99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

COMP528代寫、代做c/c++編程設(shè)計

時間:2023-12-19  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯


In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman

Problem. This document explains the operations in detail, so you do not need previous

knowledge. You are encouraged to start this as soon as possible. Historically, as the deadline nears, the queue times on Barkla grow as more submissions are tested. You are also

encouraged to use your spare time in the labs to receive help, and clarify any queries you

have regarding the assignment.

1 The Travelling Salesman Problem (TSP)

The travelling salesman problem is a problem that seeks to answer the following question:

‘Given a list of vertices and the distances between each pair of vertices, what is the shortest

possible route that visits each vertex exactly once and returns to the origin vertex?’.

(a) A fully connected graph (b) The shortest route around all vertices

Figure 1: An example of the travelling salesman problem

The travelling salesman problem is an NP-hard problem, that meaning an exact solution

cannot be solved in polynomial time. However, there are polynomial solutions that can

be used which give an approximation of the shortest route between all vertices. In this

assignment you are asked to implement 2 of these.

1.1 Terminology

We will call each point on the graph the vertex. There are 6 vertices in Figure 1.

We will call each connection between vertices the edge. There are 15 edges in Figure 1.z

We will call two vertices connected if they have an edge between them.

The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is

(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.

A partial tour is a tour that has not yet visited all the vertices.

202**024 1

COMP528

2 The solutions

2.1 Preparation of Solution

You are given a number of coordinate files with this format:

x, y

4.81263062**6921, 8.3**19930253777

2.**156816804616, 0.39593575612759

1.13649642931556, 2.2**59458630845

4.4**7**99682118, 2.9749120444**06

9.8****616851393, 9.107****070**

Figure 2: Format of a coord file

Each line is a coordinate for a vertex, with the x and y coordinate being separated by a

comma. You will need to convert this into a distance matrix.

0.000000 8.177698 7.099481 5.381919 5.0870**

8.177698 0.000000 2.577029 3.029315 11.138848

7.099481 2.577029 0.000000 3.426826 11.068045

5.381919 3.029315 3.426826 0.000000 8.139637

5.0870** 11.138848 11.068045 8.139637 0.000000

Figure 3: A distance matrix for Figure 2

To convert the coordinates to a distance matrix, you will need make use of the euclidean

distance formula.

d =

q

(xi − xj )

2 + (yi − yj )

2

(1)

Figure 4: The euclidean distance formula

Where: d is the distance between 2 vertices vi and vj

, xi and yi are the coordinates of the

vertex vi

, and xj and yj are the coordinates of the vertex vj

.

202**024 2

COMP528

2.2 Cheapest Insertion

The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it looks for a vertex that hasn’t been visited, and inserts it between two connected

vertices in the tour, such that the cost of inserting it between the two connected vertices is

minimal.

These steps can be followed to implement the cheapest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always

pick the lowest index or indices.

1. Start off with a vertex vi

.

Figure 5: Step 1 of Cheapest Insertion

2. Find a vertex vj such that the dist(vi

, vj ) is minimal, and create a partial tour (vi

, vj

, vi)

Figure 6: Step 2 of Cheapest Insertion

3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and

vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +

dist(vn+1, vk) − dist(vn, vn+1) is minimal.

202**024 3

COMP528

Figure 7: Step 3 of Cheapest Insertion

4. Repeat step 3 until all vertices have been visited, and are in the tour.

Figure 8: Step 4 of Cheapest Insertion

Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11

2.3 Farthest Insertion

The farthest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it checks for the farthest vertex not visited from any vertex within the partial tour, and

then inserts it between two connected vertices in the partial tour where the cost of inserting

it between the two connected vertices is minimal.

202**024 4

COMP528

These steps can be followed to implement the farthest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always

pick the lowest index(indices).

1. Start off with a vertex vi

.

Figure 10: Step 1 of Farthest Insertion

2. Find a vertex vj such that dist(vi

, vj ) is maximal, and create a partial tour (vi

, vj

, vi).

Figure 11: Step 2 of Farthest Insertion

3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an

unvisited vertex vk such that dist(vn, vk) is maximal.

Figure 12: Step 3 of Farthest Insertion

202**024 5

COMP528

4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is

a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) − dist(vn, vn+1) is

minimal.

Figure 13: Step 4 of Farthest Insertion

5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.

Figure 14: Step 3(2) of Farthest Insertion

Figure 15: Step 4(2) of Farthest Insertion

202**024 6

COMP528

Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11

3 Running your programs

Your program should be able to be ran like so:

./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >

Therefore, your program should accept a coordinate file, and an output file as arguments.

Note that C considers the first argument as the program executable.

Both implementations should read a coordinate file, run either cheapest insertion or farthest

insertion, and write the tour to the output file.

3.1 Provided Code

You are provided with code that can read the coordinate input from a file, and write the

final tour to a file. This is located in the file coordReader.c. You will need to include this

file when compiling your programs.

