99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP528代寫、代做c/c++編程設計

時間:2023-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman

Problem. This document explains the operations in detail, so you do not need previous

knowledge. You are encouraged to start this as soon as possible. Historically, as the deadline nears, the queue times on Barkla grow as more submissions are tested. You are also

encouraged to use your spare time in the labs to receive help, and clarify any queries you

have regarding the assignment.

1 The Travelling Salesman Problem (TSP)

The travelling salesman problem is a problem that seeks to answer the following question:

‘Given a list of vertices and the distances between each pair of vertices, what is the shortest

possible route that visits each vertex exactly once and returns to the origin vertex?’.

(a) A fully connected graph (b) The shortest route around all vertices

Figure 1: An example of the travelling salesman problem

The travelling salesman problem is an NP-hard problem, that meaning an exact solution

cannot be solved in polynomial time. However, there are polynomial solutions that can

be used which give an approximation of the shortest route between all vertices. In this

assignment you are asked to implement 2 of these.

1.1 Terminology

We will call each point on the graph the vertex. There are 6 vertices in Figure 1.

We will call each connection between vertices the edge. There are 15 edges in Figure 1.z

We will call two vertices connected if they have an edge between them.

The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is

(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.

A partial tour is a tour that has not yet visited all the vertices.

202**024 1

COMP528

2 The solutions

2.1 Preparation of Solution

You are given a number of coordinate files with this format:

x, y

4.81263062**6921, 8.3**19930253777

2.**156816804616, 0.39593575612759

1.13649642931556, 2.2**59458630845

4.4**7**99682118, 2.9749120444**06

9.8****616851393, 9.107****070**

Figure 2: Format of a coord file

Each line is a coordinate for a vertex, with the x and y coordinate being separated by a

comma. You will need to convert this into a distance matrix.

0.000000 8.177698 7.099481 5.381919 5.0870**

8.177698 0.000000 2.577029 3.029315 11.138848

7.099481 2.577029 0.000000 3.426826 11.068045

5.381919 3.029315 3.426826 0.000000 8.139637

5.0870** 11.138848 11.068045 8.139637 0.000000

Figure 3: A distance matrix for Figure 2

To convert the coordinates to a distance matrix, you will need make use of the euclidean

distance formula.

d =

q

(xi − xj )

2 + (yi − yj )

2

(1)

Figure 4: The euclidean distance formula

Where: d is the distance between 2 vertices vi and vj

, xi and yi are the coordinates of the

vertex vi

, and xj and yj are the coordinates of the vertex vj

.

202**024 2

COMP528

2.2 Cheapest Insertion

The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it looks for a vertex that hasn’t been visited, and inserts it between two connected

vertices in the tour, such that the cost of inserting it between the two connected vertices is

minimal.

These steps can be followed to implement the cheapest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always

pick the lowest index or indices.

1. Start off with a vertex vi

.

Figure 5: Step 1 of Cheapest Insertion

2. Find a vertex vj such that the dist(vi

, vj ) is minimal, and create a partial tour (vi

, vj

, vi)

Figure 6: Step 2 of Cheapest Insertion

3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and

vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +

dist(vn+1, vk) − dist(vn, vn+1) is minimal.

202**024 3

COMP528

Figure 7: Step 3 of Cheapest Insertion

4. Repeat step 3 until all vertices have been visited, and are in the tour.

Figure 8: Step 4 of Cheapest Insertion

Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11

2.3 Farthest Insertion

The farthest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it checks for the farthest vertex not visited from any vertex within the partial tour, and

then inserts it between two connected vertices in the partial tour where the cost of inserting

it between the two connected vertices is minimal.

202**024 4

COMP528

These steps can be followed to implement the farthest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always

pick the lowest index(indices).

1. Start off with a vertex vi

.

Figure 10: Step 1 of Farthest Insertion

2. Find a vertex vj such that dist(vi

, vj ) is maximal, and create a partial tour (vi

, vj

, vi).

Figure 11: Step 2 of Farthest Insertion

3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an

unvisited vertex vk such that dist(vn, vk) is maximal.

Figure 12: Step 3 of Farthest Insertion

202**024 5

COMP528

4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is

a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) − dist(vn, vn+1) is

minimal.

Figure 13: Step 4 of Farthest Insertion

5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.

Figure 14: Step 3(2) of Farthest Insertion

Figure 15: Step 4(2) of Farthest Insertion

202**024 6

COMP528

Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11

3 Running your programs

Your program should be able to be ran like so:

./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >

Therefore, your program should accept a coordinate file, and an output file as arguments.

Note that C considers the first argument as the program executable.

Both implementations should read a coordinate file, run either cheapest insertion or farthest

insertion, and write the tour to the output file.

3.1 Provided Code

You are provided with code that can read the coordinate input from a file, and write the

final tour to a file. This is located in the file coordReader.c. You will need to include this

file when compiling your programs.

