99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP528代寫、代做c/c++編程設計

時間:2023-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman

Problem. This document explains the operations in detail, so you do not need previous

knowledge. You are encouraged to start this as soon as possible. Historically, as the deadline nears, the queue times on Barkla grow as more submissions are tested. You are also

encouraged to use your spare time in the labs to receive help, and clarify any queries you

have regarding the assignment.

1 The Travelling Salesman Problem (TSP)

The travelling salesman problem is a problem that seeks to answer the following question:

‘Given a list of vertices and the distances between each pair of vertices, what is the shortest

possible route that visits each vertex exactly once and returns to the origin vertex?’.

(a) A fully connected graph (b) The shortest route around all vertices

Figure 1: An example of the travelling salesman problem

The travelling salesman problem is an NP-hard problem, that meaning an exact solution

cannot be solved in polynomial time. However, there are polynomial solutions that can

be used which give an approximation of the shortest route between all vertices. In this

assignment you are asked to implement 2 of these.

1.1 Terminology

We will call each point on the graph the vertex. There are 6 vertices in Figure 1.

We will call each connection between vertices the edge. There are 15 edges in Figure 1.z

We will call two vertices connected if they have an edge between them.

The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is

(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.

A partial tour is a tour that has not yet visited all the vertices.

202**024 1

COMP528

2 The solutions

2.1 Preparation of Solution

You are given a number of coordinate files with this format:

x, y

4.81263062**6921, 8.3**19930253777

2.**156816804616, 0.39593575612759

1.13649642931556, 2.2**59458630845

4.4**7**99682118, 2.9749120444**06

9.8****616851393, 9.107****070**

Figure 2: Format of a coord file

Each line is a coordinate for a vertex, with the x and y coordinate being separated by a

comma. You will need to convert this into a distance matrix.

0.000000 8.177698 7.099481 5.381919 5.0870**

8.177698 0.000000 2.577029 3.029315 11.138848

7.099481 2.577029 0.000000 3.426826 11.068045

5.381919 3.029315 3.426826 0.000000 8.139637

5.0870** 11.138848 11.068045 8.139637 0.000000

Figure 3: A distance matrix for Figure 2

To convert the coordinates to a distance matrix, you will need make use of the euclidean

distance formula.

d =

q

(xi − xj )

2 + (yi − yj )

2

(1)

Figure 4: The euclidean distance formula

Where: d is the distance between 2 vertices vi and vj

, xi and yi are the coordinates of the

vertex vi

, and xj and yj are the coordinates of the vertex vj

.

202**024 2

COMP528

2.2 Cheapest Insertion

The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it looks for a vertex that hasn’t been visited, and inserts it between two connected

vertices in the tour, such that the cost of inserting it between the two connected vertices is

minimal.

These steps can be followed to implement the cheapest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always

pick the lowest index or indices.

1. Start off with a vertex vi

.

Figure 5: Step 1 of Cheapest Insertion

2. Find a vertex vj such that the dist(vi

, vj ) is minimal, and create a partial tour (vi

, vj

, vi)

Figure 6: Step 2 of Cheapest Insertion

3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and

vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +

dist(vn+1, vk) − dist(vn, vn+1) is minimal.

202**024 3

COMP528

Figure 7: Step 3 of Cheapest Insertion

4. Repeat step 3 until all vertices have been visited, and are in the tour.

Figure 8: Step 4 of Cheapest Insertion

Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11

2.3 Farthest Insertion

The farthest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it checks for the farthest vertex not visited from any vertex within the partial tour, and

then inserts it between two connected vertices in the partial tour where the cost of inserting

it between the two connected vertices is minimal.

202**024 4

COMP528

These steps can be followed to implement the farthest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always

pick the lowest index(indices).

1. Start off with a vertex vi

.

Figure 10: Step 1 of Farthest Insertion

2. Find a vertex vj such that dist(vi

, vj ) is maximal, and create a partial tour (vi

, vj

, vi).

Figure 11: Step 2 of Farthest Insertion

3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an

unvisited vertex vk such that dist(vn, vk) is maximal.

Figure 12: Step 3 of Farthest Insertion

202**024 5

COMP528

4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is

a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) − dist(vn, vn+1) is

minimal.

Figure 13: Step 4 of Farthest Insertion

5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.

Figure 14: Step 3(2) of Farthest Insertion

Figure 15: Step 4(2) of Farthest Insertion

202**024 6

COMP528

Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11

3 Running your programs

Your program should be able to be ran like so:

./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >

Therefore, your program should accept a coordinate file, and an output file as arguments.

Note that C considers the first argument as the program executable.

Both implementations should read a coordinate file, run either cheapest insertion or farthest

insertion, and write the tour to the output file.

3.1 Provided Code

You are provided with code that can read the coordinate input from a file, and write the

final tour to a file. This is located in the file coordReader.c. You will need to include this

file when compiling your programs.

The function readNumOfCoords() takes a filename as a parameter and returns the number

of coordinates in the given file as an integer.

