99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP528代寫、代做c/c++編程設計

時間:2023-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman

Problem. This document explains the operations in detail, so you do not need previous

knowledge. You are encouraged to start this as soon as possible. Historically, as the deadline nears, the queue times on Barkla grow as more submissions are tested. You are also

encouraged to use your spare time in the labs to receive help, and clarify any queries you

have regarding the assignment.

1 The Travelling Salesman Problem (TSP)

The travelling salesman problem is a problem that seeks to answer the following question:

‘Given a list of vertices and the distances between each pair of vertices, what is the shortest

possible route that visits each vertex exactly once and returns to the origin vertex?’.

(a) A fully connected graph (b) The shortest route around all vertices

Figure 1: An example of the travelling salesman problem

The travelling salesman problem is an NP-hard problem, that meaning an exact solution

cannot be solved in polynomial time. However, there are polynomial solutions that can

be used which give an approximation of the shortest route between all vertices. In this

assignment you are asked to implement 2 of these.

1.1 Terminology

We will call each point on the graph the vertex. There are 6 vertices in Figure 1.

We will call each connection between vertices the edge. There are 15 edges in Figure 1.z

We will call two vertices connected if they have an edge between them.

The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is

(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.

A partial tour is a tour that has not yet visited all the vertices.

202**024 1

COMP528

2 The solutions

2.1 Preparation of Solution

You are given a number of coordinate files with this format:

x, y

4.81263062**6921, 8.3**19930253777

2.**156816804616, 0.39593575612759

1.13649642931556, 2.2**59458630845

4.4**7**99682118, 2.9749120444**06

9.8****616851393, 9.107****070**

Figure 2: Format of a coord file

Each line is a coordinate for a vertex, with the x and y coordinate being separated by a

comma. You will need to convert this into a distance matrix.

0.000000 8.177698 7.099481 5.381919 5.0870**

8.177698 0.000000 2.577029 3.029315 11.138848

7.099481 2.577029 0.000000 3.426826 11.068045

5.381919 3.029315 3.426826 0.000000 8.139637

5.0870** 11.138848 11.068045 8.139637 0.000000

Figure 3: A distance matrix for Figure 2

To convert the coordinates to a distance matrix, you will need make use of the euclidean

distance formula.

d =

q

(xi − xj )

2 + (yi − yj )

2

(1)

Figure 4: The euclidean distance formula

Where: d is the distance between 2 vertices vi and vj

, xi and yi are the coordinates of the

vertex vi

, and xj and yj are the coordinates of the vertex vj

.

202**024 2

COMP528

2.2 Cheapest Insertion

The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it looks for a vertex that hasn’t been visited, and inserts it between two connected

vertices in the tour, such that the cost of inserting it between the two connected vertices is

minimal.

These steps can be followed to implement the cheapest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always

pick the lowest index or indices.

1. Start off with a vertex vi

.

Figure 5: Step 1 of Cheapest Insertion

2. Find a vertex vj such that the dist(vi

, vj ) is minimal, and create a partial tour (vi

, vj

, vi)

Figure 6: Step 2 of Cheapest Insertion

3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and

vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +

dist(vn+1, vk) − dist(vn, vn+1) is minimal.

202**024 3

COMP528

Figure 7: Step 3 of Cheapest Insertion

4. Repeat step 3 until all vertices have been visited, and are in the tour.

Figure 8: Step 4 of Cheapest Insertion

Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11

2.3 Farthest Insertion

The farthest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it checks for the farthest vertex not visited from any vertex within the partial tour, and

then inserts it between two connected vertices in the partial tour where the cost of inserting

it between the two connected vertices is minimal.

202**024 4

COMP528

These steps can be followed to implement the farthest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always

pick the lowest index(indices).

1. Start off with a vertex vi

.

Figure 10: Step 1 of Farthest Insertion

2. Find a vertex vj such that dist(vi

, vj ) is maximal, and create a partial tour (vi

, vj

, vi).

Figure 11: Step 2 of Farthest Insertion

3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an

unvisited vertex vk such that dist(vn, vk) is maximal.

Figure 12: Step 3 of Farthest Insertion

202**024 5

COMP528

4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is

a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) − dist(vn, vn+1) is

minimal.

Figure 13: Step 4 of Farthest Insertion

5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.

Figure 14: Step 3(2) of Farthest Insertion

Figure 15: Step 4(2) of Farthest Insertion

202**024 6

COMP528

Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11

3 Running your programs

Your program should be able to be ran like so:

./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >

Therefore, your program should accept a coordinate file, and an output file as arguments.

Note that C considers the first argument as the program executable.

Both implementations should read a coordinate file, run either cheapest insertion or farthest

insertion, and write the tour to the output file.

3.1 Provided Code

You are provided with code that can read the coordinate input from a file, and write the

final tour to a file. This is located in the file coordReader.c. You will need to include this

file when compiling your programs.

The function readNumOfCoords() takes a filename as a parameter and returns the number

of coordinates in the given file as an integer.

