPS. 
IMPORTANT: Please make sure that all your loops have fixed loop bounds. If any of the loop 
bounds are variable, a performance estimation will not be shown and you will receive no 
performance grade. 
IMPORTANT: The “make estimate” command should finish in 30 minutes, or in two hours 
with highly-complex optimizations. Our recommendation is to halt your estimation using 
Ctrl-C when the time exceeds 30 minutes, except for your last step (after you reach ~100 
GOPS). More than 12 hours in the estimation will result in zero for the performance score. 
As your kernel design becomes more complex, the software simulation and the estimation 
will start to take a significantly longer time. 
IMPORTANT: As you apply more optimizations, your resource usage will also increase. 
Ideally, you should keep applying optimization until your kernel occupies about 80% of these 
resources. The remaining 20% should be reserved for the interfaces (DRAM/PCI-e controller) 
and the downstream flows. Please make sure that resource utilization is less than 80% for all 
FPGA resources. If any of the resources are over this limit, you will receive no performance 
grade. 
IMPORTANT: You can check the HLS report by opening merlin.rpt with a text editor. This 
file will be generated with the command make estimate. You must submit this file with your 
final submission. You should not modify this file in your submission, and it will be all verified 
after submission due. Any modification to this file in your submission constitutes academic 
misconduct and will be reported. 
Advanced Tips for HLS 
Kernel Profiling: If you want to “profile” your kernel, you can open merlin.rpt with a text 
editor and scroll down to Performance Estimate. You can see the trip count, accumulated 
cycles and cycles per call, as well as pipeline initiation interval and parallel factor for each 
loop in the table. For resource usage, you can go to Resource Estimate. No loop level 
information is available, though. If you want to check the resource usage of a code region, 
you can wrap it with a function then run again. 
Kernel after transformation: If you want to see the kernel after being transformed by Merlin, 
you can look for that in .merlin_prj/run/implement/exec/hls/kernel. Annotation for Profiling: If you find the loops in your report hard to read, you can name the 
loops you are interested in using a goto label. For example, this_loop: for (int i = 0; 
i < n; i++); 
Debugging Pipelining: If you are not sure about why you cannot achieve a specific initiation 
interval as you expected, you can open the file below and read the logs. HLS usually gives out 
a reason. 
.merlin_prj/run/implement/exec/hls/_x/logs/CnnKernel/CnnKernel/vitis_hls.log 
Long Synthesis Time In Pipelining: You will experience long HLS synthesis time (for 
generating the estimation) if you pipeline a loop with a large loop body. Besides, please note 
that as all loops inside a pipeline will be unrolled, it may be automatically a large loop body. 
In this case, you may want to exchange the order of pipelining and unrolling and see if the time 
can get improved. 
Use Functions for Shorter Synthesis Time: If you experience long synthesis time, you may try 
wrapping some loops into a function and specify #pragma HLS inline off inside the 
function body. However, this may lead to inaccurate dependency analysis or memory port 
analysis and cause lower performance sometimes. There might be some workarounds, or 
not. For example, if you have access to A[k + i][j] inside the function, passing A + k to 
the function and accessing A’[i][j] can allow HLS to understand the array partitioning 
better than passing A. You need to do experiments. 
General Tips 
● When you develop on AWS, to resume a session in case you lose your connection, you 
can run screen after login. You can recover your session with screen -DRR. You should 
stop your AWS instance if you are going to come back and resume your work in a few 
hours or days. Your data will be preserved but you will be charged for the EBS storage 
for $0.10 per GB per month (with default settings). You should terminate your instance 
if you are not going to come back and resume your work. Data on the instance will be 
lost. 
● You are recommended to use private repositories provided by GitHub to backup your 
code. Never put your code in a public repo to avoid potential plagiarism. To check in 
your code to a private GitHub repo, create a repo first. 
git branch -m upstream 
git checkout -b main # skip these two lines if you are reusing the folder in Lab 1 
... // your modifications 
git add cnn-krnl.cpp merlin.rpt 
git commit -m "lab1: first version" # change commit message accordingly 
# please replace the URL with your own URL 
git remote add origin git@github.com:YourGitHubUserName/your-repo-name.git 
git push -u origin main 
● You are recommended to git add and git commit often so that you can keep track of 
the history and revert whenever necessary. 
● Make sure your code produces correct results! 
(Optional) Modify the HLS CNN Kernel using Vitis Pragmas 
You are encouraged to use mainly Merlin pragmas. If needed, you can use Vitis pragmas for 
finer-grained control and optimization. The list of pragmas in Vitis can be found here. You can simply write Vitis pragmas and Merlin pragmas in the same file (cnn-krnl.cpp), but note 
that, to apply an HLS pragma to a loop, you need to put the pragma inside the loop body 
instead of before it. 
Submission 
You need to report the estimated performance results of your FPGA-based implementation on 
a Xilinx Ultrascale+ VU9P FPGA (the FPGA we are using, specified in the makefile). Please 
express your performance in GFLOPS and the speedup compared with the starter-kit version. 
