99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

MA2552代做、代寫Matlab編程語言

時間:2023-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


MA2552 Introduction to Computing (DLI) 2023/24

Computational Project

Aims and Intended Learning Outcomes

The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

• ability to investigate a topic through guided independent research, using resources

available on the internet and/or in the library;

• understanding of the researched material;

• implementation of the described methods in Matlab;

• use of the implemented methods on test examples;

• ability to present the studied topic and your computations in a written Project Report.

Plagiarism and Declaration

• This report should be your independent work. You should not seek help from other

students or provide such help to other students. All sources you used in preparing your

report should be listed in the References section at the end of your report and referred

to as necessary throughout the report.

• Your Project Report must contain the following Declaration (after the title page):

DECLARATION

All sentences or passages quoted in this Project Report from other people’s work have

been specifically acknowledged by clear and specific cross referencing to author, work and

page(s), or website link. I understand that failure to do so amounts to plagiarism and

will be considered grounds for failure in this module and the degree as a whole.

Name:

Signed: (name, if submitted electronically)

Date:

Project Report

The report should be about 6-8 pages long, written in Word or Latex. Equations should

be properly formatted and cross-referenced, if necessary. All the code should be included in

the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

file (Word document or Adobe PDF) and contain answers to the following questions:

1

MA2552 Introduction to Computing (DLI) 2023/24

Part 0: Context

Let f(x) be a periodic function. The goal of this project is to implement a numerical method

for solving the following family of ordinary differential equations (O.D.E):

an

d

nu(x)

dxn

+ an−1

d

n−1u(x)

dxn−1

+ . . . + a0u(x) = f(x), (1)

where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

with periodic boundary conditions:

d

ku(−π)

dxk

=

d

ku(π)

dxk

for k = 0, · · · , n − 1.

We aim to solve this problem using a trigonometric function expansion.

Part 1: Basis of trigonometric functions

Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

β1, β2, . . . such that

u(x) = X∞

k=0

αk cos(kx) +X∞

1

βk sin(kx).

The coefficients αk and βk can be found using the following orthogonality properties:

Z π

−π

cos(kx) sin(nx) dx = 0, for any k, n

Z π

−π

cos(kx) cos(nx) dx =

ɽ**;?**0;

ɽ**;?**1;

0 if k ̸= n

π if k = n ̸= 0

2π if k = n = 0.

Z π

−π

sin(kx) sin(nx) dx =

(

0 if k ̸= n

π if k = n ̸= 0.

1. Implement a function that takes as an input two function handles f and g, and an

array x, and outputs the integral

1

π

Z π

−π

f(x)g(x) dx,

using your own implementation of the Simpson’s rule scheme. Corroborate numerically

the orthogonality properties above for different values of k and n.

2. Show that

αk =

(

1

π

R π

−π

u(x) cos(kx) dx if k ̸= 0

1

R π

−π

u(x) dx if k = 0

βk =

1

π

Z π

−π

u(x) sin(kx) dx.

2

MA2552 Introduction to Computing (DLI) 2023/24

3. Using question 1 and 2, write a function that given a function handle u and an integer

m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

of an array) the truncated series

um(x) := Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx), (2)

where x is a linspace array on the interval [−π, π].

5. Using the function from question 3, compute the truncated series um(x) of the following

functions:

• u(x) = sin3

(x)

• u(x) = |x|

• u(x) = (

x + π, for x ∈ [−π, 0]

x − π, for x ∈ (0, π]

,

and using question 4, plot u(x) and um(x) for different values of m.

6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

and then with p = ∞. What do you observe?

Part 2: Solving the O.D.E

Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

one can approximate u(x) by um(x):

u(x) ≈

Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx),

Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

to solve (1) numerically, one could build a system of equations for determining these

coefficients.

7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

8. We have that

dum(x)

dx =

Xm

k=0

γk cos(kx) +Xm

k=1

ηk sin(kx)

Write a function that takes as input the integer m, and outputs a square matrix D that

maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

3

MA2552 Introduction to Computing (DLI) 2023/24

9. Write a function that given a function handler f, an integer m, and the constants

ak, solves the O.D.E. (1). Note that some systems might have an infinite number of

solutions. In that case your function should be able identify such cases.

10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

(x) + 1),

with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

does your numerical solution converge to the exact solution?

