99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CS 369代做、代寫Python編程語言

時間:2024-05-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 369 2024 Assignment 4
See Canvas for due dates
In the ffrst part of this assignment, we use a Hidden Markov Model to model secondary
structure in protein sequences and implement a couple of algorithms we saw in lectures.
In the second part, we simulate sequences down a tree according to the Jukes-Cantor
model then use distance methods to try to reconstruct the tree.
Write your code in Python and present your code embedded in a report in a Jupyter
Notebook. Make sure you test your code thoroughly and write clear, commented code
that others can understand.
Submit two ffles to Canvas: the .ipynb and .html both showing code and results by 10pm
on the due date.
There are 30 marks in total for this assessment.
1. [14 marks total] Suppose we wish to estimate basic secondary structure in protein
(amino acid) sequences. The model we consider is a simplistic rendition of the
model discussed in S C. Schmidler et al. (2004) Bayesian Segmentation of Protein
Secondary Structure, doi:10.1089/10665270050081496
We assume that at each point of the sequence, the residue is associated with one
of three secondary structures: α-helix, β-strand and loops which we label H, S
and T, respectively. To simplify the problem, we classify the amino acids as either
hydrophobic, hydrophilic or neutral (B, I or N, respectively) so a sequence can be
represented by this 3-letter alphabet.
In a α-helix, the residues are 15% neutral, 20% hydrophobic and 65% hydrophilic.
In a β-strand, they are 30%, 60%, 10% and in a loop they are 70%, 15%, 15%.
Assume that all secondary structures have geometrically distributed length with
α-helices having mean 15 residues, β-strands having a mean of 8 residues and loops
a mean of 6 residues. A β-strand is followed by an α-helix 40% of the time and a
loop 60% of the time. An α-helix is followed by a β-strand 30% of the time and a
loop 70% of the time and a loop is equally likely to be followed by a strand or a
helix. At the start of a sequence, any structure is equally likely.
When writing code below, work in natural logarithms throughout to make your
calculations robust to numerical error.
(a) [3 marks] Sketch a diagram of the HMM (a hand-drawn and scanned picture
is ffne). In your diagram, show only state nodes and transitions. Show the
emission probabilities using a separate table.
Note that the transition probabilities of states to themselves (e.g., aHH) are
not given. Derive them by noticing that you are given the expected lengths
of α-helices, β-strands and loops, and that if a quantity L is geometrically
distributed with parameter p then the expected value of L is E[L] = 1/p.
Make sure you use the correct parametrisation of the geometric distribution
1(noting that you can’t have a secondary structure of length 0) and remember
that
P
l
akl = 1 for any state k.
(b) [3 marks] Write a method to simulate state and symbol sequences of arbitrary
length from the HMM. Your method should take sequence length, and model
parameters (a and e) as arguments. Simulate and print out a state and symbol
sequence of length 200.
(c) [3 mark] Write a method to calculate the natural logarithm of the joint probability
P(x, π). Your method should take x, π, and model parameters as
arguments.
Use your method to calculate P(x, π) for π and x given below and for the
sequences you simulated in Q1b.
π = S,S,H,H,H,T,T,S,S,S,H,T,T,H,H,H,S,S,S,S,S,S
x = B,I,B,B,N,I,N,B,N,I,N,B,I,N,B,I,I,N,B,B,N,N
(d) [5 marks] Implement the forward algorithm for HMMs to calculate the natural
logarithm of the probability P(x). Your method should take x as an argument.
Note that we don’t model the end state here.
Use your method to calculate log(P(x)) for π and x given in Q1c and for the
sequences you simulated in Q1b.
How does P(x) compare to P(x, π) for the examples you calculated? Does
this relationship hold in general? Explain your answer.
22. [16 marks total] In this question you will write a method that simulates random
trees, simulates sequences using a mutation process on these trees, calculate a
distance matrix from the simulated sequences and then, using existing code, reconstruct
 the tree from this distance matrix.
(a) [5 marks] Write a method that simulates trees according to the Yule model
(described below) with takes as input the number of leaves, n, and the branching
 parameter, λ. Use the provided Python classes.
The Yule model is a branching process that suggests a method of constructing
trees with n leaves. From each leaf, start a lineage going back in time. Each
lineage coalesces with others at rate λ. When there k lineages, the total rate
of coalescence in the tree is kλ. Thus, we can generate a Yule tree with n
leaves as follows:
Set k = n,t = 0.
Make n leaf nodes with time t and labeled from 1 to n. This is the set of
available nodes.
While k > 1, iterate:
Generate a time tk ∼ Exp (kλ). Set t = t + tk.
Make a new node, m, with height t and choose two nodes, i and j,
uniformly at random from the set of available nodes. Make i and j
the child nodes of m.
Add m to the set of available nodes and remove i and j from this set.
Set k = k-1.
