99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

DDA3020代做、代寫Python語言編程
DDA3020代做、代寫Python語言編程

時間:2024-10-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



DDA3020 Homework 1
Due date: Oct 14, 2024
Instructions
• The deadline is 23:59, Oct 14, 2024.
• The weight of this assignment in the ffnal grade is 20%.
• Electronic submission: Turn in solutions electronically via Blackboard. Be sure to submit
 your homework as one pdf ffle plus two python scripts. Please name your solution ffles as
”DDA3020HW1 studentID name.pdf”, ”HW1 yourID Q1.ipynb” and ”HW1 yourID Q2.ipynb”.
(.py ffles also acceptable)
• Note that late submissions will result in discounted scores: 0-24 hours → 80%, 24-120 hours
→ 50%, 120 or more hours → 0%.
• Answer the questions in English. Otherwise, you’ll lose half of the points.
• Collaboration policy: You need to solve all questions independently and collaboration between
students is NOT allowed.
1 Written Problems (50 points)
1.1. (Learning of Linear Regression, 25 points) Suppose we have training data:
{(x1, y1),(x2, y2), . . . ,(xN , yN )},
where xi ∈ R
d and yi ∈ R
k
, i = 1, 2, . . . , N.
i) (9 pts) Find the closed-form solution of the following problem.
min
W,b
X
N
i=1
∥yi − Wxi − b∥
2
2
,
ii) (8 pts) Show how to use gradient descent to solve the problem. (Please state at least one
possible Stopping Criterion)
1DDA3020 Machine Learning Autumn 2024, CUHKSZ
iii) (8 pts) We further suppose that x1, x2, . . . , xN are drawn from N (µ, σ
2
). Show that the
maximum likelihood estimation (MLE) of σ
2
is σˆ
2
MLE =
1
N
PN
n=1
(xn − µMLE)
2
.
1.2. (Support Vector Machine, 25 points) Given two positive samples x1 = (3, 3)
T
, x2 =
(4, 3)
T
, and one negative sample x3 = (1, 1)
T
, ffnd the maximum-margin separating hyperplane and
support vectors.
Solution steps:
i) Formulating the Optimization Problem (5 pts)
ii) Constructing the Lagrangian (5 pts)
iii) Using KKT Conditions (5 pts)
iv) Solving the Equations (5 pts)
v) Determining the Hyperplane Equation and Support Vectors (5 pts)
2 Programming (50 points)
2.1. (Linear regression, 25 points) We have a labeled dataset D = {(x1, y1),(x2, y2),
· · · ,(xn, yn)}, with xi ∈ R
d being the d-dimensional feature vector of the i-th sample, and yi ∈ R
being real valued target (label).
A linear regression model is give by
fw0,...,wd
(x) = w0 + w1x1 + w2x2 + · · · + wdxd, (1)
where w0 is often called bias and w1, w2, . . . , wd are often called coefffcients.
Now, we want to utilize the dataset D to build a linear model based on linear regression.
We provide a training set Dtrain that includes 2024 labeled samples with 11 features (See linear
 regression train.txt) to fft model, and a test set Dtest that includes 10 unlabeled samples with
11 features (see linear regression test.txt) to estimate model.
1. Using the LinearRegression class from Sklearn package to get the bias w0 and the coefffcients
w1, w2, . . . , w11, then computing the yˆ = f(x) of test set Dtest by the model trained well. (Put
the estimation of w0, w1, . . . , w11 and these yˆ in your answers.)
2. Implementing the linear regression by yourself to obtain the bias w0 and the coefffcients
w1, w2, . . . , w11, then computing the yˆ = f(x) of test set Dtest. (Put the estimation of
w0, w1, . . . , w11 and these yˆ in your answers. It is allowed to compute the inverse of a matrix
using the existing python package.)
