99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫Neural Networks for Image 編程
代寫Neural Networks for Image 編程

時間:2024-11-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Lab 2: Neural Networks for Image 
Classification
Duration: 2 hours
Tools:
• Jupyter Notebook
• IDE: PyCharm==2024.2.3 (or any IDE of your choice)
• Python: 3.12
• Libraries:
o PyTorch==2.4.0
o TorchVision==0.19.0
o Matplotlib==3.9.2
Learning Objectives:
• Understand the basic architecture of a neural network.
• Load and explore the CIFAR-10 dataset.
• Implement and train a neural network, individualized by your QMUL ID.
• Verify machine learning concepts such as accuracy, loss, and evaluation metrics 
by running predefined code.
Lab Outline:
In this lab, you will implement a simple neural network model to classify images from 
the CIFAR-10 dataset. The task will be individualized based on your QMUL ID to ensure 
unique configurations for each student.
1. Task 1: Understanding the CIFAR-10 Dataset
• The CIFAR-10 dataset consists of 60,000 **x** color images categorized into 10 
classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks).
• The dataset is divided into 50,000 training images and 10,000 testing images.
• You will load the CIFAR-10 dataset using PyTorch’s built-in torchvision library.
Step-by-step Instructions:
1. Open the provided Jupyter Notebook.
2. Load and explore the CIFAR-10 dataset using the following code:
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# Basic transformations for the CIFAR-10 dataset
transform = transforms.Compose([transforms.ToTensor(), 
transforms.Normalize((0.5,), (0.5,))])
# Load the CIFAR-10 dataset
dataset = datasets.CIFAR10(root='./data', train=True, 
download=True, transform=transform)
2. Task 2: Individualized Neural Network Implementation, Training, and Test
You will implement a neural network model to classify images from the CIFAR-10 
dataset. However, certain parts of the task will be individualized based on your QMUL 
ID. Follow the instructions carefully to ensure your model’s configuration is unique.
Step 1: Dataset Split Based on Your QMUL ID
You will use the last digit of your QMUL ID to define the training-validation split:
• If your ID ends in 0-4: use a 70-30 split (70% training, 30% validation).
• If your ID ends in 5-9: use an 80-20 split (80% training, 20% validation).
Code:
from torch.utils.data import random_split
# Set the student's last digit of the ID (replace with 
your own last digit)
last_digit_of_id = 7 # Example: Replace this with the 
last digit of your QMUL ID
# Define the split ratio based on QMUL ID
split_ratio = 0.7 if last_digit_of_id <= 4 else 0.8
# Split the dataset
train_size = int(split_ratio * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, 
[train_size, val_size])
# DataLoaders
from torch.utils.data import DataLoader
batch_size = ** + last_digit_of_id # Batch size is ** + 
last digit of your QMUL ID
train_loader = DataLoader(train_dataset, 
batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, 
batch_size=batch_size, shuffle=False)
print(f"Training on {train_size} images, Validating on 
{val_size} images.")
Step 2: Predefined Neural Network Model
You will use a predefined neural network architecture provided in the lab. The model’s 
hyperparameters will be customized based on your QMUL ID.
1. Learning Rate: Set the learning rate to 0.001 + (last digit of your QMUL ID * 
0.0001).
2. Number of Epochs: Train your model for 10 + (last digit of your QMUL ID) 
epochs.
Code:
import torch
import torch.optim as optim
# Define the model
model = torch.nn.Sequential(
 torch.nn.Flatten(),
 torch.nn.Linear(******3, 512),
 torch.nn.ReLU(),
 torch.nn.Linear(512, 10) # 10 output classes for 
CIFAR-10
)
# Loss function and optimizer
criterion = torch.nn.CrossEntropyLoss()
# Learning rate based on QMUL ID
learning_rate = 0.001 + (last_digit_of_id * 0.0001)
optimizer = optim.Adam(model.parameters(), 
lr=learning_rate)
# Number of epochs based on QMUL ID
num_epochs = 100 + last_digit_of_id
print(f"Training for {num_epochs} epochs with learning 
rate {learning_rate}.")
Step 3: Model Training and Evaluation
Use the provided training loop to train your model and evaluate it on the validation set. 
Track the loss and accuracy during the training process.
Expected Output: For training with around 100 epochs, it may take 0.5~1 hour to finish. 
You may see a lower accuracy, especially for the validation accuracy, due to the lower 
number of epochs or the used simple neural network model, etc. If you are interested, 
you can find more advanced open-sourced codes to test and improve the performance. 
In this case, it may require a long training time on the CPU-based device.
