99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS373 COIN、代做Python設計程序

時間:2024-05-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



DETECTION 
ASSIGNMENT
2024 Semester 1
1
Version 2.2Deadline: 3rd June 2024, 23:59pm
●In this assignment, you will write a Python code pipeline to automatically detect all the coins in the 
given images. This is an individual assignment, so every student has to submit this assignment! This 
assignment is worth 15 marks.
●We have provided you with 6 images for testing your pipeline (you can find the images in the 
‘Images/easy’ folder).
○Your pipeline should be able to detect all the coins in the image labelled with easy-level. This will 
reward you with up to 10 marks.
○For extension (up to 5 marks), try images labelled as hard-level images in the “Images/hard” folder.
○Write a short reflective report about your extension. (Using Latex/Word)
●To output the images shown on the slides for checking, you may use the following code:
fig, axs = pyplot.subplots(1, 1)
# replace image with your image that you want to output
axs.imshow(image, cmap='gray')
pyplot.axis('off')
pyplot.tight_layout()
pyplot.show()
2SUBMISSION
Please upload your submission as a zipped file of the assignment folder to the UoA 
Assignment Dropbox by following this link: 
https://canvas.auckland.ac.nz/courses/103807/assignments/3837**
●Don’t put any virtual environment (venv) folders into this zip file, it just adds to the size, and we 
will have our own testing environment.
●Your code for executing the main coin detection algorithm has to be located in the provided 
“CS3**_coin_detection.py” file!
●You can either put all of your code into that file, or use a modular structure with additional files 
(that, of course, have to be submitted in the zip file). However, we will only execute the 
“CS3**_coin_detection.py” file to see if your code works for the main component!
●The main component of the assignment (“CS3**_coin_detection.py”) must not use any non-built-in 
Python packages (e.g., PIL, OpenCV, NumPy, etc.) except for Matplotlib. Ensure your IDE hasn’t 
added any of these packages to your imports.
●For the extensions, please create a new Python source file called 
‘CS3**_coin_detection_extension.py’
; this will ensure your extension part doesn’t mix up with the 
main component of the assignment. Remember, your algorithm has to pass the main component 
first!
●Including a short PDF report about your extension.
●Important: Use a lab computer to test if your code works on Windows on a different machine 
(There are over 300 students, we cannot debug code for you if it doesn’t work!)
3easy_case_1 final output
easy_case_2 final output
easy_case_4 final output easy_case_6 final outputASSIGNMENT STEPS
5
1. Convert to greyscale and normalize
I. Convert to grey scale image: read input image using the ‘readRGBImageToSeparatePixelArrays()’ helper 
function. Convert the RGB image to greyscale (use RGB channel ratio 0.3 x red, 0.6 x green, 0.1 x blue), 
and round the pixel values to the nearest integer value.
II. Contrast Stretching: stretch the values between 0 to 255 (using the 5-95 percentile strategy) as described 
on lecture slides ImagesAndHistograms, p20-68). Do not round your 5% and 95% cumulative histogram 
values. Your output for this step should be the same as the image shown on Fig. 2.
Hint 1: see lecture slides ImagesAndHistograms and Coderunner Programming quiz in Week 10.
Hint 2: for our example image (Fig. 1), the 5_percentile (f_min) = 86 and the 95_percentile (f_max) = 1**.
Fig. 1: input Fig. 2: step 1 output
We will use this image 
(‘easy_case_1’) as an 
example on this slides2. Edge Detection
I. Apply a 3x3 Scharr filter in horizontal (x) and vertical (y) directions independently to get the edge maps (see 
Fig. 3 and Fig. 4), you should store the computed value for each individual pixel as Python float.
II. Take the absolute value of the sum between horizontal (x) and vertical (y) direction edge maps (see Hint 4). You 
do not need to round the numbers. The output for this step should be the same as the image shown on Fig. 5.
Hint 1: see lecture slides on edge detection and Coderunner Programming quiz in Week 11.