2DDA3020 Machine Learning Autumn 2024, CUHKSZ
(Hint: Note that for linear regression train.txt, there are 2024 rows with 12 columns where the
ffrst 11 columns are features x and the last column is target y and linear regression test.txt
only contains 10 rows with 11 columns (features). Both of two tasks require the submission of
code and results. Put all the code in a “HW1 yourID Q1.ipynb” Jupyter notebook. ffle.(”.py”
ffle is also acceptable))
2.2. (SVM, 25 points)
Task Description You are asked to write a program that constructs support vector machine
models with different kernel functions and slack variables.
Datasets You are provided with the iris dataset. The data set contains 3 classes of 50 instances
each, where each class refers to a type of iris plant. There are four features: 1. sepal length in cm;
2. sepal width in cm; 3. petal length in cm; 4. petal width in cm. You need to use these features
to classify each iris plant as one of the three possible types.
What you should do You should use the SVM function from python sklearn package, which
provides various forms of SVM functions. For multiclass SVM you should use the one vs rest
strategy. You are recommended to use sklearn.svm.svc() function. You can use numpy for vector
manipulation. For technical report, you should report the results required as mentioned below (e.g.
training error, testing error, and so on).
1. (2 points) Split training set and test set. Split the data into a training set and a test set.
The training set should contain 70% of the samples, while the test set should include 30%.
The number of samples from each category in both the training and test sets should reffect
this 70-30 split; for each category, the ffrst 70% of the samples will form the training set, and
the remaining 30% will form the test set. Ensure that the split maintains the original order
of the data. You should report instance ids in the split training set and test set. The output
format is as follows:
Q2.2.1 Split training set and test set:
Training set: xx
Test set: xx
You should ffll up xx in the template. You should write ids for each set in the same line with
comma separated, e.g. Training set:[1, 4, 19].
2. (10 points) Calculation using Standard SVM Model (Linear Kernel). Employ the
standard SVM model with a linear kernel. Train your SVM on the split training dataset and
3DDA3020 Machine Learning Autumn 2024, CUHKSZ
validate it on the testing dataset. Calculate the classiffcation error for both the training and
testing datasets, output the weight vector w, the bias b, and the indices of support vectors
(start with 0). Note that the scikit-learn package does not offer a function with hard margin,
so we will simulate this using C = 1e5. You should ffrst print out the total training error
and testing error, where the error is
wrong prediction
number of data
. Then, print out the results for each class
separately (note that you should calculate errors for each class separately in this part). You
should also mention in your report which classes are linear separable with SVM without slack.
The output format is as follows:
Q2.2.2 Calculation using Standard SVM Model:
total training error: xx, total testing error: xx,
class setosa:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
class versicolor:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
class virginica:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
Linear separable classes: xx
If we view the one vs all strategy as combining the multiple different SVM, each one being
a separating hyperplane for one class and the rest of the points, then the w, b and support
vector indices for that class is the corresponding parameters for the SVM separating this class
and the rest of the points. If a variable is of vector form, say a =


1
2
3
?**4;
?**5;?**5;?**6;, then you should write
each entry in the same line with comma separated e.g. [1,2,3].
