99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

CS 369代做、代寫Python編程語言

時(shí)間:2024-05-24  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



CS 369 2024 Assignment 4
See Canvas for due dates
In the ffrst part of this assignment, we use a Hidden Markov Model to model secondary
structure in protein sequences and implement a couple of algorithms we saw in lectures.
In the second part, we simulate sequences down a tree according to the Jukes-Cantor
model then use distance methods to try to reconstruct the tree.
Write your code in Python and present your code embedded in a report in a Jupyter
Notebook. Make sure you test your code thoroughly and write clear, commented code
that others can understand.
Submit two ffles to Canvas: the .ipynb and .html both showing code and results by 10pm
on the due date.
There are 30 marks in total for this assessment.
1. [14 marks total] Suppose we wish to estimate basic secondary structure in protein
(amino acid) sequences. The model we consider is a simplistic rendition of the
model discussed in S C. Schmidler et al. (2004) Bayesian Segmentation of Protein
Secondary Structure, doi:10.1089/10665270050081496
We assume that at each point of the sequence, the residue is associated with one
of three secondary structures: α-helix, β-strand and loops which we label H, S
and T, respectively. To simplify the problem, we classify the amino acids as either
hydrophobic, hydrophilic or neutral (B, I or N, respectively) so a sequence can be
represented by this 3-letter alphabet.
In a α-helix, the residues are 15% neutral, 20% hydrophobic and 65% hydrophilic.
In a β-strand, they are 30%, 60%, 10% and in a loop they are 70%, 15%, 15%.
Assume that all secondary structures have geometrically distributed length with
α-helices having mean 15 residues, β-strands having a mean of 8 residues and loops
a mean of 6 residues. A β-strand is followed by an α-helix 40% of the time and a
loop 60% of the time. An α-helix is followed by a β-strand 30% of the time and a
loop 70% of the time and a loop is equally likely to be followed by a strand or a
helix. At the start of a sequence, any structure is equally likely.
When writing code below, work in natural logarithms throughout to make your
calculations robust to numerical error.
(a) [3 marks] Sketch a diagram of the HMM (a hand-drawn and scanned picture
is ffne). In your diagram, show only state nodes and transitions. Show the
emission probabilities using a separate table.
Note that the transition probabilities of states to themselves (e.g., aHH) are
not given. Derive them by noticing that you are given the expected lengths
of α-helices, β-strands and loops, and that if a quantity L is geometrically
distributed with parameter p then the expected value of L is E[L] = 1/p.
Make sure you use the correct parametrisation of the geometric distribution
1(noting that you can’t have a secondary structure of length 0) and remember
that
P
l
akl = 1 for any state k.
(b) [3 marks] Write a method to simulate state and symbol sequences of arbitrary
length from the HMM. Your method should take sequence length, and model
parameters (a and e) as arguments. Simulate and print out a state and symbol
sequence of length 200.
(c) [3 mark] Write a method to calculate the natural logarithm of the joint probability
P(x, π). Your method should take x, π, and model parameters as
arguments.
Use your method to calculate P(x, π) for π and x given below and for the
sequences you simulated in Q1b.
π = S,S,H,H,H,T,T,S,S,S,H,T,T,H,H,H,S,S,S,S,S,S
x = B,I,B,B,N,I,N,B,N,I,N,B,I,N,B,I,I,N,B,B,N,N
(d) [5 marks] Implement the forward algorithm for HMMs to calculate the natural
logarithm of the probability P(x). Your method should take x as an argument.
Note that we don’t model the end state here.
Use your method to calculate log(P(x)) for π and x given in Q1c and for the
sequences you simulated in Q1b.
How does P(x) compare to P(x, π) for the examples you calculated? Does
this relationship hold in general? Explain your answer.
22. [16 marks total] In this question you will write a method that simulates random
trees, simulates sequences using a mutation process on these trees, calculate a
distance matrix from the simulated sequences and then, using existing code, reconstruct
 the tree from this distance matrix.
(a) [5 marks] Write a method that simulates trees according to the Yule model
(described below) with takes as input the number of leaves, n, and the branching
 parameter, λ. Use the provided Python classes.
The Yule model is a branching process that suggests a method of constructing
trees with n leaves. From each leaf, start a lineage going back in time. Each
lineage coalesces with others at rate λ. When there k lineages, the total rate
of coalescence in the tree is kλ. Thus, we can generate a Yule tree with n
leaves as follows:
Set k = n,t = 0.
Make n leaf nodes with time t and labeled from 1 to n. This is the set of
available nodes.
While k > 1, iterate:
Generate a time tk ∼ Exp (kλ). Set t = t + tk.
Make a new node, m, with height t and choose two nodes, i and j,
uniformly at random from the set of available nodes. Make i and j
the child nodes of m.
