99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS373 COIN、代做Python設計程序

時間:2024-05-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



DETECTION 
ASSIGNMENT
2024 Semester 1
1
Version 2.2Deadline: 3rd June 2024, 23:59pm
●In this assignment, you will write a Python code pipeline to automatically detect all the coins in the 
given images. This is an individual assignment, so every student has to submit this assignment! This 
assignment is worth 15 marks.
●We have provided you with 6 images for testing your pipeline (you can find the images in the 
‘Images/easy’ folder).
○Your pipeline should be able to detect all the coins in the image labelled with easy-level. This will 
reward you with up to 10 marks.
○For extension (up to 5 marks), try images labelled as hard-level images in the “Images/hard” folder.
○Write a short reflective report about your extension. (Using Latex/Word)
●To output the images shown on the slides for checking, you may use the following code:
fig, axs = pyplot.subplots(1, 1)
# replace image with your image that you want to output
axs.imshow(image, cmap='gray')
pyplot.axis('off')
pyplot.tight_layout()
pyplot.show()
2SUBMISSION
Please upload your submission as a zipped file of the assignment folder to the UoA 
Assignment Dropbox by following this link: 
https://canvas.auckland.ac.nz/courses/103807/assignments/3837**
●Don’t put any virtual environment (venv) folders into this zip file, it just adds to the size, and we 
will have our own testing environment.
●Your code for executing the main coin detection algorithm has to be located in the provided 
“CS3**_coin_detection.py” file!
●You can either put all of your code into that file, or use a modular structure with additional files 
(that, of course, have to be submitted in the zip file). However, we will only execute the 
“CS3**_coin_detection.py” file to see if your code works for the main component!
●The main component of the assignment (“CS3**_coin_detection.py”) must not use any non-built-in 
Python packages (e.g., PIL, OpenCV, NumPy, etc.) except for Matplotlib. Ensure your IDE hasn’t 
added any of these packages to your imports.
●For the extensions, please create a new Python source file called 
‘CS3**_coin_detection_extension.py’
; this will ensure your extension part doesn’t mix up with the 
main component of the assignment. Remember, your algorithm has to pass the main component 
first!
●Including a short PDF report about your extension.
●Important: Use a lab computer to test if your code works on Windows on a different machine 
(There are over 300 students, we cannot debug code for you if it doesn’t work!)
3easy_case_1 final output
easy_case_2 final output
easy_case_4 final output easy_case_6 final outputASSIGNMENT STEPS
5
1. Convert to greyscale and normalize
I. Convert to grey scale image: read input image using the ‘readRGBImageToSeparatePixelArrays()’ helper 
function. Convert the RGB image to greyscale (use RGB channel ratio 0.3 x red, 0.6 x green, 0.1 x blue), 
and round the pixel values to the nearest integer value.
II. Contrast Stretching: stretch the values between 0 to 255 (using the 5-95 percentile strategy) as described 
on lecture slides ImagesAndHistograms, p20-68). Do not round your 5% and 95% cumulative histogram 
values. Your output for this step should be the same as the image shown on Fig. 2.
Hint 1: see lecture slides ImagesAndHistograms and Coderunner Programming quiz in Week 10.
Hint 2: for our example image (Fig. 1), the 5_percentile (f_min) = 86 and the 95_percentile (f_max) = 1**.
Fig. 1: input Fig. 2: step 1 output
We will use this image 
(‘easy_case_1’) as an 
example on this slides2. Edge Detection
I. Apply a 3x3 Scharr filter in horizontal (x) and vertical (y) directions independently to get the edge maps (see 
Fig. 3 and Fig. 4), you should store the computed value for each individual pixel as Python float.
II. Take the absolute value of the sum between horizontal (x) and vertical (y) direction edge maps (see Hint 4). You 
do not need to round the numbers. The output for this step should be the same as the image shown on Fig. 5.
Hint 1: see lecture slides on edge detection and Coderunner Programming quiz in Week 11.
