99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫Neural Networks for Image 編程
代寫Neural Networks for Image 編程

時間:2024-11-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Lab 2: Neural Networks for Image 
Classification
Duration: 2 hours
Tools:
• Jupyter Notebook
• IDE: PyCharm==2024.2.3 (or any IDE of your choice)
• Python: 3.12
• Libraries:
o PyTorch==2.4.0
o TorchVision==0.19.0
o Matplotlib==3.9.2
Learning Objectives:
• Understand the basic architecture of a neural network.
• Load and explore the CIFAR-10 dataset.
• Implement and train a neural network, individualized by your QMUL ID.
• Verify machine learning concepts such as accuracy, loss, and evaluation metrics 
by running predefined code.
Lab Outline:
In this lab, you will implement a simple neural network model to classify images from 
the CIFAR-10 dataset. The task will be individualized based on your QMUL ID to ensure 
unique configurations for each student.
1. Task 1: Understanding the CIFAR-10 Dataset
• The CIFAR-10 dataset consists of 60,000 **x** color images categorized into 10 
classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks).
• The dataset is divided into 50,000 training images and 10,000 testing images.
• You will load the CIFAR-10 dataset using PyTorch’s built-in torchvision library.
Step-by-step Instructions:
1. Open the provided Jupyter Notebook.
2. Load and explore the CIFAR-10 dataset using the following code:
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# Basic transformations for the CIFAR-10 dataset
transform = transforms.Compose([transforms.ToTensor(), 
transforms.Normalize((0.5,), (0.5,))])
# Load the CIFAR-10 dataset
dataset = datasets.CIFAR10(root='./data', train=True, 
download=True, transform=transform)
2. Task 2: Individualized Neural Network Implementation, Training, and Test
You will implement a neural network model to classify images from the CIFAR-10 
dataset. However, certain parts of the task will be individualized based on your QMUL 
ID. Follow the instructions carefully to ensure your model’s configuration is unique.
Step 1: Dataset Split Based on Your QMUL ID
You will use the last digit of your QMUL ID to define the training-validation split:
• If your ID ends in 0-4: use a 70-30 split (70% training, 30% validation).
• If your ID ends in 5-9: use an 80-20 split (80% training, 20% validation).
Code:
from torch.utils.data import random_split
# Set the student's last digit of the ID (replace with 
your own last digit)
last_digit_of_id = 7 # Example: Replace this with the 
last digit of your QMUL ID
# Define the split ratio based on QMUL ID
split_ratio = 0.7 if last_digit_of_id <= 4 else 0.8
# Split the dataset
train_size = int(split_ratio * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, 
[train_size, val_size])
# DataLoaders
from torch.utils.data import DataLoader
batch_size = ** + last_digit_of_id # Batch size is ** + 
last digit of your QMUL ID
train_loader = DataLoader(train_dataset, 
batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, 
batch_size=batch_size, shuffle=False)
print(f"Training on {train_size} images, Validating on 
{val_size} images.")
Step 2: Predefined Neural Network Model
You will use a predefined neural network architecture provided in the lab. The model’s 
hyperparameters will be customized based on your QMUL ID.
1. Learning Rate: Set the learning rate to 0.001 + (last digit of your QMUL ID * 
0.0001).
2. Number of Epochs: Train your model for 10 + (last digit of your QMUL ID) 
epochs.
Code:
import torch
import torch.optim as optim
# Define the model
model = torch.nn.Sequential(
 torch.nn.Flatten(),
 torch.nn.Linear(******3, 512),
 torch.nn.ReLU(),
 torch.nn.Linear(512, 10) # 10 output classes for 
CIFAR-10
)
# Loss function and optimizer
criterion = torch.nn.CrossEntropyLoss()
# Learning rate based on QMUL ID
learning_rate = 0.001 + (last_digit_of_id * 0.0001)
optimizer = optim.Adam(model.parameters(), 
lr=learning_rate)
# Number of epochs based on QMUL ID
num_epochs = 100 + last_digit_of_id
print(f"Training for {num_epochs} epochs with learning 
rate {learning_rate}.")
Step 3: Model Training and Evaluation
Use the provided training loop to train your model and evaluate it on the validation set. 
Track the loss and accuracy during the training process.
Expected Output: For training with around 100 epochs, it may take 0.5~1 hour to finish. 
You may see a lower accuracy, especially for the validation accuracy, due to the lower 
number of epochs or the used simple neural network model, etc. If you are interested, 
you can find more advanced open-sourced codes to test and improve the performance. 
In this case, it may require a long training time on the CPU-based device.