Code:
# Training loop
train_losses = [] 
train_accuracies = []
val_accuracies = []
for epoch in range(num_epochs):
 model.train()
 running_loss = 0.0
 correct = 0
 total = 0
 for inputs, labels in train_loader:
 optimizer.zero_grad()
 outputs = model(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()
 
 running_loss += loss.item()
 _, predicted = torch.max(outputs, 1)
 total += labels.size(0)
 correct += (predicted == labels).sum().item()
 train_accuracy = 100 * correct / total
 print(f"Epoch {epoch+1}/{num_epochs}, Loss: 
{running_loss:.4f}, Training Accuracy: 
{train_accuracy:.2f}%")
 
 # Validation step
 model.eval()
 correct = 0
 total = 0
 with torch.no_grad():
 for inputs, labels in val_loader:
 outputs = model(inputs)
 _, predicted = torch.max(outputs, 1)
 total += labels.size(0)
 correct += (predicted == labels).sum().item()
 
 val_accuracy = 100 * correct / total
 print(f"Validation Accuracy after Epoch {epoch + 1}: 
{val_accuracy:.2f}%")
 train_losses.append(running_loss) 
 train_accuracies.append(train_accuracy)
 val_accuracies.append(val_accuracy)
Task 3: Visualizing and Analyzing the Results
Visualize the results of the training and validation process. Generate the following plots 
using Matplotlib:
• Training Loss vs. Epochs.
• Training and Validation Accuracy vs. Epochs.
Code for Visualization:
import matplotlib.pyplot as plt
# Plot Loss
plt.figure()
plt.plot(range(1, num_epochs + 1), train_losses, 
label="Training Loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.title("Training Loss")
plt.legend()
plt.show()
# Plot Accuracy
plt.figure()
plt.plot(range(1, num_epochs + 1), train_accuracies, 
label="Training Accuracy")
plt.plot(range(1, num_epochs + 1), val_accuracies, 
label="Validation Accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.title("Training and Validation Accuracy")
plt.legend()
plt.show()
Lab Report Submission and Marking Criteria
After completing the lab, you need to submit a report that includes:
1. Individualized Setup (20/100):
o Clearly state the unique configurations used based on your QMUL ID, 
including dataset split, number of epochs, learning rate, and batch size.
2. Neural Network Architecture and Training (30/100):
o Provide an explanation of the model architecture (i.e., the number of input 
layer, hidden layer, and output layer, activation function) and training 
procedure (i.e., the used optimizer).
o Include the plots of training loss, training and validation accuracy.
3. Results Analysis (30/100):
o Provide analysis of the training and validation performance.
o Reflect on whether the model is overfitting or underfitting based on the 
provided results.
4. Concept Verification (20/100):
