99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

MA2552代做、代寫Matlab編程語言

時間:2023-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


MA2552 Introduction to Computing (DLI) 2023/24

Computational Project

Aims and Intended Learning Outcomes

The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

• ability to investigate a topic through guided independent research, using resources

available on the internet and/or in the library;

• understanding of the researched material;

• implementation of the described methods in Matlab;

• use of the implemented methods on test examples;

• ability to present the studied topic and your computations in a written Project Report.

Plagiarism and Declaration

• This report should be your independent work. You should not seek help from other

students or provide such help to other students. All sources you used in preparing your

report should be listed in the References section at the end of your report and referred

to as necessary throughout the report.

• Your Project Report must contain the following Declaration (after the title page):

DECLARATION

All sentences or passages quoted in this Project Report from other people’s work have

been specifically acknowledged by clear and specific cross referencing to author, work and

page(s), or website link. I understand that failure to do so amounts to plagiarism and

will be considered grounds for failure in this module and the degree as a whole.

Name:

Signed: (name, if submitted electronically)

Date:

Project Report

The report should be about 6-8 pages long, written in Word or Latex. Equations should

be properly formatted and cross-referenced, if necessary. All the code should be included in

the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

file (Word document or Adobe PDF) and contain answers to the following questions:

1

MA2552 Introduction to Computing (DLI) 2023/24

Part 0: Context

Let f(x) be a periodic function. The goal of this project is to implement a numerical method

for solving the following family of ordinary differential equations (O.D.E):

an

d

nu(x)

dxn

+ an−1

d

n−1u(x)

dxn−1

+ . . . + a0u(x) = f(x), (1)

where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

with periodic boundary conditions:

d

ku(−π)

dxk

=

d

ku(π)

dxk

for k = 0, · · · , n − 1.

We aim to solve this problem using a trigonometric function expansion.

Part 1: Basis of trigonometric functions

Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

β1, β2, . . . such that

u(x) = X∞

k=0

αk cos(kx) +X∞

1

βk sin(kx).

The coefficients αk and βk can be found using the following orthogonality properties:

Z π

−π

cos(kx) sin(nx) dx = 0, for any k, n

Z π

−π

cos(kx) cos(nx) dx =

ɽ**;?**0;

ɽ**;?**1;

0 if k ̸= n

π if k = n ̸= 0

2π if k = n = 0.

Z π

−π

sin(kx) sin(nx) dx =

(

0 if k ̸= n

π if k = n ̸= 0.

1. Implement a function that takes as an input two function handles f and g, and an

array x, and outputs the integral

1

π

Z π

−π

f(x)g(x) dx,

using your own implementation of the Simpson’s rule scheme. Corroborate numerically

the orthogonality properties above for different values of k and n.

2. Show that

αk =

(

1

π

R π

−π

u(x) cos(kx) dx if k ̸= 0

1

R π

−π

u(x) dx if k = 0

βk =

1

π

Z π

−π

u(x) sin(kx) dx.

2

MA2552 Introduction to Computing (DLI) 2023/24

3. Using question 1 and 2, write a function that given a function handle u and an integer

m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

of an array) the truncated series

um(x) := Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx), (2)

where x is a linspace array on the interval [−π, π].

5. Using the function from question 3, compute the truncated series um(x) of the following

functions:

• u(x) = sin3

(x)

• u(x) = |x|

• u(x) = (

x + π, for x ∈ [−π, 0]

x − π, for x ∈ (0, π]

,

and using question 4, plot u(x) and um(x) for different values of m.

6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

and then with p = ∞. What do you observe?

Part 2: Solving the O.D.E

Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

one can approximate u(x) by um(x):

u(x) ≈

Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx),

Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

to solve (1) numerically, one could build a system of equations for determining these

coefficients.

7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

8. We have that

dum(x)

dx =

Xm

k=0

γk cos(kx) +Xm

k=1

ηk sin(kx)

Write a function that takes as input the integer m, and outputs a square matrix D that

maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

3

MA2552 Introduction to Computing (DLI) 2023/24

9. Write a function that given a function handler f, an integer m, and the constants

ak, solves the O.D.E. (1). Note that some systems might have an infinite number of

solutions. In that case your function should be able identify such cases.

10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

(x) + 1),

with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

does your numerical solution converge to the exact solution?