Hint 2: please use the 3x3 Scharr filter shown below for this assignment:
6
Hint 4: you should use the BorderIgnore option and set border 
pixels to zero in output, as stated on the slide Filtering, p13.
Hint 5: for computing the edge strength, you may use the 
following equation:
gm
(x, y) = |gx
(x, y)| + |gy
(x, y)|
Absolute grey level 
gradient on the 
horizontal direction
Absolute grey level 
gradient on the vertical 
direction
Edge map on 
horizontal and 
vertical
Fig. 5: Step 2 
output (gm
)
Fig. 4: Edge map 
(gy
) on vertical 
direction
Fig. 3: Edge map 
(gx
) on horizontal 
direction7
3. Image Blurring
Apply 5x5 mean filter(s) to image. Your output for this step should be the same as the image shown on 
Fig. 7.
Hint 1: do not round your output values.
Hint 2: after computing the mean filter for one 5x5 window, you should take the absolute value of your 
result before moving to the next window.
Hint 3: you should use the BorderIgnore option and set border pixels to zero in output, as stated on the 
slide Filtering, p13.
Hint 3: try applying the filter three times to the image sequentially.
Hint 4: see lecture slides on image filtering and Coderunner Programming quiz in Week 11.
Fig. 7: Step 3 output Fig. 6: Grayscale histogram for output from step 38
4. Threshold the Image
Perform a simple thresholding operation to segment the coin(s) from the black background. After 
performing this step, you should have a binary image (see Fig. 10).
Hint 1: 22 would be a reasonable value for thresholding for our example image, set any pixel value 
smaller than 22 to 0; this represents your background (region 1) in the image, and set any pixel value 
bigger or equal to 22 to 255; which represents your foreground (region 2) – the coin.
Hint 2: see lecture slides on image segmentation (p7) and see Programming quiz on Coderunner on 
Week 10.
Fig. 9: Step 3 output Fig. 10: Step 4 output Fig. 8: Grayscale histogram for output from step 39
5. Erosion and Dilation
Perform several dilation steps followed by several erosion steps. You may need to repeat the dilation 
and erosion steps multiple times. Your output for this step should be the same as the image shown on Fig. 
11.
Hint 1: use circular 5x5 kernel, see Fig. 12 for the kernel details.
Hint 2: the filtering process has to access pixels that are outside the input image. So, please use the 
BoundaryZeroPadding option, see lecture slides Filtering, p13.
Hint 2: try to perform dilation 3-4 times first, and then erosion 3-4 times. You may need to try a couple 
of times to get the desired output.
Hint 3: see lecture slides on image morphology and Coderunner Programming quiz in Week 12.
Fig. 11: Step 5 output
Fig. 12: Circular 5x5 kernel for 
dilation and erosion10
6. Connected Component Analysis
Perform a connected component analysis to find all connected components. Your output for this 
step should be the same as the image shown on Fig. 13.
After erosion and dilation, you may find there are still some holes in the binary image. That is 
fine, as long as it is one connected component.
Hint 1: see lecture slides on Segmentation_II, p4-6, and Coderunner Programming quiz in Week 
12.
Fig. 13: Step 6 outputWe will provide code for drawing the bounding box(es) 
in the image, so please store all the bounding box 
locations in a Python list called ‘bounding_box_list’, so 
our program can loop through all the bounding boxes 
and draw them on the output image.
Below is an example of the ‘bounding_box_list’ for our 
example image on the right.
11
7. Draw Bounding Box
Extract the bounding box(es) around all regions that your pipeline has found by looping over 
the image and looking for the minimum and maximum x and y coordinates of the pixels in the 
previously determined connected components. Your output for this step should be the same as 
the image shown on Fig. 14.
Make sure you record the bounding box locations for each of the connected components your 
pipeline has found.