Simulate 1000 trees with λ = 0.5 and n = 10 and check that the mean height
of the trees (that is, the time of the root node) agrees with the theoretical
mean of 3.86.
Use the provided plot tree method to include a picture of a simulated tree
with 10 leaves and λ = 0.5 in your report. To embed the plot in your report,
include in the ffrst cell of your notebook the command %matplotlib inline
(b) [5 marks] The Jukes-Cantor model of DNA sequence evolution is simple:
each site mutates at rate µ and when a mutation occurs, a new base is chosen
uniformly at random from the four possible bases, {A, C, G, T}. If we ignore
mutations from base X to base X, the mutation rate is
3
4
µ. All sites mutate
independently of each other. A sequence that has evolved over time according
to the Jukes-Cantor model has each base equally likely to occur at each site.
The method mutate is provided to simulate the mutation process.
Write a method to simulate sequences down a simulated tree according to the
Jukes-Cantor model.
Your method should take a tree with n leaves, sequence length L, and a
mutation rate µ. It should return either a matrix of sequences corresponding
to nodes in the tree or the tree with sequences stored at the nodes.
3Your method should generate a uniform random sequence of length L at the
root node and recursively mutate it down the branches of the tree, using the
node heights to calculate branch length.
In your report, include a simulated tree with n = 10 and λ = 0.5 and a set
of sequences of length L = 20 and mutation parameter µ = 0.5 simulated on
that tree.
(c) [3 marks] Write a method to calculate the Jukes-Cantor distance matrix, d,
from a set of sequences, where dij is the distance between the ith and the
jth sequences. Recall that the Jukes-Cantor distance for sequences x and y
is deffned by
where fxy is the fraction of differing sites between x and y. Since we will be
dealing with short sequences, use the following deffnition of fxy so that the
distances are well-deffned:
fxy = min
where Dxy is the number of differing sites between x and y and L is the length
of x.
Include a simulated set of sequences of length L = 20 from the tree leaves and
corresponding distance matrix in your report for a tree with n = 10, λ = 0.5
and mutation parameter µ = 0.5.
(d) [3 marks] Now simulate a tree with n = 10 and λ = 0.5 and on that tree,
simulate three sets of sequences with lengths L = 20, L = 50 and L = 200,
respectively, with ffxed µ = 0.1. For each simulated set of sequences, calculate
the distance matrix and print it out.
Then reconstruct the tree using the provided compute upgma tree method.
Use the plot tree method to include a plot of the original tree and a plot of
the reconstructed tree for each distance matrix.
