合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        CISC3025代做、代寫Java,c++設計編程

        時間:2024-02-07  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        CISC3025 - Natural Language Processing
        Project #1, 2023/2024
        (Due date: 5th February, 2024)
        Project Rule
        This is an individual course project. You are strongly recommended to commence work on
        each assignment task of the project soon after it is announced in class/UMMoodle. Students are
        free to discuss the project, but they are not permitted to share any code and report.
        Problem Description
        This assignment asks you to implement a sequence comparison algorithm (e.g., Levenshtein
        Distance). Given   = "AACGCA" and   = "GAGCTA", the objective is to match identical
        subsequences as far as possible through alignment. It can be seen as a way to transforming one
        sequence into the other with the substitution, insertion, and deletion of characters. The cost of
        operations is considered as:
        Ÿ    ( ,  ) = 0       ∈ ∑;
        Ÿ    ( ,  ) = 2      ,   ∈ ∑       ≠  ;
        Ÿ    ( ) =    ( ) = 1       ∈ ∑.
        In the following example, three operations are applied for aligning the two sequences, i.e.,
           ( ,  ),    ( ), and    ( ). Hence, the minimum cost for such transformation is 4.
         M
        The similarity of two sequences can be defined as the best score among possible alignment
        between them, i.e. the minimum cost or minimum edit distance. The computation of such
        alignment between two sequences can be efficiently solved by using dynamic programming
        approach based on scoring matrix (Table 1):
        DynamicProgramming(x, m, y, n)
        1. T[-1,-1] ¬ 0
        2. for j ¬ 0 to n - 1
        3. do T[-1, j] ¬ T[-1, j - 1] + Ins(yj)
        4. for i ¬ 0 to m - 1
        5. do T[i, -1] ¬ T[i -1, - 1] + Del(xi)
        6. for j ¬ 0 to n - 1
        7. do T[i, j] ¬ min{ T[i-1, j - 1] + Sub(xi, yj),
        8. T[i-1, j] + Del(xi),
        9. T[i, j - 1] + Ins(yj)}
        10. return T[m - 1, n - 1]
         ( , ) # G A G C T A
        Table 1. Scoring matrix
        More information regarding dynamic programming and scoring matrix can be found in Chapter
        1 & Chapter 2 of [1] and [2].
        Requirements
        1. You are asked to implement the dynamic programming algorithm in Python. Input to the
        program are two strings and the minimum cost is output as the comparison result, followed
        by a possible alignment between the two strings.
        The following shows a scenario of the input and outputs:
        > AACGCA
        > GAGCTA
        The cost is: 4
        An possible alignment is:
        A A C G C - A
        | | | | | | |
        G A – G C T A
        2. Extend your program to deal with sentence by taking words as the comparison units instead
        of letters.
        The following shows a scenario of the input and outputs:
        > I love natural language processing
        > I really like natural language processing course
        The cost is: 4
        An possible alignment is:
        I love − natural language processing −
        | | | | | | |
        I really like natural language processing course
        3
        3. Write a function to compute the similarities between words in batch mode and store your
        results in a file.
        In the input file “word_corpus.txt”, each row contains a word and a symbol, ‘R’, or ‘H’,
        indicating the correct Reference and the Hypothesis, respectively. Your program compares
        each hypothesis to the reference, and appends the minimum edit distance to the
        corresponding hypothesisin the output file, as shown in the following diagram. The number
        of the hypotheses for each reference may be varied. The name of the output file should be
        “word_edit_distance.txt”.
        4. Write a similar function to compute the similarities between sentences in batch mode
        “sentence_corpus.txt” and store your results in a file “sentence_edit_distance.txt”. The
        References and Hypotheses are arranged in a similar way as in Requirement (3). Note, the
        number of hypotheses for each reference is constant.
        The Starter Code
        The starter code is in the edit_distance.py. To make it easier for you to do this project, we
        provide a starter code written in python. If you enter into the folder “Assignment#1” and
        execute the following command:

        The program will execute the function word_edit_distance( ) to calculate the edit distance
        and the alignment, then output the result to the command line using the output_alignment
        function( ).
        Similarly, you can use the following command to test your implemented
        sentence_edit_distance( ) function:
        For Requirements (3) and (4), you can run the following command to specify the name of
        input and output files:
        Input file:
        R satisfaction
        H satisfacion
        H satesfaction
        H satisfation
        H satiusfacson
        .
        .
        .
        Output file:
        R satisfaction
        H satisfacion 1
        H satesfaction 2
        H satisfation 1
        H satiusfacson 4
        .
        .
        .
        $python edit_distance.py -w ‘word1’ ‘word2’
        $python edit_distance.py -s ‘sentence1’ ‘sentence2’
        4
        The output_alignment( ) function has been already implemented to show the alignments in
        a proper format.
        Submissions
        You need to submit the following materials:
        1. Runnable program and source code;
        2. A brief report containing the following contents:
        • Introduction: Clearly state the goal of your project. Explain why the project is both
        important and interesting in the context of NLP.
        • Background: Briefly introduce one or two fundamental NLP concepts that are central
        to your project.
        • Approach & Challenges: Summarize your methodological approach in one concise
        paragraph. Identify one significant challenge you encountered and describe how you
        addressed it.
        • Results: Summarize the outcomes of your project, highlighting the main findings.
        • Conclusion: Reflect briefly on what you learned from the project and what was
        accomplished.
        3. The output files.
        References
        [1] C. Charras and T. Lecroq, Sequence Comparison. Université de Rouen.
        (https://www.researchgate.net/profile/Thierry_Lecroq/publication/2783**5_Sequence_Com
        parison/links/09e41**d23e64eb7000000.pdf)
        [2] http://ultrastudio.org/en/Dynamic%20programming%20table
        $python edit_distance.py -bw ‘inputfile’ ‘outputfile’
        $python edit_distance.py -bs ‘inputfile’ ‘outputfile’

        如有需要,請加QQ:99515681 或WX:codehelp

        掃一掃在手機打開當前頁
      1. 上一篇:代做Micro Language Compiler
      2. 下一篇:CS 61程序代做、代寫C/C++編程設計
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 NBA直播 幣安下載

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 美女视频一区二区| 人妻在线无码一区二区三区| 亚洲码一区二区三区| 日本免费一区二区久久人人澡| 一区二区日韩国产精品| 视频一区二区三区免费观看| 国产一区二区女内射| 国产精品丝袜一区二区三区| 国产伦精品一区二区三区不卡| 波多野结衣一区二区三区高清在线| 久久久99精品一区二区| 秋霞无码一区二区| 亚洲国产精品第一区二区三区| 日本中文字幕一区二区有码在线| 国产一区二区好的精华液| 亚洲国产日韩一区高清在线| 国产一区二区三区福利| 色综合视频一区二区三区44| 亚洲中文字幕无码一区| 大伊香蕉精品一区视频在线| 日韩精品一区二区三区国语自制 | 国产一区二区精品久久凹凸| 国产日韩一区二区三区在线播放| 精品一区二区三区免费| 人妻无码一区二区三区| 日韩一区二区在线观看| 国产一区二区三区在线电影 | 国产免费私拍一区二区三区| 在线精品视频一区二区| 无码人妻一区二区三区av| 乱子伦一区二区三区| 91福利一区二区| 狠狠综合久久av一区二区| 视频一区视频二区日韩专区| 在线日韩麻豆一区| 最美女人体内射精一区二区| 精品一区二区三区免费| 国精产品999一区二区三区有限| 日韩人妻无码免费视频一区二区三区| 亚洲AV无码一区二区三区久久精品| 亚洲Av无码国产一区二区|