Hint 2: please use the 3x3 Scharr filter shown below for this assignment:
6
Hint 4: you should use the BorderIgnore option and set border 
pixels to zero in output, as stated on the slide Filtering, p13.
Hint 5: for computing the edge strength, you may use the 
following equation:
gm
(x, y) = |gx
(x, y)| + |gy
(x, y)|
Absolute grey level 
gradient on the 
horizontal direction
Absolute grey level 
gradient on the vertical 
direction
Edge map on 
horizontal and 
vertical
Fig. 5: Step 2 
output (gm
)
Fig. 4: Edge map 
(gy
) on vertical 
direction
Fig. 3: Edge map 
(gx
) on horizontal 
direction7
3. Image Blurring
Apply 5x5 mean filter(s) to image. Your output for this step should be the same as the image shown on 
Fig. 7.
Hint 1: do not round your output values.
Hint 2: after computing the mean filter for one 5x5 window, you should take the absolute value of your 
result before moving to the next window.
Hint 3: you should use the BorderIgnore option and set border pixels to zero in output, as stated on the 
slide Filtering, p13.
Hint 3: try applying the filter three times to the image sequentially.
Hint 4: see lecture slides on image filtering and Coderunner Programming quiz in Week 11.
Fig. 7: Step 3 output Fig. 6: Grayscale histogram for output from step 38
4. Threshold the Image
Perform a simple thresholding operation to segment the coin(s) from the black background. After 
performing this step, you should have a binary image (see Fig. 10).
Hint 1: 22 would be a reasonable value for thresholding for our example image, set any pixel value 
smaller than 22 to 0; this represents your background (region 1) in the image, and set any pixel value 
bigger or equal to 22 to 255; which represents your foreground (region 2) – the coin.
Hint 2: see lecture slides on image segmentation (p7) and see Programming quiz on Coderunner on 
Week 10.
Fig. 9: Step 3 output Fig. 10: Step 4 output Fig. 8: Grayscale histogram for output from step 39
5. Erosion and Dilation
Perform several dilation steps followed by several erosion steps. You may need to repeat the dilation 
and erosion steps multiple times. Your output for this step should be the same as the image shown on Fig. 
11.
Hint 1: use circular 5x5 kernel, see Fig. 12 for the kernel details.
Hint 2: the filtering process has to access pixels that are outside the input image. So, please use the 
BoundaryZeroPadding option, see lecture slides Filtering, p13.
Hint 2: try to perform dilation 3-4 times first, and then erosion 3-4 times. You may need to try a couple 
of times to get the desired output.
Hint 3: see lecture slides on image morphology and Coderunner Programming quiz in Week 12.
Fig. 11: Step 5 output
Fig. 12: Circular 5x5 kernel for 
dilation and erosion10
6. Connected Component Analysis
Perform a connected component analysis to find all connected components. Your output for this 
step should be the same as the image shown on Fig. 13.
After erosion and dilation, you may find there are still some holes in the binary image. That is 
fine, as long as it is one connected component.
Hint 1: see lecture slides on Segmentation_II, p4-6, and Coderunner Programming quiz in Week 
12.
Fig. 13: Step 6 outputWe will provide code for drawing the bounding box(es) 
in the image, so please store all the bounding box 
locations in a Python list called ‘bounding_box_list’, so 
our program can loop through all the bounding boxes 
and draw them on the output image.
Below is an example of the ‘bounding_box_list’ for our 
example image on the right.
11
7. Draw Bounding Box
Extract the bounding box(es) around all regions that your pipeline has found by looping over 
the image and looking for the minimum and maximum x and y coordinates of the pixels in the 
previously determined connected components. Your output for this step should be the same as 
the image shown on Fig. 14.
Make sure you record the bounding box locations for each of the connected components your 
pipeline has found.