Add m to the set of available nodes and remove i and j from this set.
Set k = k-1.
Simulate 1000 trees with λ = 0.5 and n = 10 and check that the mean height
of the trees (that is, the time of the root node) agrees with the theoretical
mean of 3.86.
Use the provided plot tree method to include a picture of a simulated tree
with 10 leaves and λ = 0.5 in your report. To embed the plot in your report,
include in the ffrst cell of your notebook the command %matplotlib inline
(b) [5 marks] The Jukes-Cantor model of DNA sequence evolution is simple:
each site mutates at rate µ and when a mutation occurs, a new base is chosen
uniformly at random from the four possible bases, {A, C, G, T}. If we ignore
mutations from base X to base X, the mutation rate is
3
4
µ. All sites mutate
independently of each other. A sequence that has evolved over time according
to the Jukes-Cantor model has each base equally likely to occur at each site.
The method mutate is provided to simulate the mutation process.
Write a method to simulate sequences down a simulated tree according to the
Jukes-Cantor model.
Your method should take a tree with n leaves, sequence length L, and a
mutation rate µ. It should return either a matrix of sequences corresponding
to nodes in the tree or the tree with sequences stored at the nodes.
3Your method should generate a uniform random sequence of length L at the
root node and recursively mutate it down the branches of the tree, using the
node heights to calculate branch length.
In your report, include a simulated tree with n = 10 and λ = 0.5 and a set
of sequences of length L = 20 and mutation parameter µ = 0.5 simulated on
that tree.
(c) [3 marks] Write a method to calculate the Jukes-Cantor distance matrix, d,
from a set of sequences, where dij is the distance between the ith and the
jth sequences. Recall that the Jukes-Cantor distance for sequences x and y
is deffned by
where fxy is the fraction of differing sites between x and y. Since we will be
dealing with short sequences, use the following deffnition of fxy so that the
distances are well-deffned:
fxy = min
where Dxy is the number of differing sites between x and y and L is the length
of x.
Include a simulated set of sequences of length L = 20 from the tree leaves and
corresponding distance matrix in your report for a tree with n = 10, λ = 0.5
and mutation parameter µ = 0.5.
(d) [3 marks] Now simulate a tree with n = 10 and λ = 0.5 and on that tree,
simulate three sets of sequences with lengths L = 20, L = 50 and L = 200,
respectively, with ffxed µ = 0.1. For each simulated set of sequences, calculate
the distance matrix and print it out.
Then reconstruct the tree using the provided compute upgma tree method.
Use the plot tree method to include a plot of the original tree and a plot of