The function readCoords() takes the filename and the number of coordinates as parameters,

and returns the coordinates from a file and stores it in a two-dimensional array of doubles,

where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y

coordinate for the ith coordinate.

The function writeTourToFile() takes the tour, the tour length, and the output filename

as parameters, and writes the tour to the given file.

202**02**

University of Liverpool Continuous Assessment 1 COMP528

4 Instructions

• Implement a serial solution for the cheapest insertion and the farthest insertion. Name

these: cInsertion.c, fInsertion.c.

• Implement a parallel solution, using OpenMP, for the cheapest insertion and the farthest insertion. Name these: ompcInsertion.c, ompfInsertion.c.

• Create a Makefile and call it ”Makefile” which performs as the list states below. Without the Makefile, your code will not grade on CodeGrade (see more in section 5.1).

– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU compiler

– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler

– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the

GNU compiler

– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the

GNU compiler

– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with

the Intel compiler

– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel

compiler.

• Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording

the time it takes to solve each one. Record the start time after you read from the

coordinates file, and the end time before you write to the output file. Do all testing

with the large data file.

• Plot a speedup plot with the speedup on the y-axis and the number of threads on the

x-axis for each parallel solution.

• Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of

threads on the x-axis for each parallel solution.

• Write a report that, for each solution, using no more than 1 page per solution,

describes: your serial version, and your parallelisation strategy

• In your report, include: the speedup and parallel efficiency plots, how you conducted

each measurement and calculation to plot these, and sreenshots of you compiling and

running your program. These do not contribute to the page limit

202**024 8

COMP528

• Your final submission should be uploaded onto CodeGrade. The files you

upload should be:

– Makefile

– cInsertion.c

– fInsertion.c

– ompcInsertion.c

– ompfInsertion.c

– report.pdf

5 Hints

You can also parallelise the conversion of the coordinates to the distance matrix.

When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...

int ∗ o n e d a r ra y = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

For a 2-D array:

int ∗∗ twod a r ra y = ( int ∗∗) malloc ( numOfElements ∗ s i z e o f ( int ∗ ) ) ;

for ( int i = 0 ; i < numOfElements ; i ++){

twod a r ra y [ i ] = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

}

5.1 Makefile

You are instructed to use a MakeFile to compile the code in any way you like. An example

of how to use a MakeFile can be used here:

{make command } : { t a r g e t f i l e s }

{compile command}

c i : c I n s e r t i o n . c coordReader . c

gcc c I n s e r t i o n . c coordReader . c −o c i . exe −lm

Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,

the compile command is automatically executed. It is worth noting, the compile command

must be indented. The target files are the files that must be present for the make command

to execute.

