合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

        MA2552代做、代寫Matlab編程語言

        時間:2023-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


        MA2552 Introduction to Computing (DLI) 2023/24

        Computational Project

        Aims and Intended Learning Outcomes

        The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

        of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

        • ability to investigate a topic through guided independent research, using resources

        available on the internet and/or in the library;

        • understanding of the researched material;

        • implementation of the described methods in Matlab;

        • use of the implemented methods on test examples;

        • ability to present the studied topic and your computations in a written Project Report.

        Plagiarism and Declaration

        • This report should be your independent work. You should not seek help from other

        students or provide such help to other students. All sources you used in preparing your

        report should be listed in the References section at the end of your report and referred

        to as necessary throughout the report.

        • Your Project Report must contain the following Declaration (after the title page):

        DECLARATION

        All sentences or passages quoted in this Project Report from other people’s work have

        been specifically acknowledged by clear and specific cross referencing to author, work and

        page(s), or website link. I understand that failure to do so amounts to plagiarism and

        will be considered grounds for failure in this module and the degree as a whole.

        Name:

        Signed: (name, if submitted electronically)

        Date:

        Project Report

        The report should be about 6-8 pages long, written in Word or Latex. Equations should

        be properly formatted and cross-referenced, if necessary. All the code should be included in

        the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

        New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

        file (Word document or Adobe PDF) and contain answers to the following questions:

        1

        MA2552 Introduction to Computing (DLI) 2023/24

        Part 0: Context

        Let f(x) be a periodic function. The goal of this project is to implement a numerical method

        for solving the following family of ordinary differential equations (O.D.E):

        an

        d

        nu(x)

        dxn

        + an−1

        d

        n−1u(x)

        dxn−1

        + . . . + a0u(x) = f(x), (1)

        where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

        with periodic boundary conditions:

        d

        ku(−π)

        dxk

        =

        d

        ku(π)

        dxk

        for k = 0, · · · , n − 1.

        We aim to solve this problem using a trigonometric function expansion.

        Part 1: Basis of trigonometric functions

        Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

        β1, β2, . . . such that

        u(x) = X∞

        k=0

        αk cos(kx) +X∞

        1

        βk sin(kx).

        The coefficients αk and βk can be found using the following orthogonality properties:

        Z π

        −π

        cos(kx) sin(nx) dx = 0, for any k, n

        Z π

        −π

        cos(kx) cos(nx) dx =

        ɽ**;?**0;

        ɽ**;?**1;

        0 if k ̸= n

        π if k = n ̸= 0

        2π if k = n = 0.

        Z π

        −π

        sin(kx) sin(nx) dx =

        (

        0 if k ̸= n

        π if k = n ̸= 0.

        1. Implement a function that takes as an input two function handles f and g, and an

        array x, and outputs the integral

        1

        π

        Z π

        −π

        f(x)g(x) dx,

        using your own implementation of the Simpson’s rule scheme. Corroborate numerically

        the orthogonality properties above for different values of k and n.

        2. Show that

        αk =

        (

        1

        π

        R π

        −π

        u(x) cos(kx) dx if k ̸= 0

        1

        R π

        −π

        u(x) dx if k = 0

        βk =

        1

        π

        Z π

        −π

        u(x) sin(kx) dx.

        2

        MA2552 Introduction to Computing (DLI) 2023/24

        3. Using question 1 and 2, write a function that given a function handle u and an integer

        m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

        4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

        of an array) the truncated series

        um(x) := Xm

        k=0

        αk cos(kx) +Xm

        k=1

        βk sin(kx), (2)

        where x is a linspace array on the interval [−π, π].

        5. Using the function from question 3, compute the truncated series um(x) of the following

        functions:

        • u(x) = sin3

        (x)

        • u(x) = |x|

        • u(x) = (

        x + π, for x ∈ [−π, 0]

        x − π, for x ∈ (0, π]

        ,

        and using question 4, plot u(x) and um(x) for different values of m.

        6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

        and then with p = ∞. What do you observe?

        Part 2: Solving the O.D.E

        Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

        one can approximate u(x) by um(x):

        u(x) ≈

        Xm

        k=0

        αk cos(kx) +Xm

        k=1

        βk sin(kx),

        Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

        to solve (1) numerically, one could build a system of equations for determining these

        coefficients.

        7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

        8. We have that

        dum(x)

        dx =

        Xm

        k=0

        γk cos(kx) +Xm

        k=1

        ηk sin(kx)

        Write a function that takes as input the integer m, and outputs a square matrix D that

        maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

        3

        MA2552 Introduction to Computing (DLI) 2023/24

        9. Write a function that given a function handler f, an integer m, and the constants

        ak, solves the O.D.E. (1). Note that some systems might have an infinite number of

        solutions. In that case your function should be able identify such cases.

        10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

        (x) + 1),

        with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

        does your numerical solution converge to the exact solution?

        11. Show your numerical solution for different f(x) and different ak of your choice.

        請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

         

        掃一掃在手機打開當前頁
      1. 上一篇:代寫CE335編程、代做Python,C++程序設計
      2. 下一篇:COMP528代寫、代做c/c++編程設計
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
        急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發(fā)動機性能
        挖掘機濾芯提升發(fā)動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 无码人妻精品一区二区蜜桃| 亚洲日韩精品无码一区二区三区| 无码午夜人妻一区二区不卡视频| 日本一区二区三区久久| 亚洲人成网站18禁止一区| 一区二区精品在线| 麻豆一区二区三区蜜桃免费| 无码欧精品亚洲日韩一区| 国产精品被窝福利一区| 国产精品视频一区| 在线播放一区二区| 久久精品国产免费一区| 乱人伦一区二区三区| 福利国产微拍广场一区视频在线 | 日产一区日产2区| 国产一区二区三区在线观看免费 | 亚洲乱码国产一区网址| 成人精品一区二区三区校园激情| 无码人妻品一区二区三区精99| 一区二区三区在线播放视频| 国产麻豆剧果冻传媒一区 | 麻豆AV无码精品一区二区| 亚洲一区二区三区高清| 国产激情无码一区二区| 国产一区二区精品久久岳| 538国产精品一区二区在线| 国产在线第一区二区三区| 国产乱码精品一区二区三区| 亚洲av永久无码一区二区三区 | 无码人妻一区二区三区兔费| 波多野结衣一区二区三区| 99精品一区二区三区无码吞精| 国产一区在线mmai| 亚州AV综合色区无码一区| 天海翼一区二区三区高清视频| 中文字幕日韩欧美一区二区三区 | 精品无人区一区二区三区| 人体内射精一区二区三区| 中文字幕一区二区三区久久网站| 国产AV一区二区三区无码野战| 亚洲一区二区三区首页|