The function readCoords() takes the filename and the number of coordinates as parameters,

and returns the coordinates from a file and stores it in a two-dimensional array of doubles,

where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y

coordinate for the ith coordinate.

The function writeTourToFile() takes the tour, the tour length, and the output filename

as parameters, and writes the tour to the given file.

202**02**

University of Liverpool Continuous Assessment 1 COMP528

4 Instructions

• Implement a serial solution for the cheapest insertion and the farthest insertion. Name

these: cInsertion.c, fInsertion.c.

• Implement a parallel solution, using OpenMP, for the cheapest insertion and the farthest insertion. Name these: ompcInsertion.c, ompfInsertion.c.

• Create a Makefile and call it ”Makefile” which performs as the list states below. Without the Makefile, your code will not grade on CodeGrade (see more in section 5.1).

– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU compiler

– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler

– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the

GNU compiler

– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the

GNU compiler

– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with

the Intel compiler

– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel

compiler.

• Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording

the time it takes to solve each one. Record the start time after you read from the

coordinates file, and the end time before you write to the output file. Do all testing

with the large data file.

• Plot a speedup plot with the speedup on the y-axis and the number of threads on the

x-axis for each parallel solution.

• Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of

threads on the x-axis for each parallel solution.

• Write a report that, for each solution, using no more than 1 page per solution,

describes: your serial version, and your parallelisation strategy

• In your report, include: the speedup and parallel efficiency plots, how you conducted

each measurement and calculation to plot these, and sreenshots of you compiling and

running your program. These do not contribute to the page limit

202**024 8

COMP528

• Your final submission should be uploaded onto CodeGrade. The files you

upload should be:

– Makefile

– cInsertion.c

– fInsertion.c

– ompcInsertion.c

– ompfInsertion.c

– report.pdf

5 Hints

You can also parallelise the conversion of the coordinates to the distance matrix.

When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...

int ∗ o n e d a r ra y = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

For a 2-D array:

int ∗∗ twod a r ra y = ( int ∗∗) malloc ( numOfElements ∗ s i z e o f ( int ∗ ) ) ;

for ( int i = 0 ; i < numOfElements ; i ++){

twod a r ra y [ i ] = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

}

5.1 Makefile

You are instructed to use a MakeFile to compile the code in any way you like. An example

of how to use a MakeFile can be used here:

{make command } : { t a r g e t f i l e s }

{compile command}

c i : c I n s e r t i o n . c coordReader . c

gcc c I n s e r t i o n . c coordReader . c −o c i . exe −lm

Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,

the compile command is automatically executed. It is worth noting, the compile command

must be indented. The target files are the files that must be present for the make command

to execute.