The function readNumOfCoords() takes a filename as a parameter and returns the number

of coordinates in the given file as an integer.

The function readCoords() takes the filename and the number of coordinates as parameters,

and returns the coordinates from a file and stores it in a two-dimensional array of doubles,

where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y

coordinate for the ith coordinate.

The function writeTourToFile() takes the tour, the tour length, and the output filename

as parameters, and writes the tour to the given file.

202**02**

University of Liverpool Continuous Assessment 1 COMP528

4 Instructions

• Implement a serial solution for the cheapest insertion and the farthest insertion. Name

these: cInsertion.c, fInsertion.c.

• Implement a parallel solution, using OpenMP, for the cheapest insertion and the farthest insertion. Name these: ompcInsertion.c, ompfInsertion.c.

• Create a Makefile and call it ”Makefile” which performs as the list states below. Without the Makefile, your code will not grade on CodeGrade (see more in section 5.1).

– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU compiler

– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler

– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the

GNU compiler

– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the

GNU compiler

– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with

the Intel compiler

– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel

compiler.

• Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording

the time it takes to solve each one. Record the start time after you read from the

coordinates file, and the end time before you write to the output file. Do all testing

with the large data file.

• Plot a speedup plot with the speedup on the y-axis and the number of threads on the

x-axis for each parallel solution.

• Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of

threads on the x-axis for each parallel solution.

• Write a report that, for each solution, using no more than 1 page per solution,

describes: your serial version, and your parallelisation strategy

• In your report, include: the speedup and parallel efficiency plots, how you conducted

each measurement and calculation to plot these, and sreenshots of you compiling and

running your program. These do not contribute to the page limit

202**024 8

COMP528

• Your final submission should be uploaded onto CodeGrade. The files you

upload should be:

– Makefile

– cInsertion.c

– fInsertion.c

– ompcInsertion.c

– ompfInsertion.c

– report.pdf

5 Hints

You can also parallelise the conversion of the coordinates to the distance matrix.

When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...

int ∗ o n e d a r ra y = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

For a 2-D array:

int ∗∗ twod a r ra y = ( int ∗∗) malloc ( numOfElements ∗ s i z e o f ( int ∗ ) ) ;

for ( int i = 0 ; i < numOfElements ; i ++){

twod a r ra y [ i ] = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

}

5.1 Makefile

You are instructed to use a MakeFile to compile the code in any way you like. An example

of how to use a MakeFile can be used here:

{make command } : { t a r g e t f i l e s }

{compile command}

c i : c I n s e r t i o n . c coordReader . c

gcc c I n s e r t i o n . c coordReader . c −o c i . exe −lm

Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,

the compile command is automatically executed. It is worth noting, the compile command

must be indented. The target files are the files that must be present for the make command

to execute.