3. (6 points) Calculation using SVM with Slack Variables (Linear Kernel). For each
C = 0.25 × t, where t = 1, 2, . . . , 4, train your SVM on the training dataset, and subsequently
validate it on the testing dataset. Calculate the classiffcation error for both the training and
testing datasets, the weight vector w, the bias b, and the indices of support vectors, and the
slack variable ζ of support vectors (you may compute it as max(0, 1 − y · f(X)). The output
format is as follows:
Q2.2.3 Calculation using SVM with Slack Variables (C = 0.25 × t, where t = 1, . . . , 4):
4DDA3020 Machine Learning Autumn 2024, CUHKSZ
-------------------------------------------
C=0.25,
total training error: xx, total testing error: xx,
class setosa:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
slack variable: xx,
class versicolor:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
slack variable: xx,
class virginica:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
slack variable: xx,
-------------------------------------------
C=0.5,
<... results for (C=0.5) ...>
-------------------------------------------
C=0.75,
<... results for (C=0.75) ...>
-------------------------------------------
C=1,
<... results for (C=1) ...>
4. (7 points) Calculation using SVM with Kernel Functions. Conduct experiments with
different kernel functions for SVM without slack variable. Calculate the classiffcation error
for both the training and testing datasets, and the indices of support vectors for each kernel
type:
(a) 2nd-order Polynomial Kernel
(b) 3nd-order Polynomial Kernel
(c) Radial Basis Function Kernel with σ = 1
(d) Sigmoidal Kernel with σ = 1
The output format is as follows:
5DDA3020 Machine Learning Autumn 2024, CUHKSZ
Q2.2.4 Calculation using SVM with Kernel Functions:
-------------------------------------------
(a) 2nd-order Polynomial Kernel,
total training error: xx, total testing error: xx,
class setosa:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
class versicolor:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
class virginica:
training error: xx, testing error: xx,
w: xx, b: xx,
support vector indices: xx,
-------------------------------------------
(b) 3nd-order Polynomial Kernel,
<... results for (b) ...>
-------------------------------------------
(c) Radial Basis Function Kernel with σ = 1,
<... results for (c) ...>
-------------------------------------------
(d) Sigmoidal Kernel with σ = 1,
<... results for (d) ...>
Submission Submit your executable code in a “HW1 yourID Q2.ipynb” Jupyter notebook(”.py”
file is also acceptable). Indicate the corresponding question number in the comment for each cell,