Code:
# Training loop
train_losses = [] 
train_accuracies = []
val_accuracies = []
for epoch in range(num_epochs):
 model.train()
 running_loss = 0.0
 correct = 0
 total = 0
 for inputs, labels in train_loader:
 optimizer.zero_grad()
 outputs = model(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()
 
 running_loss += loss.item()
 _, predicted = torch.max(outputs, 1)
 total += labels.size(0)
 correct += (predicted == labels).sum().item()
 train_accuracy = 100 * correct / total
 print(f"Epoch {epoch+1}/{num_epochs}, Loss: 
{running_loss:.4f}, Training Accuracy: 
{train_accuracy:.2f}%")
 
 # Validation step
 model.eval()
 correct = 0
 total = 0
 with torch.no_grad():
 for inputs, labels in val_loader:
 outputs = model(inputs)
 _, predicted = torch.max(outputs, 1)
 total += labels.size(0)
 correct += (predicted == labels).sum().item()
 
 val_accuracy = 100 * correct / total
 print(f"Validation Accuracy after Epoch {epoch + 1}: 
{val_accuracy:.2f}%")
 train_losses.append(running_loss) 
 train_accuracies.append(train_accuracy)
 val_accuracies.append(val_accuracy)
Task 3: Visualizing and Analyzing the Results
Visualize the results of the training and validation process. Generate the following plots 
using Matplotlib:
• Training Loss vs. Epochs.
• Training and Validation Accuracy vs. Epochs.
Code for Visualization:
import matplotlib.pyplot as plt
# Plot Loss
plt.figure()
plt.plot(range(1, num_epochs + 1), train_losses, 
label="Training Loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.title("Training Loss")
plt.legend()
plt.show()
# Plot Accuracy
plt.figure()
plt.plot(range(1, num_epochs + 1), train_accuracies, 
label="Training Accuracy")
plt.plot(range(1, num_epochs + 1), val_accuracies, 
label="Validation Accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.title("Training and Validation Accuracy")
plt.legend()
plt.show()
Lab Report Submission and Marking Criteria
After completing the lab, you need to submit a report that includes:
1. Individualized Setup (20/100):
o Clearly state the unique configurations used based on your QMUL ID, 
including dataset split, number of epochs, learning rate, and batch size.
2. Neural Network Architecture and Training (30/100):
o Provide an explanation of the model architecture (i.e., the number of input 
layer, hidden layer, and output layer, activation function) and training 
procedure (i.e., the used optimizer).
o Include the plots of training loss, training and validation accuracy.
3. Results Analysis (30/100):
o Provide analysis of the training and validation performance.
o Reflect on whether the model is overfitting or underfitting based on the 
provided results.
4. Concept Verification (20/100):