Comment on the quality of the reconstructions and the effect that increasing
the sequence length has on the accuracy of the reconstruction.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp










 

掃一掃在手機打開當前頁
  • 上一篇:代寫CS373 COIN、代做Python設計程序
  • 下一篇:CSSE7030代做、代寫Python程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美日韩一区三区| 成人性生交大片免费看中文| 精品国产乱码久久久久久免费| 成人黄色网址在线观看| 久久av老司机精品网站导航| 午夜久久久久久| 亚洲成人精品一区二区| 亚洲色图制服丝袜| 亚洲精品福利视频网站| 亚洲欧美国产77777| 有码一区二区三区| 亚洲成人在线免费| 日本午夜精品视频在线观看| 日韩高清在线电影| 一本久道久久综合中文字幕| av在线综合网| 在线观看亚洲专区| 日韩一区二区在线观看视频| 久久久精品国产免费观看同学| 久久伊人中文字幕| 国产视频一区在线播放| 国产精品视频麻豆| 一区av在线播放| 蜜臀久久99精品久久久久宅男| 国产一区二区毛片| 91国偷自产一区二区三区观看| 欧美日本在线播放| 国产日韩欧美麻豆| 一区二区三区加勒比av| 美女看a上一区| 成人免费毛片嘿嘿连载视频| 欧美系列亚洲系列| 久久综合九色综合97_久久久| 国产日韩亚洲欧美综合| 亚洲精品成人悠悠色影视| 亚洲第一成年网| 国产美女在线观看一区| 在线观看91视频| 精品国产1区2区3区| 亚洲狼人国产精品| 国产在线精品不卡| 日本道色综合久久| 精品粉嫩aⅴ一区二区三区四区| 国产精品久久久久久久久免费樱桃| 亚洲午夜久久久久久久久电影网| 青青草精品视频| 色综合久久66| 国产校园另类小说区| 午夜精品成人在线视频| 国产成人av福利| 欧美一级日韩一级| 亚洲精品欧美二区三区中文字幕| 国产又黄又大久久| 制服丝袜亚洲网站| 亚洲欧美日韩一区二区 | 国产无人区一区二区三区| 亚洲国产cao| 成人性生交大片免费看中文| 在线不卡一区二区| 亚洲男同1069视频| 91精品欧美一区二区三区综合在| 国产suv精品一区二区883| 成人黄色小视频在线观看| www.色综合.com| 欧美性高清videossexo| 欧美一区二区三区在线看| 日韩欧美资源站| 日本一区二区三区四区在线视频| 国产精品伦一区| 亚洲黄色在线视频| 亚洲成人免费电影| 捆绑紧缚一区二区三区视频| 成人美女视频在线看| 欧美三级日韩三级| 久久精品一级爱片| 亚洲成人免费视| 国产99精品国产| 欧美丝袜丝交足nylons图片| 精品久久久久久亚洲综合网| 亚洲乱码日产精品bd| 日韩精品中午字幕| 国产精品一区二区视频| 国产情人综合久久777777| 国产不卡高清在线观看视频| 欧美国产激情二区三区| 成人app网站| 亚洲女同ⅹxx女同tv| 色偷偷88欧美精品久久久| 亚洲一区二区在线免费看| 欧美精品丝袜久久久中文字幕| 午夜精品福利视频网站| 日韩视频免费观看高清完整版在线观看 | 国产乱理伦片在线观看夜一区| 精品欧美一区二区在线观看| 精品盗摄一区二区三区| 欧美精品久久天天躁| 欧美—级在线免费片| 婷婷丁香激情综合| 99久久精品费精品国产一区二区| 欧美一区二区在线看| 欧美日本在线观看| 亚洲人成网站色在线观看| 欧洲一区二区av| 老司机免费视频一区二区三区| 久久久久国产精品麻豆| 91浏览器打开| 久久精品国产免费看久久精品| 欧美高清一级片在线观看| 欧美亚洲另类激情小说| 极品少妇xxxx偷拍精品少妇| 亚洲欧美一区二区久久| 日韩欧美国产午夜精品| www.爱久久.com| 蜜桃视频在线一区| 亚洲男人天堂一区| 欧美精品一区二区精品网| 91在线观看美女| 国产真实乱偷精品视频免| 亚洲综合色噜噜狠狠| 久久久噜噜噜久噜久久综合| 欧美亚洲日本一区| 成人精品高清在线| 久草这里只有精品视频| 亚洲黄一区二区三区| 国产欧美日韩不卡免费| 欧美老肥妇做.爰bbww| 不卡视频一二三四| 麻豆精品久久久| 亚洲综合免费观看高清完整版| 久久久国产综合精品女国产盗摄| 欧美片网站yy| 色琪琪一区二区三区亚洲区| 国产成人免费在线观看不卡| 视频一区中文字幕| 亚洲精品亚洲人成人网| 欧美精品一区二区三区高清aⅴ| 色哟哟一区二区在线观看| 国产一区二区成人久久免费影院| 午夜欧美大尺度福利影院在线看| 亚洲日本青草视频在线怡红院| 久久综合久久鬼色| 色悠久久久久综合欧美99| 国产成人aaa| 韩国在线一区二区| 久久超碰97中文字幕| 三级久久三级久久久| 人人狠狠综合久久亚洲| 亚洲精品菠萝久久久久久久| 中文字幕精品三区| 久久久久久免费网| 欧美va亚洲va在线观看蝴蝶网| 欧美午夜一区二区三区| 99精品视频在线播放观看| 精品一区二区免费在线观看| 日韩电影在线观看一区| 日本欧美一区二区在线观看| 一区二区高清免费观看影视大全| 最新国产精品久久精品| 欧美国产成人在线| 中文字幕国产精品一区二区| 欧美高清在线视频| 国产精品久久毛片a| 国产精品美女久久久久久久| 国产精品素人视频| 国产精品的网站| 亚洲精品久久7777| 五月激情综合婷婷| 亚洲伊人伊色伊影伊综合网| 久久精品视频在线免费观看| 欧美精品一区二区高清在线观看 | 一区二区免费在线| 一区二区国产盗摄色噜噜| 一区二区三国产精华液| 亚洲在线视频免费观看| 一区二区三区不卡在线观看| 亚洲国产一区二区在线播放| 午夜精品久久久久久不卡8050| 五月激情综合婷婷| 精品一区二区三区免费视频| 国产一区视频导航| 亚洲最快最全在线视频| 国产精品电影一区二区三区| 欧美午夜理伦三级在线观看| 久久在线观看免费| 91农村精品一区二区在线| 狠狠色丁香婷综合久久| 麻豆精品一区二区av白丝在线| 久久精品理论片| 精品国产区一区| 日本不卡视频在线| 久久精品男人的天堂| 亚洲色图在线视频| 视频在线观看一区二区三区| 久久激情五月激情| 成人黄色av电影| 欧美日韩三级视频| 国产精品视频在线看| 日韩精品一级中文字幕精品视频免费观看 | www久久久久| 一区二区三区四区av|