and ensure that your code can logically produce the required results for each question in the required
format. Please note that you need to write clear comments and use appropriate function/variable
names. Excessively unreadable code may result in point deductions.

6

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代做CS 259、Java/c++設計程序代寫
  • 下一篇:代做MSE 280、代寫Matlab程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          久久精品99国产精品日本| 一区二区日韩精品| 欧美日韩亚洲激情| 欧美在线观看网站| 一区二区av在线| 黄色国产精品| 国产精品视频九色porn| 欧美精品日韩精品| 久久免费视频观看| 午夜精品偷拍| 亚洲一区二区三区欧美| 99国内精品久久| 亚洲人成绝费网站色www| 国产在线精品二区| 国产视频亚洲| 国产午夜精品久久久| 国产精品婷婷午夜在线观看| 欧美日韩免费观看一区三区 | 在线免费观看成人网| 国产美女搞久久| 国产欧美日韩一区二区三区在线观看 | 亚洲精品日韩精品| 亚洲精品免费看| 亚洲最新中文字幕| 日韩午夜中文字幕| 一区二区久久久久| 一区二区黄色| 亚洲永久免费av| 欧美一区午夜精品| 久久99在线观看| 久久亚洲综合网| 男人的天堂亚洲在线| 欧美另类综合| 欧美日韩免费高清一区色橹橹| 欧美日韩三级视频| 国产精品嫩草99av在线| 国产三级精品在线不卡| 国产一区激情| 亚洲激情av| 亚洲午夜久久久| 久久精品国产69国产精品亚洲 | 国产亚洲精品v| 国内精品视频在线观看| 亚洲国产欧美日韩| 一个色综合导航| 欧美专区一区二区三区| 久久亚洲午夜电影| 欧美日韩免费观看一区三区| 国产精品久久久久av免费| 国产精品视频大全| 亚洲丰满在线| 亚洲欧美日韩精品久久久久| 久久久999| 欧美日韩精品一区二区三区| 国产日韩欧美麻豆| 亚洲日韩中文字幕在线播放| 亚洲一区二区三区免费在线观看| 久久福利精品| 欧美日本精品一区二区三区| 国产亚洲第一区| 中文高清一区| 嫩草影视亚洲| 国产日韩精品一区二区浪潮av| 亚洲东热激情| 先锋影音网一区二区| 欧美高清在线播放| 国产一区二区日韩| 亚洲一区二区免费在线| 久久综合色一综合色88| 国产欧美日韩另类一区| 99精品视频一区| 另类天堂av| 国产日韩欧美成人| 亚洲制服av| 欧美日韩视频在线| 在线观看欧美视频| 欧美一区二区黄色| 欧美午夜一区二区福利视频| 亚洲国产精品综合| 久久人人九九| 国产主播精品在线| 欧美在线免费| 国产日韩欧美精品| 欧美一区二区三区视频在线 | 欧美午夜精品一区| 日韩视频免费| 欧美精品一区二| 亚洲全部视频| 欧美国产丝袜视频| 亚洲精品偷拍| 欧美日韩午夜精品| 一本色道久久综合亚洲精品婷婷| 欧美福利一区二区| 亚洲精品视频在线观看免费| 欧美激情亚洲自拍| 亚洲免费观看| 欧美日韩国产精品专区| 99综合在线| 欧美体内she精视频| 亚洲一二三级电影| 国产精品日韩在线一区| 午夜视频久久久| 国产亚洲精品一区二区| 久久精品二区三区| 91久久综合| 欧美日韩一区二区视频在线| 亚洲一区二区三区在线看| 国产精品视频xxx| 久久天天躁狠狠躁夜夜av| 一区二区三区自拍| 欧美久久99| 亚洲欧美日韩精品在线| 国产亚洲成精品久久| 麻豆精品国产91久久久久久| 亚洲精品午夜| 国产精品羞羞答答| 玖玖精品视频| 中国女人久久久| 国产午夜精品久久久久久免费视| 久久嫩草精品久久久精品| 亚洲精品在线看| 国产欧美精品| 欧美精品免费在线| 欧美一区二区私人影院日本| 亚洲高清在线视频| 国产精品视频你懂的| 嫩草伊人久久精品少妇av杨幂| 日韩午夜电影在线观看| 国产亚洲精久久久久久| 欧美日韩视频不卡| 米奇777在线欧美播放| 亚洲在线不卡| 亚洲精品一区二区网址| 韩国av一区| 国产精品国产自产拍高清av| 美乳少妇欧美精品| 欧美一区二区三区免费观看 | 国产精品成人aaaaa网站 | 免费成人在线观看视频| 亚洲欧美日韩高清| 日韩视频中文字幕| 在线成人性视频| 国产亚洲福利社区一区| 国产精品爱久久久久久久| 欧美国产精品久久| 久久久噜噜噜久久中文字免| 亚洲欧美另类综合偷拍| 日韩视频在线一区二区| 在线成人免费观看| 狠狠狠色丁香婷婷综合激情| 国产精品嫩草影院一区二区| 欧美日韩一区二区三区四区在线观看 | 日韩午夜在线视频| 伊人久久大香线蕉av超碰演员| 国产精品三级久久久久久电影| 欧美寡妇偷汉性猛交| 麻豆freexxxx性91精品| 久久久欧美一区二区| 久久av免费一区| 久久精品国产清高在天天线| 欧美一区精品| 久久精品国产亚洲5555| 久久精品国产久精国产爱| 欧美一级理论片| 久久不射网站| 久久香蕉精品| 美女视频黄免费的久久| 欧美不卡视频一区| 欧美精品日韩精品| 欧美日本二区| 国产精品久久久久秋霞鲁丝| 国产精品播放| 国产午夜精品美女视频明星a级| 国产欧美日韩不卡| 激情伊人五月天久久综合| 一区精品在线播放| 亚洲欧洲精品一区二区三区波多野1战4| 伊人久久综合97精品| 亚洲精品美女在线观看| 一区二区三区成人精品| 欧美一级淫片播放口| 久久精品国产清高在天天线| 美国十次成人| 国产精品99一区二区| 国产日韩欧美精品在线| 在线看国产日韩| 一区二区三区四区五区精品视频| 亚洲综合不卡| 毛片av中文字幕一区二区| 欧美日韩国产不卡在线看| 国产精品资源在线观看| 伊人久久久大香线蕉综合直播| 亚洲精品一区二区三区不| 香蕉av777xxx色综合一区| 久久综合福利| 国产精品久久久久久久久免费桃花 | 欧美激情视频免费观看| 国产精品theporn88| 精品69视频一区二区三区 | 欧美精品免费播放|