Your report should also include: 
● Please run the input C file through the Merlin Compiler, identify the code 
transformation and HLS pragmas that Merlin added, and discuss why. 
● Please explain the parallelization and optimization strategies you have applied for 
each loop in the CNN program (convolution, max pooling, etc) in this lab. Include the 
pragmas (if any) or code segments you have added to achieve your strategy. 
● Please incrementally evaluate each parallelization/optimization that you have applied 
and explain why it improves the performance. 
● Please report the FPGA resources (LUT/FF/DSP/BRAM) usages, in terms of resource 
count and percentage of the total. Which resource has been used most, in terms of 
percentage? 
● Optional: The challenges you faced, and how you overcame them. 
● (Bonus +5pts): Analyze your code and check if the DSP/BRAM resource usage 
matches your expectation. Only the adders, multipliers, and size of arrays need to be 
considered. Please attach related code segments to your report and show how you 
computed the expected number. Provide a discussion on possible reasons if they 
differ significantly. 
You also need to submit your optimized kernel code. Do not modify code in the lib directory. 
Please submit on Gradescope. Your final submission should contain and only contain these 
files individually: 
 ├ cnn-krnl.cpp 
 ├ merlin.rpt 
 └ lab**report.pdf 
File lab**report.pdf must be in PDF format. 
Grading Policy 
Your submission will only be graded if it complies with the formatting requirements. 
Missing reports/code or compilation errors will result in 0 for the corresponding 
category(ies). 
Correctness (40%) 
Please check the correctness using the command “make”. Performance (40%) 
Your performance will be evaluated based on the estimation report generated using the 
command “make estimate”. The performance point will be added only if you have the 
correct result, so please prioritize the correctness over performance. Your performance will 
be evaluated based on the ranges of throughput (GOPS). Ranges A+ and A++ will be defined 
after all the submissions are graded: 
● Range A++, better than Range A+ performance: 40 points + 20 points (bonus) 
● Range A+, better than Range A performance: 40 points + 10 points (bonus) 
● Range A GFLOPS [200, 280]: 40 points 
● Range B GFLOPS [120, 200): 30 points 
● Range C GFLOPS [60, 120): 20 points 
● Range D GFLOPS [30, 60): 10 points 
● Lower than range F [0, 30): 0 points 
 
Report (20%) 
Points may be deducted if your report misses any of the sections described above. 
Academic Integrity 
All work is to be done individually, and any sources of help are to be explicitly cited. You must 
not modify the HLS report merlin.rpt in your submission. Any instance of academic 
dishonesty will be promptly reported to the Office of the Dean of Students. Academic 
dishonesty includes, but is not limited to, cheating, fabrication, plagiarism, copying code from 
other students or from the internet, modifying the software-generated report, or facilitating 
academic misconduct. We’ll use automated software to identify similar sections between 