the reconstructed tree for each distance matrix.
Comment on the quality of the reconstructions and the effect that increasing
the sequence length has on the accuracy of the reconstruction.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp










 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫CS373 COIN、代做Python設(shè)計(jì)程序
  • 下一篇:CSSE7030代做、代寫Python程序設(shè)計(jì)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          久久视频这里只有精品| 欧美视频一区二区三区| 亚洲大胆美女视频| 欧美福利视频在线观看| 一区二区三区导航| 韩日精品视频一区| 欧美日韩国产一区精品一区| 亚洲免费中文字幕| 在线日韩中文| 久色成人在线| 日韩视频一区二区三区在线播放免费观看| 欧美成人午夜影院| 亚洲黄色尤物视频| 国产精品亚洲网站| 美女精品自拍一二三四| 99精品欧美| 韩国欧美一区| 国产精品毛片va一区二区三区| 久久综合伊人77777蜜臀| 亚洲视频在线观看三级| 亚洲国产高清在线| 国产精品视频一二三| 亚洲免费在线电影| 宅男噜噜噜66一区二区| 亚洲国产精品欧美一二99| 国产精品一区久久久久| 欧美日韩国产999| 欧美成人午夜影院| 久久久精品国产免大香伊| 亚洲欧洲一区| 国模精品娜娜一二三区| 国产精品日日做人人爱| 欧美成人综合网站| 欧美在线观看www| 国产精品99久久久久久久久 | 国产精品theporn| 老司机精品视频一区二区三区| 亚洲午夜视频在线| 妖精成人www高清在线观看| 韩曰欧美视频免费观看| 国产精品乱子久久久久| 国产精品久久久久久久电影| 欧美日韩在线播放三区| 欧美精品一区二区三区久久久竹菊 | 欧美性猛交一区二区三区精品| 欧美成人精品在线观看| 免费不卡在线观看| 欧美大胆人体视频| 欧美xx69| 欧美日韩国产成人在线免费| 欧美精品二区| 欧美欧美天天天天操| 欧美日韩国产不卡| 欧美电影电视剧在线观看| 久久九九免费视频| 乱中年女人伦av一区二区| 嫩草影视亚洲| 欧美日韩亚洲一区二区三区| 欧美日韩欧美一区二区| 国产精品私房写真福利视频 | 亚洲精品中文字幕有码专区| 亚洲精品视频在线| 亚洲天堂免费观看| 久久国产精品一区二区三区| 久久人人爽人人爽爽久久| 免费观看不卡av| 欧美性色aⅴ视频一区日韩精品| 欧美三级电影一区| 国产亚洲成精品久久| 狠狠久久亚洲欧美专区| 国产一区二区三区观看| 精品成人久久| 亚洲人成啪啪网站| 亚洲欧洲精品一区二区| 亚洲午夜女主播在线直播| 99热免费精品在线观看| 99av国产精品欲麻豆| 午夜电影亚洲| 亚洲国产高清一区| 性感少妇一区| 国模私拍一区二区三区| 玖玖玖国产精品| 亚洲狼人综合| 亚洲免费视频中文字幕| 老司机成人网| 国产日韩欧美电影在线观看| 亚洲精品一区二区三区婷婷月 | 欧美成年人网站| 国产精品美女xx| 亚洲精品综合精品自拍| 久久人91精品久久久久久不卡| 欧美系列精品| 日韩写真视频在线观看| 美女黄色成人网| 国产一区av在线| 中文日韩在线视频| 欧美第十八页| 亚洲国产合集| 这里只有精品在线播放| 免费精品99久久国产综合精品| 国产精品捆绑调教| 亚洲精品国产精品国产自| 欧美一区二区精品久久911| 欧美国产日韩在线| 亚洲电影免费观看高清完整版在线观看 | 99精品欧美一区二区蜜桃免费| 久久在线视频在线| 国产精品国产三级国产aⅴ浪潮| 国产一区二区无遮挡| 亚洲欧美成aⅴ人在线观看| 欧美日韩亚洲免费| 日韩午夜av电影| 欧美三级视频在线| 夜夜嗨av一区二区三区网站四季av| 久久综合色88| 亚洲人成网站在线播| 欧美激情中文不卡| 99视频热这里只有精品免费| 欧美成人一区二区三区| 伊人精品在线| 欧美成人免费一级人片100| 91久久亚洲| 欧美日韩精品免费| 中文高清一区| 国产深夜精品福利| 久久久人成影片一区二区三区观看 | 久久精品国产第一区二区三区| 国产嫩草一区二区三区在线观看 | 美日韩免费视频| 最近中文字幕mv在线一区二区三区四区 | 国产精品实拍| 午夜天堂精品久久久久| 欧美日韩精品二区第二页| 日韩亚洲不卡在线| 国产精品欧美一区喷水| 欧美专区18| 亚洲精品日韩一| 国产精品xxxav免费视频| 欧美亚洲三区| 亚洲福利精品| 国产精品高潮呻吟视频| 久久国产加勒比精品无码| 樱花yy私人影院亚洲| 欧美国产91| av成人手机在线| 国内精品嫩模av私拍在线观看| 蜜臀av国产精品久久久久| 亚洲精品日韩久久| 国产一区二区高清不卡| 欧美激情国产日韩精品一区18| 亚洲欧美变态国产另类| 一区二区视频免费完整版观看| 欧美日韩国产综合视频在线观看| 午夜一区二区三区在线观看| 黑人一区二区| 欧美二区在线观看| 亚洲欧美一区二区视频| 亚洲人成7777| 国产一区激情| 国产精品亚洲综合久久| 欧美精品一区二区三区蜜桃 | 欧美不卡视频| 欧美a级片网站| 欧美大片免费观看在线观看网站推荐| 久久精品夜夜夜夜久久| 欧美中文字幕视频在线观看| 欧美在线播放高清精品| 久久狠狠婷婷| 开元免费观看欧美电视剧网站| 久久久久国产精品麻豆ai换脸 | 国产综合色产| 在线观看欧美| 亚洲精品一区久久久久久| 洋洋av久久久久久久一区| 亚洲一区在线免费| 销魂美女一区二区三区视频在线| 欧美一区二区在线视频| 久久久精彩视频| 欧美大片免费久久精品三p| 欧美日韩亚洲91| 国产麻豆精品视频| 伊人久久大香线| 亚洲美女免费视频| 亚洲综合成人在线| 久久青草福利网站| 欧美日韩理论| 国产亚洲毛片在线| 亚洲黄色一区二区三区| 中文高清一区| 久久精品国产99| 欧美韩日视频| 国产一区二区三区日韩欧美| 亚洲成人在线| 亚洲欧美综合精品久久成人| 久久久久久久综合| 国产精品wwwwww| 在线观看国产一区二区| 亚洲网站视频福利| 久久精品一区蜜桃臀影院| 欧美日韩在线不卡一区|