11. Show your numerical solution for different f(x) and different ak of your choice.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫CE335編程、代做Python,C++程序設計
  • 下一篇:COMP528代寫、代做c/c++編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲国产日产av| 久久国产成人午夜av影院| 久久成人综合网| 欧美一级国产精品| 秋霞电影一区二区| 精品国产电影一区二区| 国产伦精品一区二区三区免费 | 狠狠久久亚洲欧美| 国产日韩精品久久久| 色综合久久综合网欧美综合网| 亚洲一级二级在线| 精品久久久久久久久久久久久久久| 国产在线精品国自产拍免费| 日韩一区在线看| 日韩一级视频免费观看在线| 成人av免费在线观看| 日韩国产精品大片| 亚洲视频免费观看| 精品国产3级a| 欧美伊人久久久久久久久影院 | 国产精品久久久久影院老司 | 色婷婷久久一区二区三区麻豆| 一区二区三国产精华液| 日韩写真欧美这视频| 欧美三区在线视频| 欧美一区二区三区思思人| 国产在线播放一区二区三区| 亚洲欧美日韩在线| 欧美一区二区三区性视频| 国产麻豆午夜三级精品| 亚洲国产一区二区视频| 国产三级一区二区| 91精品国产综合久久久久久久久久 | 夜夜爽夜夜爽精品视频| 久久综合色综合88| 精品视频在线免费观看| 成人国产视频在线观看| 免费成人av在线| 亚洲美女在线一区| 一区二区中文视频| 久久精品一区二区三区不卡| 日韩一区二区高清| 91麻豆精品国产91久久久更新时间| 风间由美一区二区三区在线观看 | 不卡的av网站| 精品一区免费av| 日韩电影在线免费观看| 亚洲精品日韩综合观看成人91| 日本一区二区三区在线观看| 欧美日韩国产乱码电影| 91福利国产成人精品照片| 国产不卡在线一区| 成人做爰69片免费看网站| 国产成a人亚洲精品| 国产成人综合自拍| 成人理论电影网| 99精品欧美一区| 在线看一区二区| 欧美日韩在线播放一区| 欧美久久久影院| 日韩欧美一卡二卡| 久久久久久久久久久久电影| 久久久99精品久久| 中文乱码免费一区二区| 国产日韩精品视频一区| 国产精品久久久久三级| 亚洲欧美一区二区三区极速播放 | 色激情天天射综合网| 色综合久久久网| 欧美三级中文字幕| 欧美不卡在线视频| 中文天堂在线一区| 亚洲综合色成人| 日本中文字幕一区二区视频 | 亚洲欧美偷拍卡通变态| 亚洲综合视频网| 久久精工是国产品牌吗| 国产成人精品一区二区三区四区| 国产91露脸合集magnet| 成人av免费观看| 欧美图区在线视频| 欧美精品一区二区三区久久久| 欧美精彩视频一区二区三区| 亚洲精品日日夜夜| 老司机一区二区| av色综合久久天堂av综合| 日本大香伊一区二区三区| 欧美本精品男人aⅴ天堂| 一区免费观看视频| 久久97超碰国产精品超碰| 成人国产精品免费网站| 91精品国产免费| 国产精品进线69影院| 日本aⅴ精品一区二区三区| 国产91清纯白嫩初高中在线观看| 欧美日韩一区精品| 国产欧美综合在线观看第十页| 亚洲综合视频在线| 国产盗摄女厕一区二区三区 | 中文字幕乱码久久午夜不卡| 亚洲午夜一二三区视频| 高清在线观看日韩| 日韩一区二区视频| 亚洲美女少妇撒尿| 国产精品亚洲午夜一区二区三区 | 国产精品一区二区男女羞羞无遮挡| 色狠狠色噜噜噜综合网| 国产丝袜欧美中文另类| 日本欧美加勒比视频| 在线观看视频91| 日本一区二区不卡视频| 精品一二三四在线| 在线不卡a资源高清| 最近中文字幕一区二区三区| 国产精品自拍网站| 精品久久久久久久久久久久久久久久久| 亚洲一区二区四区蜜桃| 91麻豆产精品久久久久久 | 亚洲国产日韩a在线播放| youjizz国产精品| 国产亚洲美州欧州综合国| 精品一区二区日韩| 欧美一卡2卡3卡4卡| 久久国产欧美日韩精品| 亚洲成在线观看| 国产自产2019最新不卡| 日韩一区二区三区免费观看| 亚洲综合色成人| 日本高清视频一区二区| 中文字幕一区二区三区不卡| 国产成人精品三级| 久久久久久一级片| 国产精品小仙女| 日韩午夜激情电影| 午夜视频在线观看一区二区三区 | 亚洲精品一区二区三区影院| 裸体一区二区三区| 日韩欧美一区二区三区在线| 免费在线观看不卡| 日韩免费电影一区| 国产一区二区调教| 国产精品网站在线播放| 91麻豆免费看片| 午夜视频在线观看一区二区 | 精品国产百合女同互慰| 久久er精品视频| 精品福利在线导航| 丁香婷婷综合激情五月色| 国产精品视频麻豆| 色综合中文字幕| 男人的天堂亚洲一区| 久久精品视频一区二区| 色先锋久久av资源部| 视频在线观看一区| 久久精品人人做人人爽人人| 99免费精品在线观看| 天堂影院一区二区| 国产欧美日韩另类一区| 在线观看成人免费视频| 美女视频黄久久| 国产精品另类一区| 欧美精品日韩一区| 国产不卡视频在线播放| 亚洲一区日韩精品中文字幕| 日韩视频免费观看高清完整版在线观看 | www.久久久久久久久| 一区二区在线观看av| 日韩一级视频免费观看在线| 国产成人精品网址| 偷窥少妇高潮呻吟av久久免费| 久久影院午夜论| 在线观看不卡视频| 国产精品一区专区| 日韩激情一区二区| 亚洲欧洲日韩女同| 欧美一区二区三区不卡| 成人美女视频在线观看| 美腿丝袜亚洲一区| 亚洲一区二区三区四区中文字幕| 精品欧美一区二区三区精品久久| 一本色道久久综合亚洲精品按摩| 国产精品一区二区久激情瑜伽| 亚洲激情校园春色| 日韩亚洲国产中文字幕欧美| 波多野结衣精品在线| 国产在线播精品第三| 日韩精品欧美精品| 亚洲网友自拍偷拍| 亚洲免费观看视频| 日韩精品中文字幕一区 | 欧洲一区在线电影| 99国产精品久久久久久久久久| 人人爽香蕉精品| 亚洲图片欧美色图| 亚洲综合色丁香婷婷六月图片| 国产精品麻豆欧美日韩ww| 日韩精品专区在线影院重磅| 欧美日韩成人激情| 日本大香伊一区二区三区| 大胆亚洲人体视频|