different student programming assignments, against previous students’ code, or against 
Internet sources. We’ll run HLS on all submissions and compare the reproduced HLS 
report with the submitted report. Students are not allowed to post the lab solutions on public 
websites (including GitHub). Please note that any version of your submission must be your 
own work and will be compared with sources for plagiarism detection. 
Late policy: Late submission will be accepted for 24 hours with a 10% penalty. No late 
submission will be accepted after that (you lost all points after the late submission time). 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp









 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE4016、Python設計編程代做
  • 下一篇:DDA3020代做、代寫Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美自拍偷拍午夜视频| 在线成人午夜影院| 欧美成人a∨高清免费观看| 秋霞午夜鲁丝一区二区老狼| 精品国内二区三区| 97aⅴ精品视频一二三区| 一区二区三区电影在线播| 69p69国产精品| 国模少妇一区二区三区| 国产精品午夜电影| 欧美日韩一级黄| 国内一区二区在线| 亚洲另类在线视频| 精品国产三级a在线观看| jizz一区二区| 亚洲综合在线五月| 日韩欧美在线不卡| 中文字幕一区二区三区精华液 | 色悠悠亚洲一区二区| 欧美三电影在线| 国产亚洲一区二区三区在线观看| 一区二区三区美女| 97久久精品人人爽人人爽蜜臀| 日本一区二区成人在线| 91小视频在线免费看| 午夜精品久久久久久久99樱桃| 日韩欧美不卡一区| 成人18视频日本| 石原莉奈在线亚洲二区| 国产午夜精品一区二区| 色天天综合色天天久久| 久久国产人妖系列| 亚洲丝袜自拍清纯另类| 制服.丝袜.亚洲.中文.综合| 久久99国产精品免费网站| 国产精品麻豆网站| 国产精品系列在线播放| 亚洲精品高清在线| 精品国产青草久久久久福利| 91免费视频大全| 极品美女销魂一区二区三区| 亚洲精品免费在线播放| 精品久久人人做人人爽| 91久久奴性调教| 国产精品一区一区| 三级一区在线视频先锋| 最新成人av在线| 久久众筹精品私拍模特| 欧美三级日本三级少妇99| 国产成人8x视频一区二区| 日本在线不卡一区| 有坂深雪av一区二区精品| 91久久久免费一区二区| 日产国产欧美视频一区精品| 欧美日韩一区国产| 亚洲图片欧美色图| 精品福利一区二区三区 | 免费在线看一区| 国产精品色噜噜| 日韩视频免费直播| 欧美人xxxx| 91久久线看在观草草青青| 丁香婷婷综合激情五月色| 精品在线观看免费| 日本网站在线观看一区二区三区 | 欧美日韩成人综合| 婷婷一区二区三区| 精品对白一区国产伦| 日韩欧美综合在线| 日韩欧美一区二区免费| 欧美日韩国产成人在线91| 一本色道久久综合精品竹菊| 国产成人av影院| 蜜乳av一区二区| 日本欧美在线观看| 亚洲视频香蕉人妖| 国产精品福利av| 亚洲欧洲精品一区二区三区不卡| 精品美女一区二区三区| 日韩视频永久免费| 日韩一区二区在线观看视频| 欧美亚洲尤物久久| 欧美在线不卡视频| 精品视频色一区| 欧美色爱综合网| 欧美精品九九99久久| 欧美肥妇bbw| 日韩欧美中文字幕一区| 欧美精品一区二区精品网| 欧美成人欧美edvon| 久久久91精品国产一区二区三区| 国产欧美一区二区精品仙草咪| 日本一区二区免费在线| 欧洲激情一区二区| 欧美日韩中文字幕精品| 欧美变态tickling挠脚心| 久久精品日产第一区二区三区高清版| 色婷婷综合久色| 国产成人亚洲综合色影视| 狠狠久久亚洲欧美| 视频一区视频二区中文| 久久国产麻豆精品| 成人av电影在线观看| 欧美在线免费视屏| 2欧美一区二区三区在线观看视频| 国产欧美精品一区二区三区四区 | 国产精品一区二区三区网站| 岛国精品一区二区| 欧美精品日日鲁夜夜添| 久久久久久久性| 亚洲小说欧美激情另类| 精品一区二区在线看| 一本色道综合亚洲| 久久视频一区二区| 性做久久久久久免费观看| 亚洲成人动漫精品| 成人av集中营| 一区二区视频在线看| 国产午夜久久久久| 91精品国产色综合久久ai换脸 | 欧美日韩电影一区| 91精品国产综合久久久久| 欧美日韩国产首页在线观看| 日韩精品一区二区三区视频在线观看 | 欧美videos大乳护士334| 亚洲国产精品ⅴa在线观看| 亚洲精品伦理在线| 奇米一区二区三区av| 91网站视频在线观看| 亚洲精品一区二区三区香蕉| 亚洲国产精品久久人人爱蜜臀 | 看国产成人h片视频| av在线一区二区| 久久久久国产免费免费| 日韩av中文字幕一区二区| 在线观看日产精品| 亚洲特级片在线| www.日韩av| 99re热这里只有精品免费视频| 久久精品人人做| 另类欧美日韩国产在线| 欧美精品黑人性xxxx| 亚洲愉拍自拍另类高清精品| 97久久精品人人做人人爽| 欧美老年两性高潮| 亚洲视频一区二区免费在线观看 | 国产欧美综合色| 黑人巨大精品欧美一区| 欧美一二三在线| 日日夜夜免费精品| 欧美乱妇23p| 久久午夜老司机| 天堂久久一区二区三区| aaa亚洲精品| 日韩欧美中文字幕公布| 欧美tk丨vk视频| 久久精品一区二区| 成人在线视频一区| 亚洲欧洲日韩av| 夜夜嗨av一区二区三区中文字幕 | 亚洲444eee在线观看| av电影天堂一区二区在线观看| 国产精品美女久久久久久久久久久| 国产成人精品亚洲日本在线桃色| 国产亚洲污的网站| 97精品久久久久中文字幕| 亚洲国产日韩av| 欧美电影免费观看高清完整版在线| 国产欧美一区二区精品性色| 91在线视频官网| 日韩精品五月天| 久久色视频免费观看| 99在线精品视频| 亚欧色一区w666天堂| 精品国产一区久久| 91一区二区三区在线播放| 性久久久久久久久久久久| 亚洲精品一区二区三区精华液| 国产成人免费视| 亚洲在线免费播放| 久久久亚洲高清| 欧美三级中文字幕在线观看| 亚洲欧美日韩国产另类专区 | 午夜日韩在线观看| 久久影院视频免费| 91视频免费播放| 美女网站一区二区| 亚洲品质自拍视频| xfplay精品久久| 欧洲国内综合视频| 国产成人综合亚洲网站| 国产欧美日韩综合| 91视频免费播放| 国产成人在线免费| 欧美大片日本大片免费观看| av电影天堂一区二区在线| 韩国欧美一区二区| 五月天一区二区| 亚洲人xxxx| 国产欧美综合在线|