The function readNumOfCoords() takes a filename as a parameter and returns the number

of coordinates in the given file as an integer.

The function readCoords() takes the filename and the number of coordinates as parameters,

and returns the coordinates from a file and stores it in a two-dimensional array of doubles,

where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y

coordinate for the ith coordinate.

The function writeTourToFile() takes the tour, the tour length, and the output filename

as parameters, and writes the tour to the given file.

202**02**

University of Liverpool Continuous Assessment 1 COMP528

4 Instructions

• Implement a serial solution for the cheapest insertion and the farthest insertion. Name

these: cInsertion.c, fInsertion.c.

• Implement a parallel solution, using OpenMP, for the cheapest insertion and the farthest insertion. Name these: ompcInsertion.c, ompfInsertion.c.

• Create a Makefile and call it ”Makefile” which performs as the list states below. Without the Makefile, your code will not grade on CodeGrade (see more in section 5.1).

– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU compiler

– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler

– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the

GNU compiler

– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the

GNU compiler

– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with

the Intel compiler

– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel

compiler.

• Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording

the time it takes to solve each one. Record the start time after you read from the

coordinates file, and the end time before you write to the output file. Do all testing

with the large data file.

• Plot a speedup plot with the speedup on the y-axis and the number of threads on the

x-axis for each parallel solution.

• Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of

threads on the x-axis for each parallel solution.

• Write a report that, for each solution, using no more than 1 page per solution,

describes: your serial version, and your parallelisation strategy

• In your report, include: the speedup and parallel efficiency plots, how you conducted

each measurement and calculation to plot these, and sreenshots of you compiling and

running your program. These do not contribute to the page limit

202**024 8

COMP528

• Your final submission should be uploaded onto CodeGrade. The files you

upload should be:

– Makefile

– cInsertion.c

– fInsertion.c

– ompcInsertion.c

– ompfInsertion.c

– report.pdf

5 Hints

You can also parallelise the conversion of the coordinates to the distance matrix.

When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...

int ∗ o n e d a r ra y = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

For a 2-D array:

int ∗∗ twod a r ra y = ( int ∗∗) malloc ( numOfElements ∗ s i z e o f ( int ∗ ) ) ;

for ( int i = 0 ; i < numOfElements ; i ++){

twod a r ra y [ i ] = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

}

5.1 Makefile

You are instructed to use a MakeFile to compile the code in any way you like. An example

of how to use a MakeFile can be used here:

{make command } : { t a r g e t f i l e s }

{compile command}

c i : c I n s e r t i o n . c coordReader . c

gcc c I n s e r t i o n . c coordReader . c −o c i . exe −lm

Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,

the compile command is automatically executed. It is worth noting, the compile command

must be indented. The target files are the files that must be present for the make command

to execute.