Bounding_box_list=[[74, 68, 312, 303]]
A list of list
Bounding_box_min_x
Bounding_box_min_y Bounding_box_max_x
Bounding_box_max_y
Fig. 14: Step 7 outputInput
Drawing 
Bounding Box
Color to Gray Scale 
and Normalize
Edge 
Detection
Image 
Blurring Thresholding
Dilation and 
Erosion
Connected 
Component Analysis
12
Coin Detection Full Pipelineeasy_case_1 final output easy_case_2 final output
easy_case_4 final output easy_case_6 final outputEXTENSION
For this extension (worth 5 marks), you are expected to alter some parts of the pipeline.
●Using Laplacian filter for image edge detection
○Please use the Laplacian filter kernel on the right (see Fig. 15).
○You may need to change subsequent steps as well, if you decide to
use Laplacian filter.
●Output number of coins your pipeline has detected.
●Testing your pipeline on the hard-level images we provided.
○For some hard-level images, you may need to look at the size of the connected components to decide which 
component is the coin.
●Identify the type of coins (whether it is a **dollar coin, 50-cent coin, etc.). 
○Since different type of coins have different sizes, you may want to compute the area of the bounding box in 
the image to identify them.
●etc.
Submissions that make the most impressive contributions will get full marks. Please create a new 
Python source file called ‘CS3**_coin_detection_extension.py’ for your extension part, and include a 
short PDF report about your extension. Try to be creative!
14
Fig. 15: Laplacian filter kernel

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:INTE2401代寫、代做Java設計程序
  • 下一篇:CS 369代做、代寫Python編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产校园另类小说区| 中文字幕亚洲欧美在线不卡| 亚洲女同女同女同女同女同69| 高清shemale亚洲人妖| 久久精品视频免费观看| 97久久超碰精品国产| 亚洲一区在线免费观看| 欧美色大人视频| 国产尤物一区二区| 中文字幕亚洲成人| 欧美日本在线看| 国产一二精品视频| 精品久久免费看| 91久久人澡人人添人人爽欧美| 蜜桃视频一区二区| 国产精品久久久久久久久晋中| 欧美精品在线观看一区二区| 国产精品99久| 日本视频一区二区| 亚洲欧洲精品天堂一级 | 亚洲欧美日韩在线不卡| 欧美精品18+| 成人精品国产福利| 免费观看在线综合| 一区二区三区波多野结衣在线观看| 日韩限制级电影在线观看| 99精品欧美一区二区三区小说| 蜜桃一区二区三区四区| 玉足女爽爽91| 国产精品国产成人国产三级| 欧美成人三级在线| 欧美猛男男办公室激情| 