202**024 9

COMP528

6 Marking scheme

1 Code that compiles without errors or warnings 15%

2 Same numerical results for test cases 20%

3 Speedup plot 10%

4 Parallel Efficiency Plot 10%

5 Parallel efficiency up to ** threads 15%

6 Speed of program 10%

11 Clean code and comments 10%

12 Report 10%

Table 1: Marking scheme

7 Deadline

202**024 10

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:MA2552代做、代寫Matlab編程語言
  • 下一篇:代寫選股公式 代做通達信量中尋莊副圖指標
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                黄色国产在线播放| 亚洲国产欧美视频| 色欲一区二区三区精品a片| 日本美女久久久| 天天色天天综合网| 亚洲日本久久久| 国产精欧美一区二区三区白种人| 国产一区二区在线播放视频| 免费在线观看亚洲| 亚洲成人av免费在线观看| 亚洲免费黄色网址| 国产小视频在线看| 日本高清视频免费观看| 在线观看免费的av| 99热这里只有精品1| 国产又粗又长又大视频| 欧美成人aaaaⅴ片在线看| 性猛交富婆╳xxx乱大交天津| 亚洲天堂网站在线| 精品国产青草久久久久96 | www.中文字幕| 国语对白永久免费| 色啦啦av综合| 91麻豆精品在线| 久久久久国产精品夜夜夜夜夜| 日韩黄色精品视频| 亚洲一区二区在线视频观看| 国产破处视频在线观看| 欧美熟妇交换久久久久久分类| 在线观看中文字幕视频| 国产精品7777| 人妻无码一区二区三区| 91精品国自产| 欧美精品韩国精品| 久久精品一卡二卡| 一区二区三区四区毛片| 国产精品一区二区av白丝下载| 日韩不卡在线播放| av一区二区三| 日产欧产va高清| 丁香花五月激情| 日本在线视频免费观看| 超碰人人cao| 日本在线播放一区二区| wwww.国产| 色18美女社区| 国产特黄大片aaaa毛片| 五月天婷婷在线播放| 国产情侣一区二区| 亚洲a级黄色片| 久久久久久久久久一区二区| 亚洲欧洲综合网| 欧美日韩一区二区三区69堂| 99久久精品国产一区二区成人| 欧美日韩免费做爰视频| www亚洲色图| 午夜视频你懂的| 久久精品视频1| 91亚洲欧美激情| 无码人妻精品一区二区三| 国产尤物在线观看| 69亚洲乱人伦| 一级做a爰片毛片| 免费看裸体网站| 国产精品自产拍| 亚洲三级在线视频| 深爱激情五月婷婷| 久久人人爽人人爽人人片av免费| www.狠狠爱| 中文字幕剧情在线观看| 人妻丰满熟妇av无码区hd| 国产调教在线观看| av手机天堂网| 中文字幕视频网| 日韩人妻精品中文字幕| 久久精品久久国产| 国产av人人夜夜澡人人爽| 日日噜噜夜夜狠狠| 国产婷婷在线视频| 超碰在线播放97| 亚洲视频在线a| 一区二区三区人妻| 四虎成人永久免费视频| 欧美人一级淫片a免费播放| 国产系列精品av| 波多野结衣一本| 亚洲一二三av| 最近中文字幕免费在线观看| 天堂av在线网站| 日本在线观看视频网站| 久久久久久久99| 精品国产人妻一区二区三区| 国产极品美女高潮无套嗷嗷叫酒店| 亚洲人午夜射精精品日韩| 一区二区三区韩国| 亚洲 欧美 激情 小说 另类| 日本三级2019| 日韩av男人天堂| 日本aⅴ在线观看| 人妻av无码一区二区三区| 久久中文字幕精品| 黄色a一级视频| 国产精品酒店视频| 国产视频在线免费观看| 国产黄色片网站| 国产精品毛片一区视频播| 波多野结衣爱爱视频| 岛国av在线免费| 国产成人自拍一区| 国产精品久久久久久久免费看| а天堂中文在线资源| 成人无码精品1区2区3区免费看| www.四虎在线| 成人免费视频国产免费麻豆| 182在线观看视频| а中文在线天堂| 国产高清av片| 国产无套在线观看| 久久精品视频免费在线观看| 久久久久亚洲av无码a片| 你懂的在线观看网站| 日韩黄色一区二区| 五月婷婷之综合激情| 依依成人综合网| 90岁老太婆乱淫| 国产一级在线免费观看| 久久视频免费看| 色天使在线视频| 最近中文字幕在线观看视频| 51妺嘿嘿午夜福利| 国产精品国产三级国产专业不| 国精产品一区一区三区免费视频| 久久婷五月综合| 婷婷在线免费视频| 亚洲丝袜在线观看| 国产精品第5页| 免费黄色在线播放| 亚洲AV无码成人精品区东京热| 亚洲精品国产精品乱码不卡| 懂色av粉嫩av蜜臀av一区二区三区| 国产欧美一区二区三区在线观看视频| 久久久国产精品黄毛片| 天堂中文在线官网| 亚洲一区二区三区高清视频| 91国模少妇一区二区三区| 东京干手机福利视频| 久久综合激情网| 天天干天天干天天干天天| 亚洲一级片免费| 国产一区二区在线不卡| 日韩欧美黄色网址| 亚洲熟妇一区二区| 精品人妻一区二区免费视频| 五月天丁香花婷婷| 99久久久久久久| 欧美第一页在线观看| 中文字幕av片| 国产一级生活片| 午夜欧美福利视频| 国产精品九九九九九| 嫩草av久久伊人妇女超级a| 中国一级特黄毛片| 国产三级在线观看视频| 色一情一交一乱一区二区三区| 91精品国产高清91久久久久久| 精品国产亚洲一区二区麻豆| 午夜免费福利影院| 国产无遮挡又黄又爽又色| 午夜av免费观看| 国产又粗又猛又爽又黄的视频一| 手机看片久久久| 国产精品国产一区二区三区四区| 少妇av在线播放| 国产精品一级二级| 在线成人精品视频| 久久婷婷综合色| 91尤物国产福利在线观看| 日本少妇bbwbbw精品| 国产成人精品亚洲精品色欲| 色呦呦一区二区| 国产一级中文字幕| 亚洲高清在线不卡| 免费观看一级一片| 国产大尺度视频| 中文字幕在线观看精品| 久操视频免费看| 亚洲天堂视频在线播放| 三级网站免费看| 精品一区二区三孕妇视频| 91免费公开视频| 熟妇高潮一区二区高潮| 国产一级视频在线| 一级黄色特级片| 一区二区三区精彩视频| 欧美日韩生活片| 国产小视频一区| www午夜视频| 亚洲国产综合久久| 天堂av2020| 蜜臀aⅴ国产精品久久久国产老师 蜜臀99久久精品久久久久小说 |