Bounding_box_list=[[74, 68, 312, 303]]
A list of list
Bounding_box_min_x
Bounding_box_min_y Bounding_box_max_x
Bounding_box_max_y
Fig. 14: Step 7 outputInput
Drawing 
Bounding Box
Color to Gray Scale 
and Normalize
Edge 
Detection
Image 
Blurring Thresholding
Dilation and 
Erosion
Connected 
Component Analysis
12
Coin Detection Full Pipelineeasy_case_1 final output easy_case_2 final output
easy_case_4 final output easy_case_6 final outputEXTENSION
For this extension (worth 5 marks), you are expected to alter some parts of the pipeline.
●Using Laplacian filter for image edge detection
○Please use the Laplacian filter kernel on the right (see Fig. 15).
○You may need to change subsequent steps as well, if you decide to
use Laplacian filter.
●Output number of coins your pipeline has detected.
●Testing your pipeline on the hard-level images we provided.
○For some hard-level images, you may need to look at the size of the connected components to decide which 
component is the coin.
●Identify the type of coins (whether it is a **dollar coin, 50-cent coin, etc.). 
○Since different type of coins have different sizes, you may want to compute the area of the bounding box in 
the image to identify them.
●etc.
Submissions that make the most impressive contributions will get full marks. Please create a new 
Python source file called ‘CS3**_coin_detection_extension.py’ for your extension part, and include a 
short PDF report about your extension. Try to be creative!
14
Fig. 15: Laplacian filter kernel

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:INTE2401代寫、代做Java設計程序
  • 下一篇:CS 369代做、代寫Python編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          中日韩高清电影网| 欧美本精品男人aⅴ天堂| 好男人免费精品视频| 久久亚洲精品中文字幕冲田杏梨 | 欧美亚州在线观看| 久久精精品视频| 99国产精品国产精品久久 | 亚洲性感美女99在线| 国产一区二区精品久久| 欧美日韩国产高清视频| 久久久99精品免费观看不卡| 这里只有精品视频| 亚洲动漫精品| 韩国成人精品a∨在线观看| 欧美久久久久中文字幕| 久久一日本道色综合久久| 亚洲综合999| 亚洲乱码国产乱码精品精98午夜| 国模精品娜娜一二三区| 国产精品久久久久999| 欧美黄色影院| 欧美v日韩v国产v| 久久久午夜视频| 欧美在线一二三四区| 伊甸园精品99久久久久久| 