11. Show your numerical solution for different f(x) and different ak of your choice.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫CE335編程、代做Python,C++程序設計
  • 下一篇:COMP528代寫、代做c/c++編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          一区二区视频欧美| 欧美精品一区二区高清在线观看| 一区国产精品| 欧美日韩在线播| 欧美一区三区二区在线观看| 亚洲第一网站| 国产一区二区三区的电影| 欧美日韩亚洲综合一区| 狂野欧美激情性xxxx欧美| 欧美亚洲免费高清在线观看| 一本久久a久久免费精品不卡| 韩国成人福利片在线播放| 国产精品美女久久久免费| 欧美精品一区二区蜜臀亚洲| 另类国产ts人妖高潮视频| 久久久久9999亚洲精品| 欧美一区二区视频在线观看| 中文一区二区| 亚洲免费婷婷| 亚洲性线免费观看视频成熟| 一本综合久久| 99视频在线精品国自产拍免费观看| 亚洲国产1区| 黄色国产精品一区二区三区| 国产自产精品| 好看的av在线不卡观看| 国内自拍一区| 国内精品写真在线观看| 国产日韩欧美中文| 国产日韩欧美成人| 国产欧美在线播放| 国产一区二区三区四区五区美女| 国产日产精品一区二区三区四区的观看方式 | 久久亚裔精品欧美| 久久综合五月| 欧美日本在线看| 欧美日韩精品一区二区三区四区 | 巨胸喷奶水www久久久免费动漫| 久久精品国产99精品国产亚洲性色 | 一区视频在线播放| 亚洲精品视频一区| 在线视频中文亚洲| 欧美伊久线香蕉线新在线| 久久狠狠婷婷| 欧美成人第一页| 欧美日韩美女在线观看| 国产精品青草综合久久久久99| 国产精品你懂的| 精品51国产黑色丝袜高跟鞋| 亚洲国产精品久久久久秋霞蜜臀| 日韩一级精品| 久久精品一本| 欧美日韩一区在线| 激情久久久久久| 亚洲免费av网站| 性色av一区二区三区红粉影视| 久久久亚洲综合| 欧美日韩视频在线一区二区 | 欧美亚洲色图校园春色| 免费不卡在线观看av| 国产精品狠色婷| 亚洲第一黄色| 欧美一区二区三区喷汁尤物| 欧美精品国产一区二区| 国产日韩欧美综合精品| 亚洲精品五月天| 久久免费视频在线| 国产精品午夜在线| 亚洲黄色影片| 久久久噜噜噜久久中文字免| 欧美日精品一区视频| 伊人天天综合| 久久精品日产第一区二区| 国产精品成人一区二区网站软件| 一区福利视频| 欧美综合第一页| 欧美亚州一区二区三区| 最近中文字幕mv在线一区二区三区四区| 亚洲一区二区免费在线| 欧美日本网站| 亚洲三级免费观看| 你懂的一区二区| 在线精品一区二区| 久久国产精品99精品国产| 国产精品igao视频网网址不卡日韩| 在线观看视频一区| 看片网站欧美日韩| 在线看视频不卡| 久久精品中文字幕一区二区三区| 国产精品视频不卡| 香蕉精品999视频一区二区| 欧美四级剧情无删版影片| 一级成人国产| 欧美深夜影院| 午夜精品成人在线| 国产毛片精品国产一区二区三区| 亚洲午夜精品视频| 国产精品视频精品视频| 正在播放欧美一区| 国产精品日韩精品欧美精品| 午夜免费日韩视频| 国产欧美日本| 久久中文欧美| 亚洲精品小视频| 欧美午夜片在线观看| 亚洲男人影院| 国产亚洲毛片| 蜜臀久久99精品久久久久久9| 亚洲国产精品一区二区www在线| 蜜桃av综合| 99在线精品视频在线观看| 国产精品久久久久免费a∨ | 亚洲欧美日韩综合| 国产亚洲精品高潮| 免费观看成人| 亚洲一区二区三区午夜| 国产欧美日韩亚洲一区二区三区| 欧美专区福利在线| 亚洲国产一区二区三区青草影视| 欧美高清视频在线观看| 亚洲婷婷国产精品电影人久久| 国产精品户外野外| 老妇喷水一区二区三区| 亚洲视频在线观看视频| 国产一区二区三区精品欧美日韩一区二区三区 | 在线综合亚洲欧美在线视频| 国产精品主播| 欧美激情精品久久久久久蜜臀| 亚洲香蕉视频| 亚洲国产清纯| 国产精品福利在线观看| 狼人社综合社区| 亚洲欧美一区二区激情| 91久久精品www人人做人人爽 | 国产精品国产福利国产秒拍 | 亚洲大片免费看| 国产精品欧美久久久久无广告| 麻豆九一精品爱看视频在线观看免费| 夜夜嗨av一区二区三区| 在线欧美福利| 国产欧美一区二区精品忘忧草| 欧美成人国产| 久久国产精品第一页| 一区二区三区.www| 亚洲激情视频网站| 黄色国产精品一区二区三区| 国产精品二区影院| 欧美极品欧美精品欧美视频| 久久福利视频导航| 亚洲欧美www| 一本一本久久a久久精品牛牛影视| 激情小说另类小说亚洲欧美| 国产欧美一区二区精品性色| 欧美日韩精品一区二区在线播放 | 伊人久久亚洲热| 国产人成一区二区三区影院| 欧美视频中文字幕| 欧美三级电影大全| 欧美精品一卡| 欧美久久久久中文字幕| 免费在线亚洲| 欧美大片在线看| 欧美成人一区在线| 免费在线观看成人av| 蜜臀av性久久久久蜜臀aⅴ四虎| 久久久久久欧美| 久久亚洲综合色一区二区三区| 欧美一区二区三区在线观看视频| 亚洲摸下面视频| 亚洲欧美视频| 亚洲欧美中文另类| 西西裸体人体做爰大胆久久久| 亚洲免费在线观看| 久久国产精品久久久久久电车| 欧美一区二区三区四区在线| 亚洲一区中文| 久久精品国产免费| 久久精品最新地址| 欧美jizz19性欧美| 欧美美女日韩| 国产精品国内视频| 国产视频亚洲精品| 亚洲大胆人体视频| 日韩视频在线免费观看| 亚洲美女视频在线观看| 亚洲一区日韩| 久久精品国产欧美亚洲人人爽| 久久久精品五月天| 欧美成人a∨高清免费观看| 欧美理论电影网| 国产精品久久久久久久久| 国产一区二区无遮挡| 91久久国产综合久久蜜月精品| 一本久久知道综合久久| 午夜精品免费在线| 美女久久网站| 欧美性猛交xxxx免费看久久久| 国产欧美日韩一级| 亚洲国产欧美一区二区三区久久| 亚洲一级二级|