99视频精品免费视频| 精品一区二区免费在线观看| 亚洲影院久久精品| 亚洲久本草在线中文字幕| 国产欧美精品一区二区三区四区| 欧美一区二区在线视频| 欧美日韩精品一二三区| 在线亚洲一区观看| 色综合色狠狠天天综合色| 丁香天五香天堂综合| 国产麻豆成人精品| 国产精品一二三区| 国产福利一区二区三区| 激情五月婷婷综合| 美女视频黄频大全不卡视频在线播放| 夜夜爽夜夜爽精品视频| 亚洲欧美日韩系列| 亚洲自拍偷拍麻豆| 午夜欧美电影在线观看| 午夜视频在线观看一区二区三区| 亚洲欧美欧美一区二区三区| 亚洲人成亚洲人成在线观看图片 | 久久精品噜噜噜成人88aⅴ| 亚洲国产日韩a在线播放| 亚洲自拍欧美精品| 视频在线观看国产精品| 琪琪久久久久日韩精品| 精品一区免费av| 国产精品香蕉一区二区三区| 国产成人av网站| a级高清视频欧美日韩| 一本到一区二区三区| 欧美日韩精品一区视频| 日韩欧美国产综合一区 | 亚洲免费视频成人| 日韩综合在线视频| 国产一区二区精品在线观看| 成人开心网精品视频| 不卡高清视频专区| 91麻豆精品秘密| 911精品产国品一二三产区| 欧美精品一区二区在线播放| 精品日韩一区二区| 国产精品卡一卡二卡三| 洋洋成人永久网站入口| 亚洲成av人片在线| 国产精品自拍毛片| 欧美日高清视频| 中文字幕av一区二区三区免费看| 亚洲国产成人高清精品| 狠狠色丁香婷综合久久| 色哟哟一区二区| 精品国产乱码久久| 亚洲自拍另类综合| 国产福利一区在线观看| 欧美日本精品一区二区三区| 久久久久久久一区| 亚洲第一搞黄网站| www.亚洲色图.com| 91精品国产综合久久久久久久| 国产精品色哟哟| 激情另类小说区图片区视频区| 色网站国产精品| 国产欧美一区二区精品性| 亚洲丶国产丶欧美一区二区三区| 国产成人亚洲精品狼色在线| 欧美日韩高清一区二区三区| 国产精品卡一卡二| 狠狠色丁香久久婷婷综合丁香| 欧美视频在线播放| 国产精品高潮呻吟久久| 国模娜娜一区二区三区| 日韩午夜中文字幕| 亚洲国产精品麻豆| 99re8在线精品视频免费播放| 欧美精品一区二区三区一线天视频 | 亚洲成av人在线观看| 成人久久18免费网站麻豆 | 欧美影视一区在线| 18欧美亚洲精品| 国产乱色国产精品免费视频| 欧美一区二区三区精品| 亚洲成av人影院在线观看网| 欧美午夜一区二区| 亚洲一区中文在线| 欧美在线视频不卡| 一区二区三区在线观看视频| 91丝袜高跟美女视频| 欧美国产禁国产网站cc| 国产精品一级在线| 中文字幕乱码日本亚洲一区二区 | 黑人精品欧美一区二区蜜桃| 日韩一级成人av| 久久精品久久综合| 欧美精品亚洲一区二区在线播放| 精品久久久久久久久久久院品网| 国产精品久久三区| 国产福利一区在线| 欧美日韩高清在线播放| 国产精品久久久爽爽爽麻豆色哟哟| 秋霞电影一区二区| 欧美久久婷婷综合色| 国产精品美女一区二区三区| 久草中文综合在线| 欧美日韩和欧美的一区二区| 亚洲日本va午夜在线影院| 91视频国产资源| 日韩综合一区二区| 日韩视频免费直播| 国产一区二区女| 亚洲欧洲国产日本综合| 色欧美乱欧美15图片| 亚洲精品乱码久久久久久日本蜜臀| 成人国产一区二区三区精品| 欧美v国产在线一区二区三区| 日韩成人午夜精品| 91精品黄色片免费大全| 国产成人精品免费一区二区| 一区二区三区成人| 在线观看视频欧美| 麻豆91在线看| 亚洲精品国产无天堂网2021| 日韩一区二区高清| 成人自拍视频在线| 亚洲图片欧美视频| 欧美日韩一级大片网址| 亚洲国产精品一区二区尤物区| 欧美在线观看一二区| 麻豆视频观看网址久久| 国产婷婷色一区二区三区| 91国产成人在线| 日韩电影在线免费| 精品国产网站在线观看| 国产91丝袜在线播放九色| 中文在线一区二区 | 一本色道久久加勒比精品| 亚洲三级在线观看| 69堂国产成人免费视频| 日韩高清不卡一区二区| 久久中文字幕电影| 99视频热这里只有精品免费| 玉米视频成人免费看| 欧美色视频一区| 日韩av电影免费观看高清完整版| 欧美一区二区在线看| 国产乱码精品一区二区三区av | 欧美三级日韩三级| 麻豆91小视频| 婷婷中文字幕综合| 国产精品毛片久久久久久| 欧美精品一区男女天堂| 欧美日韩一区视频| eeuss国产一区二区三区| 国产福利精品一区| 国产精品99久久久| 国产成人在线观看免费网站| 久久99精品视频| 婷婷国产在线综合| 亚洲一二三专区| 一区二区三区在线观看国产| 国产精品天干天干在线综合| 中文字幕高清一区| 久久久久一区二区三区四区| 日韩精品一区二区三区在线播放 | 中文字幕av免费专区久久| 久久久久久久久一| 久久女同互慰一区二区三区| 欧美精品国产精品|