o Answer the provided questions below regarding machine learning 
concepts.
(1) What is overfitting issue? List TWO methods for addressing the overfitting 
issue.
(2) What is the role of loss function? List TWO representative loss functions.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:CPSC 471代寫、代做Python語言程序
  • 下一篇:代做INT2067、Python編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美成人综合在线| 亚洲欧美成人精品| 国产乱码精品一区二区三区五月婷| 香蕉乱码成人久久天堂爱免费| 在线日韩视频| 国产视频久久久久| 国产精品久久久久9999高清 | 久久女同精品一区二区| 一区二区三区视频观看| 亚洲激情午夜| 一区二区三区在线观看国产| 国产精品试看| 国产精品视频网站| 欧美午夜精品理论片a级大开眼界| 久久久国产精彩视频美女艺术照福利| aa级大片欧美| av成人免费在线观看| 亚洲人成网站色ww在线| 曰本成人黄色| 亚洲国产精品视频| 在线看无码的免费网站| 一区二区三区在线免费观看| 国产亚洲一本大道中文在线| 国产精品日本| 国产亚洲人成网站在线观看| 国产精品蜜臀在线观看| 国产精品黄色在线观看| 欧美色大人视频| 欧美日韩中文字幕在线视频| 欧美日韩综合另类| 国产精品国产三级国产普通话蜜臀| 欧美经典一区二区| 欧美日韩国产综合新一区| 欧美日韩成人一区| 欧美午夜片在线观看| 国产精品xxx在线观看www| 国产精品理论片| 国产精品影音先锋| 狠狠久久五月精品中文字幕| 一色屋精品视频免费看| 亚洲精品国产品国语在线app | 久久午夜电影网| 另类专区欧美制服同性| 欧美精品一区二区在线播放| 欧美日韩和欧美的一区二区| 国产精品捆绑调教| 狠狠入ady亚洲精品| 亚洲国产影院| 亚洲综合电影| 久久亚洲精选| 欧美天堂在线观看| 国产亚洲制服色| 亚洲激情综合| 午夜精品久久久久久久久久久久| 久久九九免费视频| 欧美人牲a欧美精品| 国产性天天综合网| 99v久久综合狠狠综合久久| 亚洲自拍电影| 免费在线成人| 国产女同一区二区| 亚洲精品在线一区二区| 午夜欧美大尺度福利影院在线看| 欧美aⅴ一区二区三区视频| 欧美性猛交一区二区三区精品| 国产主播精品在线| 99国产精品视频免费观看| 久久久久免费| 国产精品日韩欧美大师| 亚洲人成在线播放网站岛国| 欧美一区二区免费| 欧美日韩激情网| 黄色成人在线观看| 午夜亚洲视频| 国产精品久久久久久久浪潮网站 | 在线观看视频亚洲| 亚洲免费视频观看| 欧美日韩大片| 亚洲国产精品久久人人爱蜜臀| 小黄鸭精品aⅴ导航网站入口| 欧美日本国产视频| 亚洲国产日韩综合一区| 久久久久久久久岛国免费| 国产精品区二区三区日本| 一本色道久久88综合亚洲精品ⅰ| 久久午夜电影网| 国产综合av| 久久成人羞羞网站| 国产一本一道久久香蕉| 午夜精品一区二区三区四区| 国产精品福利在线| 亚洲色图在线视频| 欧美午夜电影一区| 一级日韩一区在线观看| 欧美日韩精品一区二区| 一本色道久久| 国产精品久久久久久久7电影 | 亚洲一区二区精品| 欧美午夜精品久久久久久孕妇 | 国产欧美 在线欧美| 亚洲女人天堂成人av在线| 欧美午夜影院| 这里只有精品在线播放| 欧美性jizz18性欧美| 一个色综合av| 国产精品久久久久久久久久久久久久 | 狠狠色狠狠色综合日日小说| 午夜精品久久久久久久久久久久久 | 亚洲三级网站| 欧美视频一区二区三区四区| 亚洲视频网站在线观看| 国产精品老女人精品视频| 香蕉国产精品偷在线观看不卡| 国产美女在线精品免费观看| 久久精品一区二区国产| 亚洲黄色小视频| 欧美午夜视频在线| 亚洲欧美日韩国产综合在线 | 在线成人h网| 欧美经典一区二区三区| 性久久久久久久久久久久| 影音先锋中文字幕一区| 欧美日韩国产色视频| 午夜精品福利在线观看| 1000部国产精品成人观看| 欧美视频在线一区| 久久久国际精品| av成人毛片| 国模 一区 二区 三区| 欧美精品国产精品| 久久精品国产精品亚洲综合| 亚洲激情欧美| 国产午夜一区二区三区| 欧美日本国产视频| 久久阴道视频| 性欧美超级视频| 亚洲精品视频二区| 国产一区二区久久久| 欧美激情一区二区在线 | 一区在线视频| 国产精品免费看| 欧美精品国产精品日韩精品| 欧美一区二区在线看| 9l国产精品久久久久麻豆| 一区二区三区在线看| 国产美女精品免费电影| 欧美国产成人在线| 久久久精品一区| 欧美一级大片在线免费观看| 99精品视频一区| 91久久久久久久久久久久久| 国内伊人久久久久久网站视频| 国产精品久久久久久久久久免费| 欧美精品久久久久久久免费观看 | 欧美精品综合| 久久综合久久久| 久久国产直播| 亚洲欧美日韩直播| 一区二区三区国产精品| 亚洲黄色性网站| 原创国产精品91| 国产一区二区毛片| 国产精品男女猛烈高潮激情| 欧美日韩在线观看一区二区三区| 免费精品视频| 蜜桃久久av| 欧美成人中文| 免费毛片一区二区三区久久久| 久久久久久久一区二区| 欧美亚洲综合久久| 午夜在线观看欧美| 久久精品国产一区二区三| 久久久久成人精品| 久久日韩精品| 欧美福利一区二区| 欧美日韩二区三区| 欧美日韩在线电影| 国产精品久久久久久久久久妞妞| 国产精品久久二区二区| 国产精品高潮呻吟| 国产精品一区二区a| 国产目拍亚洲精品99久久精品 | 欧美精品色网| 国产精品高精视频免费| 国产精品久久一卡二卡| 国产视频久久久久| 亚洲高清久久| 一区二区91| 欧美一级欧美一级在线播放| 久久久久久久久蜜桃| 欧美国产乱视频| 欧美性大战xxxxx久久久| 国产午夜亚洲精品理论片色戒| 精品成人在线视频| 日韩视频在线免费观看| 亚洲欧美精品suv| 久久精品人人| 欧美日韩一区在线视频| 国模套图日韩精品一区二区| 亚洲人成网站777色婷婷|