202**024 9

COMP528

6 Marking scheme

1 Code that compiles without errors or warnings 15%

2 Same numerical results for test cases 20%

3 Speedup plot 10%

4 Parallel Efficiency Plot 10%

5 Parallel efficiency up to ** threads 15%

6 Speed of program 10%

11 Clean code and comments 10%

12 Report 10%

Table 1: Marking scheme

7 Deadline

202**024 10

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:MA2552代做、代寫Matlab編程語言
  • 下一篇:代寫選股公式 代做通達(dá)信量中尋莊副圖指標(biāo)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                91久久国产最好的精华液| 欧美视频一区二区| 亚洲国产人成综合网站| 51精品秘密在线观看| 中文字幕乱码一区二区免费| 欧美制服丝袜第一页| 国产不卡在线一区| 捆绑紧缚一区二区三区视频| 亚洲成人777| 亚洲国产美国国产综合一区二区| 91精品国产综合久久香蕉麻豆| 一级中文字幕一区二区| 色婷婷一区二区| 欧美一级理论片| 久久久久国产精品厨房| 久久久久97国产精华液好用吗| 欧美午夜精品久久久久久超碰| 在线不卡一区二区| 欧美性大战久久久久久久 | 久久色中文字幕| 97精品超碰一区二区三区| 91在线高清观看| 欧美精品在线观看一区二区| 在线综合亚洲欧美在线视频| 日韩欧美一级二级三级久久久| 日韩午夜电影在线观看| 国产精品水嫩水嫩| 亚洲国产一区二区视频| 亚洲国产乱码最新视频| 香蕉久久一区二区不卡无毒影院| 亚洲成人黄色影院| 韩国成人精品a∨在线观看| 色综合天天综合网国产成人综合天| 欧美成人aa大片| 亚洲影院在线观看| 激情丁香综合五月| 欧美一级淫片007| 一区二区激情视频| 91原创在线视频| 国产精品视频线看| 奇米777欧美一区二区| 91色视频在线| 国产精品视频在线看| 亚洲一区在线视频| 国产在线精品不卡| 国产精品网站导航| 99视频有精品| 亚洲伊人伊色伊影伊综合网 | 中文字幕在线播放不卡一区| 久久99精品久久只有精品| 777色狠狠一区二区三区| 亚洲人成精品久久久久| 国产一区视频在线看| 51精品视频一区二区三区| 久久免费美女视频| 一区二区免费看| 久久综合狠狠综合| 91免费版pro下载短视频| 亚洲精品久久嫩草网站秘色| 99久久er热在这里只有精品15| 亚洲色图视频网站| 在线观看av一区二区| 午夜精品久久一牛影视| 欧美日韩成人一区| 亚洲不卡在线观看| 欧美午夜免费电影| 狠狠色丁香婷婷综合| 日韩一区有码在线| 制服丝袜在线91| 粉嫩蜜臀av国产精品网站| 日韩欧美国产麻豆| 日韩av午夜在线观看| 欧美一级欧美三级| 久久99在线观看| 亚洲精品国产品国语在线app| 成人精品免费看| 蜜臀久久久99精品久久久久久| 精品国产乱子伦一区| 久久精品国产免费| 日韩欧美中文字幕一区| 欧美色综合网站| 色综合久久中文字幕| 国产揄拍国内精品对白| 一级做a爱片久久| 国产精品欧美一区二区三区| 精品电影一区二区| 欧美sm极限捆绑bd| 欧洲生活片亚洲生活在线观看| 老司机免费视频一区二区三区| 亚洲免费在线看| 亚洲四区在线观看| 日本在线不卡视频| 秋霞午夜av一区二区三区| 亚洲免费在线视频| 久久久精品国产免大香伊| 欧美绝品在线观看成人午夜影视| 91精品国产综合久久精品图片| 国产精品综合在线视频| 国产老肥熟一区二区三区| 日本美女视频一区二区| 国内欧美视频一区二区| 欧美午夜寂寞影院| 国产精品免费视频一区| 国产精品久久久久久久久免费樱桃| 国产午夜精品久久| 亚洲人成小说网站色在线| 中文字幕二三区不卡| 国产精品国产三级国产aⅴ无密码| 国产亚洲午夜高清国产拍精品| 精品久久一区二区| 蜜臀精品久久久久久蜜臀| av成人老司机| 日韩免费性生活视频播放| 欧美国产激情二区三区| 亚洲国产日韩a在线播放| 韩国精品久久久| 91免费在线视频观看| 成人激情av网| 欧美日韩成人综合天天影院| 天堂精品中文字幕在线| 成人黄色777网| 日韩午夜在线观看视频| 国产精品久久久久aaaa樱花| 亚洲永久精品大片| 国产一区视频导航| 一本色道久久综合亚洲91| 精品视频123区在线观看| 亚洲第一主播视频| 成人av在线影院| 国产欧美日韩在线| 国产在线播放一区三区四| 色老综合老女人久久久| 久久久精品欧美丰满| 亚洲福利一二三区| 91国产成人在线| 国产精品色呦呦| 亚洲一线二线三线视频| 久久草av在线| 国产女人水真多18毛片18精品视频 | 欧美一卡二卡在线| 久久精品久久综合| 久久久不卡网国产精品二区| 国内精品国产成人国产三级粉色| 欧美色区777第一页| www.亚洲国产| 极品少妇一区二区三区精品视频 | 国产成人免费av在线| 欧美一区二区三区免费| 丝袜亚洲精品中文字幕一区| 欧美精品日韩一本| 欧美探花视频资源| 国产精品资源网站| 亚洲欧美日韩国产一区二区三区| 欧美日韩国产综合草草| 国产真实乱偷精品视频免| 日本一二三不卡| 91蝌蚪porny九色| 美腿丝袜一区二区三区| 日韩亚洲电影在线| 免费视频最近日韩| 一区二区三区蜜桃网| 亚洲人精品一区| 中文幕一区二区三区久久蜜桃| 日韩一区二区免费电影| 欧美一级xxx| 久久久亚洲精华液精华液精华液| 91美女视频网站| 色94色欧美sute亚洲线路二| 91视频在线观看| 欧美色网一区二区| 欧美日韩视频专区在线播放| 在线视频欧美精品| 在线观看欧美精品| 3atv在线一区二区三区| 欧美一区二区福利在线| 日韩久久久精品| 国产精品麻豆视频| 午夜精品爽啪视频| 国产大片一区二区| 色94色欧美sute亚洲线路一ni | 国产精品羞羞答答xxdd| 99精品一区二区三区| 欧美日韩高清一区| 国产日韩欧美精品在线| 成人欧美一区二区三区黑人麻豆| 亚洲色图视频网站| 奇米影视在线99精品| www.激情成人| 日韩欧美自拍偷拍| 亚洲成人福利片| 色视频一区二区| 国产精品久久久久久久久动漫| 日韩av高清在线观看| 色综合婷婷久久| 国产精品久久久久久久浪潮网站| 另类中文字幕网| 欧美精品久久99| 香蕉影视欧美成人| 91久久免费观看| 国产精品久久久久久久久免费丝袜|