o Answer the provided questions below regarding machine learning 
concepts.
(1) What is overfitting issue? List TWO methods for addressing the overfitting 
issue.
(2) What is the role of loss function? List TWO representative loss functions.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:CPSC 471代寫、代做Python語言程序
  • 下一篇:代做INT2067、Python編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美日韩国产不卡| 激情国产一区二区| 欧美日韩国产高清一区二区| 成人动漫视频在线| 狠狠狠色丁香婷婷综合久久五月| 亚洲一区二区高清| 午夜伦欧美伦电影理论片| 一区二区三区欧美亚洲| 亚洲精品国产无天堂网2021 | 久久久蜜桃精品| 久久在线观看免费| 国产人久久人人人人爽| 国产精品久久三| 亚洲欧美日韩久久| 亚洲国产美国国产综合一区二区| 一区二区不卡在线视频 午夜欧美不卡在 | 亚洲图片另类小说| 欧美国产禁国产网站cc| 国产精品麻豆久久久| 欧美羞羞免费网站| 天天影视涩香欲综合网| 日韩在线播放一区二区| 久久国产夜色精品鲁鲁99| 国产一区二区精品久久| av高清久久久| 91极品视觉盛宴| 欧美久久久久免费| 国产亚洲女人久久久久毛片| 国产精品国产精品国产专区不蜜| 寂寞少妇一区二区三区| 久久久777精品电影网影网| 在线免费亚洲电影| 国产精品1区2区3区| 热久久一区二区| 亚洲国产日韩a在线播放性色| 中文成人av在线| 久久精品人人做| 欧美一区三区二区| 欧美日韩在线播放一区| 99国产精品视频免费观看| 国产一区二区三区香蕉| 亚洲v日本v欧美v久久精品| 亚洲日穴在线视频| 国产女主播在线一区二区| 精品国产91乱码一区二区三区 | 精品剧情在线观看| 精品一区二区在线观看| 亚洲视频一区在线观看| 日韩午夜中文字幕| 日韩一卡二卡三卡| 日韩欧美中文一区| 7777精品伊人久久久大香线蕉完整版 | 2020国产精品自拍| 在线免费观看视频一区| av综合在线播放| 不卡一二三区首页| 色视频成人在线观看免| 色综合久久久久综合| 91黄色激情网站| 91麻豆精品国产91久久久| 日韩欧美专区在线| 久久久精品影视| 日韩美女久久久| 亚洲成人av资源| 日本免费在线视频不卡一不卡二| 日本成人在线不卡视频| 蜜臀av亚洲一区中文字幕| 美女久久久精品| 国产精品一二三区| 91在线视频18| 在线电影欧美成精品| 91精品欧美久久久久久动漫| 欧美xxx久久| 国产精品色噜噜| 亚洲成人动漫av| 国内久久婷婷综合| 成人午夜看片网址| 欧美婷婷六月丁香综合色| 欧美电影影音先锋| 成人福利视频在线| 欧洲一区在线观看| 精品国产一区a| 国产精品盗摄一区二区三区| 一区二区三区在线免费视频| 日韩激情视频网站| 福利电影一区二区| 欧美精品一卡二卡| 中文字幕不卡一区| 日韩一区精品字幕| 成人app下载| 日韩一区二区三区免费观看| 国产精品国产三级国产专播品爱网| 亚洲国产精品精华液网站| 国产剧情av麻豆香蕉精品| 欧美日韩国产一级| 亚洲丝袜自拍清纯另类| 狠狠色综合日日| 欧美三级视频在线观看| 中文字幕制服丝袜成人av| 免费美女久久99| 蜜臀av国产精品久久久久| 99精品偷自拍| 6080午夜不卡| 久久成人免费电影| 精品国产在天天线2019| 国产精品77777| 亚洲三级在线看| 欧美精品一二三| 韩国女主播一区| 亚洲欧美一区二区三区久本道91 | 99久久久无码国产精品| 中文字幕亚洲精品在线观看| 成人av电影免费在线播放| **欧美大码日韩| 欧美日韩国产另类一区| 国产一区不卡精品| 亚洲欧美日韩人成在线播放| 欧美一区二区视频网站| 成人爱爱电影网址| 亚洲图片有声小说| 91年精品国产| 亚洲嫩草精品久久| 97超碰欧美中文字幕| 中文成人av在线| 成人手机在线视频| 中文字幕一区二区三区av| 成a人片亚洲日本久久| 久久久美女艺术照精彩视频福利播放| 青草av.久久免费一区| 欧美女孩性生活视频| 丝袜亚洲另类欧美综合| 欧美一区二区观看视频| 日本成人在线电影网| 精品日韩在线观看| 久久国产剧场电影| 欧美精品一区二区三| 国产成人精品aa毛片| 日韩毛片精品高清免费| 在线观看视频一区二区欧美日韩| 亚洲一区二区av在线| 3atv一区二区三区| 久久99精品久久只有精品| 国产免费成人在线视频| 色噜噜夜夜夜综合网| 午夜精品成人在线| 久久婷婷综合激情| 成人av网址在线观看| 国产精品激情偷乱一区二区∴| 色婷婷综合久久久久中文| 午夜精品视频一区| 精品女同一区二区| 99视频超级精品| 日本特黄久久久高潮| 久久精品视频一区| 欧美日韩国产影片| 成人午夜电影小说| 日本午夜精品一区二区三区电影 | 亚洲精品日日夜夜| 日韩免费高清av| 色综合久久久久网| 激情丁香综合五月| 亚洲女同ⅹxx女同tv| 日韩一二在线观看| jlzzjlzz亚洲女人18| 日韩va亚洲va欧美va久久| 国产精品国产三级国产| 日韩欧美中文字幕公布| 色噜噜狠狠成人网p站| 国产乱子伦一区二区三区国色天香| 中文字幕日韩一区| 日韩一区二区三区电影| www.亚洲免费av| 国产永久精品大片wwwapp | 国产精品亚洲人在线观看| 亚洲一区二区黄色| ...av二区三区久久精品| 日韩三级高清在线| 欧美综合在线视频| www.成人在线| 国产精品一二三| 国产一区二区三区在线观看免费| 亚洲成人av在线电影| 亚洲欧美一区二区三区极速播放| 久久精品亚洲精品国产欧美| 欧美一卡在线观看| 欧美精品少妇一区二区三区| 99re这里只有精品视频首页| 国产一区二区影院| 国产在线国偷精品免费看| 精品一区二区精品| 久久99在线观看| 国内外成人在线| 久久国产日韩欧美精品| 久久精品99久久久| 激情欧美日韩一区二区| 免费日韩伦理电影| 日韩不卡免费视频| 久久成人免费网站| 国产乱一区二区| 岛国精品在线播放|