202**024 9

COMP528

6 Marking scheme

1 Code that compiles without errors or warnings 15%

2 Same numerical results for test cases 20%

3 Speedup plot 10%

4 Parallel Efficiency Plot 10%

5 Parallel efficiency up to ** threads 15%

6 Speed of program 10%

11 Clean code and comments 10%

12 Report 10%

Table 1: Marking scheme

7 Deadline

202**024 10

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:MA2552代做、代寫Matlab編程語言
  • 下一篇:代寫選股公式 代做通達信量中尋莊副圖指標
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美一区二区三区人| 亚洲高清视频中文字幕| 欧美日韩国产a| 成人国产一区二区三区精品| 六月丁香综合在线视频| 天天影视色香欲综合网老头| 国产精品电影一区二区| 久久欧美一区二区| 久久蜜桃av一区精品变态类天堂 | 国产亚洲精品精华液| 日韩一本二本av| 日韩欧美一区中文| 91精品福利在线一区二区三区 | 亚洲超碰97人人做人人爱| 亚洲一区二区成人在线观看| 玉米视频成人免费看| 亚洲国产va精品久久久不卡综合| 亚洲另类在线视频| 亚洲自拍偷拍综合| 日韩电影一区二区三区四区| 日本在线不卡视频| 久久精品国产99国产精品| 精品中文字幕一区二区小辣椒| 国内精品写真在线观看| 大胆欧美人体老妇| 色欧美片视频在线观看| 91精品国产乱| 久久久久久久久99精品| 亚洲国产精品黑人久久久| 一区二区三区中文在线观看| 丝袜a∨在线一区二区三区不卡| 免费欧美日韩国产三级电影| 国产精品77777| 一本一本大道香蕉久在线精品| 欧美日韩日本视频| 2023国产精品自拍| 亚洲狠狠丁香婷婷综合久久久| 日本特黄久久久高潮| av综合在线播放| 91黄色免费看| 精品国产伦一区二区三区免费| 国产精品伦理一区二区| 日本在线不卡视频一二三区| 成人激情免费网站| 日韩精品一区国产麻豆| 亚洲欧洲韩国日本视频| 另类综合日韩欧美亚洲| 欧美色精品在线视频| 国产亲近乱来精品视频| 亚洲gay无套男同| 风间由美性色一区二区三区| 欧美日韩aaaaaa| 国产精品高潮久久久久无| 美日韩黄色大片| 一本一本大道香蕉久在线精品 | 国产福利一区二区三区| 制服丝袜成人动漫| 国产精品电影院| 久久99国产乱子伦精品免费| 在线亚洲欧美专区二区| 国产精品―色哟哟| 国内精品久久久久影院薰衣草| 欧美日韩免费一区二区三区| 亚洲欧洲成人自拍| 成人在线一区二区三区| 欧美一区二区三区公司| 亚洲妇熟xx妇色黄| 欧美午夜精品一区| 亚洲视频你懂的| 91老师片黄在线观看| 成人欧美一区二区三区白人| 国产一区二区不卡| 久久综合色播五月| 裸体在线国模精品偷拍| 日韩一区二区三区电影在线观看| 亚洲va欧美va国产va天堂影院| 色综合久久中文综合久久牛| 国产精品电影一区二区| av在线这里只有精品| 国产精品免费aⅴ片在线观看| 国产精品1区2区3区在线观看| 精品国产3级a| 国产做a爰片久久毛片| 日韩精品一区二区三区视频| 精品一区二区三区视频在线观看| 日韩一区二区三区视频在线观看 | 精品久久国产字幕高潮| 蜜乳av一区二区| 精品毛片乱码1区2区3区| 久久99精品国产麻豆婷婷洗澡| 日韩一级免费观看| 国产一区二区毛片| 日本一区二区三区高清不卡| 国产成人在线电影| 亚洲欧美激情视频在线观看一区二区三区 | 精品国产亚洲在线| 成人午夜在线免费| 亚洲精选视频在线| 欧美老人xxxx18| 久久成人久久鬼色| 中文字幕欧美日韩一区| 日本道精品一区二区三区| 天天亚洲美女在线视频| 国产午夜亚洲精品理论片色戒| 国产精品伊人色| 亚洲欧美另类久久久精品| 8x8x8国产精品| 国产激情视频一区二区在线观看| 国产精品美女久久久久久久网站| 99精品欧美一区二区蜜桃免费| 亚洲国产精品久久不卡毛片 | 欧美日韩视频专区在线播放| 精品一区二区影视| 亚洲视频香蕉人妖| 日韩精品一区二区三区视频播放 | 91国偷自产一区二区开放时间 | 亚洲成人高清在线| 久久久久久久久久久久久久久99| 不卡视频在线观看| 麻豆精品视频在线观看视频| 国产精品久久久久久久久免费相片| 欧美少妇性性性| 成人va在线观看| 老司机免费视频一区二区三区| 综合激情成人伊人| 亚洲精品一区在线观看| 欧美色图免费看| 91在线国产观看| 国产高清在线精品| 久久精品国产亚洲一区二区三区| 亚洲卡通动漫在线| 欧美韩日一区二区三区| 日韩午夜在线观看| 欧美影院精品一区| 99国产欧美久久久精品| 国产精品中文欧美| 蜜桃久久久久久久| 无吗不卡中文字幕| 亚洲精品国产高清久久伦理二区| 日本一区二区三区在线观看| 日韩精品中文字幕一区| 欧美美女bb生活片| 日本久久精品电影| 一本大道久久a久久综合婷婷| 国产麻豆视频一区| 国产一区二区伦理| 精品亚洲免费视频| 麻豆成人综合网| 久久99国产精品久久| 奇米影视在线99精品| 日韩国产欧美三级| 日韩二区三区四区| 日韩1区2区日韩1区2区| 日韩电影在线观看网站| 蜜臀91精品一区二区三区| 久久国产生活片100| 韩国av一区二区三区在线观看| 奇米亚洲午夜久久精品| 美女久久久精品| 精品影院一区二区久久久| 看片的网站亚洲| 国产精品香蕉一区二区三区| 国产高清视频一区| 99r国产精品| 91成人免费在线视频| 欧美日韩精品一二三区| 8x福利精品第一导航| 欧美www视频| 国产色产综合色产在线视频| 国产亚洲欧美在线| 亚洲天堂中文字幕| 亚洲在线观看免费| 美国毛片一区二区| 成人性生交大合| 色94色欧美sute亚洲线路二| 欧美日产国产精品| 久久夜色精品一区| 自拍偷自拍亚洲精品播放| 亚洲亚洲精品在线观看| 麻豆精品国产91久久久久久| 成人深夜福利app| 欧美伊人久久大香线蕉综合69| 欧美一区二区三区在线观看| 国产日韩欧美a| 亚洲午夜电影在线| 经典三级一区二区| 色欧美88888久久久久久影院| 日韩一区二区在线播放| 日韩理论片在线| 国内偷窥港台综合视频在线播放| 成人免费看视频| 亚洲免费在线播放| 精品在线观看免费| 久久精品国产亚洲一区二区三区| 国产又粗又猛又爽又黄91精品| 成人动漫一区二区| 欧美一级理论性理论a| 国产精品欧美一区二区三区| 亚洲国产日韩a在线播放性色| 国产成人免费9x9x人网站视频|