国产欧美一区二区白浆黑人| 欧美色综合天天久久综合精品| 欧美黑人国产人伦爽爽爽| 蘑菇福利视频一区播放| 久久综合综合久久综合| 久久久亚洲影院你懂的| 久久久美女艺术照精彩视频福利播放 | 欧美激情按摩在线| 免费久久99精品国产| 老司机aⅴ在线精品导航| 久久香蕉国产线看观看av| 久久精品在线视频| 久久这里只有| 欧美不卡福利| 欧美理论在线| 国产精品久久久久毛片软件| 欧美日韩中文另类| 国产精品试看| 黄色成人小视频| 亚洲国产日韩欧美在线图片| 亚洲精品一区二区三| 日韩亚洲视频| 亚洲欧美日韩国产综合| 久久精品麻豆| 欧美插天视频在线播放| 欧美日韩一区二区精品| 国产精品揄拍500视频| 国产一区二区三区的电影| 1024国产精品| 亚洲视频第一页| 久久国产精彩视频| 欧美成人精品在线| 欧美性jizz18性欧美| 国产一区二区高清不卡| 91久久久久久国产精品| 中文在线一区| 久久免费高清视频| 欧美区一区二| 今天的高清视频免费播放成人| 亚洲人www| 欧美在线一二三四区| 欧美精品一区在线播放| 国产亚洲视频在线| 亚洲老司机av| 久久久久欧美| 国产精品成人在线| 影音先锋日韩有码| 午夜在线视频一区二区区别| 欧美成人一区二区三区片免费| 欧美色大人视频| 伊人久久成人| 亚洲欧美资源在线| 欧美精品激情在线观看| 国产一区二区黄| 亚洲一区免费视频| 欧美精品自拍| 影音先锋中文字幕一区| 亚洲一区二区精品视频| 欧美69视频| 国产揄拍国内精品对白| 亚洲天堂成人在线视频| 欧美夫妇交换俱乐部在线观看| 国产伦精品一区二区三区免费 | 欧美日韩精品综合| 亚洲国产精品123| 久久国产精品久久久久久电车| 欧美日韩国产小视频在线观看| 亚洲国产一区二区a毛片| 欧美永久精品| 国产亚洲精品美女| 欧美中文字幕不卡| 国产欧美日韩精品a在线观看| 一区二区三区www| 欧美精品v国产精品v日韩精品| 国产专区欧美精品| 久久精品在这里| 国语自产精品视频在线看一大j8| 亚洲无线一线二线三线区别av| 欧美久久久久| 在线亚洲自拍| 国产精品嫩草99av在线| 亚洲美女区一区| 欧美大片在线观看| 亚洲欧洲日韩女同| 欧美国产一区在线| 日韩一级片网址| 欧美调教vk| 亚洲自拍偷拍网址| 欧美性生交xxxxx久久久| 在线亚洲免费| 国产欧美精品日韩精品| 欧美一区二区在线看| 国模一区二区三区| 久久婷婷影院| 日韩午夜精品视频| 国产精品久久婷婷六月丁香| 欧美亚洲自偷自偷| 在线精品亚洲| 欧美日韩在线影院| 午夜在线a亚洲v天堂网2018| 一区视频在线播放| 欧美日韩精品一区二区三区四区| 亚洲在线第一页| 国内久久视频| 欧美日韩精品欧美日韩精品一| 亚洲欧美激情一区| 在线观看欧美激情| 国产精品成人久久久久| 久久精品二区三区| 亚洲少妇在线| 亚洲电影免费观看高清| 国产精品igao视频网网址不卡日韩| 亚洲女同精品视频| 亚洲电影观看| 国产日产精品一区二区三区四区的观看方式 | 亚洲一区二区视频在线观看| 国产日韩精品在线| 欧美日韩不卡| 媚黑女一区二区| 欧美一区二区播放| 99国产精品99久久久久久粉嫩 | 欧美亚洲一区三区| 亚洲欧洲午夜| 黄色日韩网站| 国产精品精品视频| 欧美激情日韩| 免费不卡视频| 久久国产天堂福利天堂| 亚洲影视在线| 一二三区精品| 伊人伊人伊人久久| 国产亚洲一二三区| 国产乱理伦片在线观看夜一区| 欧美精品999| 久久频这里精品99香蕉| 亚洲一区二区伦理| 日韩视频一区二区三区在线播放 | 国产一区二区主播在线| 国产精品成人一区二区三区夜夜夜| 美女主播视频一区| 欧美xx69| 欧美日韩国产美| 国产精品网曝门| 久久综合网络一区二区| 国产精品网站在线| 欧美一级视频一区二区| 亚洲一区中文| 亚洲视频999| 亚洲视频在线观看网站| 亚洲图片欧美午夜| 这里只有精品视频在线| 一本色道久久精品| 在线一区二区三区四区五区| 亚洲人被黑人高潮完整版| 亚洲啪啪91| 亚洲一二三区视频在线观看| 亚洲午夜一区二区| 午夜影院日韩| 久久亚洲一区二区三区四区| 久久亚洲春色中文字幕| 免费成人高清视频| 欧美理论电影在线播放| 欧美亚州一区二区三区| 国产精品电影网站| 国产精品国产三级国产aⅴ浪潮 | 欧美日韩在线观看一区二区三区| 欧美成人免费一级人片100| 欧美日本精品一区二区三区| 国产精品久久久久久久久久三级| 国产精品成人aaaaa网站| 国产美女一区| 亚洲国产日日夜夜| 亚洲综合另类| 欧美成人资源网| 欧美亚洲成人精品|