202**024 9

COMP528

6 Marking scheme

1 Code that compiles without errors or warnings 15%

2 Same numerical results for test cases 20%

3 Speedup plot 10%

4 Parallel Efficiency Plot 10%

5 Parallel efficiency up to ** threads 15%

6 Speed of program 10%

11 Clean code and comments 10%

12 Report 10%

Table 1: Marking scheme

7 Deadline

202**024 10

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:MA2552代做、代寫Matlab編程語言
  • 下一篇:代寫選股公式 代做通達信量中尋莊副圖指標
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美国产激情二区三区| 日韩免费一区二区三区在线播放| 色欧美日韩亚洲| 亚洲欧美日韩久久| 91久久精品网| 免费看欧美女人艹b| 欧美一级黄色录像| 国产夫妻精品视频| 一区二区三区在线视频播放| 在线一区二区三区四区| 乱中年女人伦av一区二区| 国产亚洲一本大道中文在线| 色综合天天狠狠| 久久99久久精品欧美| 国产欧美视频一区二区三区| 欧美图片一区二区三区| 久久精品国产一区二区| 亚洲精选视频在线| 911精品国产一区二区在线| 久久99久久精品| 亚洲精品欧美激情| 久久综合国产精品| 欧美视频精品在线观看| 国内成人自拍视频| 一区二区三区中文字幕| 久久精品人人爽人人爽| 欧美无砖专区一中文字| 国产aⅴ精品一区二区三区色成熟| 亚洲精品中文字幕乱码三区| 337p日本欧洲亚洲大胆色噜噜| 色综合天天天天做夜夜夜夜做| 美女视频黄免费的久久| 亚洲自拍偷拍图区| 国产精品久久久久久久久久久免费看| 欧美肥妇bbw| 日本国产一区二区| 岛国精品在线播放| 久久电影网站中文字幕| 天天综合网 天天综合色| 综合自拍亚洲综合图不卡区| 精品国产欧美一区二区| 欧美日韩国产乱码电影| 色噜噜狠狠一区二区三区果冻| 国产精品一品二品| 久久精品二区亚洲w码| 一区二区三区精品| 亚洲视频每日更新| 亚洲色图.com| 国产精品毛片a∨一区二区三区| 精品国产第一区二区三区观看体验 | 亚洲va欧美va天堂v国产综合| 国产精品久久久久aaaa樱花 | 久久国产精品区| 亚洲福利一区二区三区| 亚洲精品伦理在线| 亚洲资源在线观看| 亚洲欧美精品午睡沙发| 亚洲精品日韩综合观看成人91| 国产精品高潮久久久久无| 国产欧美日韩在线| 国产精品久久看| 亚洲乱码一区二区三区在线观看| 亚洲一区二区在线免费看| 亚洲最新视频在线观看| 亚洲一区二区三区美女| 三级不卡在线观看| 欧美aaaaa成人免费观看视频| 日本欧美大码aⅴ在线播放| 美国毛片一区二区| 国产不卡免费视频| 在线观看精品一区| 337p亚洲精品色噜噜| 精品久久99ma| 国产精品三级视频| 亚洲福利国产精品| 国产一区二区三区免费观看| 粉嫩在线一区二区三区视频| 色8久久人人97超碰香蕉987| 555www色欧美视频| 国产午夜亚洲精品午夜鲁丝片| 亚洲欧美怡红院| 亚洲国产一区二区视频| 日韩精品电影在线| av资源网一区| 日韩欧美一区二区在线视频| 国产亚洲欧美激情| 午夜电影久久久| 懂色av中文一区二区三区| 欧美视频一区二区三区| 国产欧美精品一区aⅴ影院| 亚洲一区二区精品久久av| 国产精品一区二区x88av| 欧美日韩在线综合| 欧美激情综合在线| 日韩国产高清在线| 色婷婷av一区二区三区大白胸| 日韩美女天天操| 亚洲精品中文在线影院| 成人性生交大片免费看中文网站| 欧美日韩高清不卡| 亚洲免费观看高清| 国产成人av一区二区| 欧美老肥妇做.爰bbww视频| 国产精品夫妻自拍| 韩国精品主播一区二区在线观看 | 国产三级一区二区| 亚洲成人你懂的| 99精品视频一区二区三区| www成人在线观看| 美腿丝袜一区二区三区| 欧美日韩在线三区| 亚洲午夜电影在线| 91论坛在线播放| 亚洲国产电影在线观看| 久久91精品国产91久久小草| 91精品国产综合久久久久久漫画| 一区二区三区四区不卡在线| 99re热这里只有精品免费视频| 国产日韩欧美在线一区| 国产综合色在线视频区| 欧美大黄免费观看| 久久精品二区亚洲w码| 欧美成人精品3d动漫h| 奇米精品一区二区三区四区 | 美女在线视频一区| 91.com视频| 麻豆精品视频在线观看视频| 制服丝袜一区二区三区| 奇米精品一区二区三区在线观看| 欧美一区二区在线看| 天天综合天天做天天综合| 欧美一区午夜视频在线观看 | 日本福利一区二区| 亚洲一区二区在线视频| 91精品国产综合久久香蕉的特点| 蜜桃一区二区三区在线| 日韩精品一区国产麻豆| 国产乱妇无码大片在线观看| 国产精品免费久久| 色婷婷久久久亚洲一区二区三区| 夜夜嗨av一区二区三区网页| 欧美猛男男办公室激情| 国产久卡久卡久卡久卡视频精品| 国产视频一区在线观看 | 亚洲在线中文字幕| 69精品人人人人| 国产精品77777| 亚洲另类一区二区| 日韩片之四级片| 不卡的av电影在线观看| 亚洲精品综合在线| 日韩亚洲欧美综合| eeuss鲁片一区二区三区在线看 | 亚洲午夜久久久久久久久久久 | 国产一区二区三区不卡在线观看| 久久久国产午夜精品| 91日韩精品一区| 美女任你摸久久| 亚洲欧美在线视频观看| 69p69国产精品| k8久久久一区二区三区 | 久久精品国产亚洲a| 亚洲欧洲日韩av| 日韩一级黄色片| 成人h动漫精品一区二| 日本aⅴ免费视频一区二区三区| 国产欧美精品区一区二区三区| 欧美日韩精品一区二区天天拍小说| 国产精品香蕉一区二区三区| 亚洲午夜久久久久| 国产精品国产三级国产a| 日韩精品中文字幕在线一区| 欧美午夜在线观看| 91在线观看高清| 精油按摩中文字幕久久| 一区二区三区精品久久久| 国产午夜精品在线观看| 欧美老年两性高潮| 高清不卡一区二区在线| 黑人精品欧美一区二区蜜桃| 亚洲18影院在线观看| 亚洲日本青草视频在线怡红院| 久久久久久综合| 日韩欧美成人午夜| 欧美日本一区二区三区四区| av亚洲精华国产精华精| 国产真实乱对白精彩久久| 日韩高清不卡一区| 亚洲午夜在线观看视频在线| 一区二区三区四区av| 亚洲欧美福利一区二区| 国产精品美女久久久久久2018| 精品国产伦一区二区三区观看方式| 在线观看日产精品| 91亚洲资源网| 丁香五精品蜜臀久久久久99网站 | 日韩欧美亚洲国产另类| 在线播放一区二区三区| 欧美日韩中文另类| 在线成人午夜影院|