99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP528代寫、代做c/c++編程設計

時間:2023-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman

Problem. This document explains the operations in detail, so you do not need previous

knowledge. You are encouraged to start this as soon as possible. Historically, as the deadline nears, the queue times on Barkla grow as more submissions are tested. You are also

encouraged to use your spare time in the labs to receive help, and clarify any queries you

have regarding the assignment.

1 The Travelling Salesman Problem (TSP)

The travelling salesman problem is a problem that seeks to answer the following question:

‘Given a list of vertices and the distances between each pair of vertices, what is the shortest

possible route that visits each vertex exactly once and returns to the origin vertex?’.

(a) A fully connected graph (b) The shortest route around all vertices

Figure 1: An example of the travelling salesman problem

The travelling salesman problem is an NP-hard problem, that meaning an exact solution

cannot be solved in polynomial time. However, there are polynomial solutions that can

be used which give an approximation of the shortest route between all vertices. In this

assignment you are asked to implement 2 of these.

1.1 Terminology

We will call each point on the graph the vertex. There are 6 vertices in Figure 1.

We will call each connection between vertices the edge. There are 15 edges in Figure 1.z

We will call two vertices connected if they have an edge between them.

The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is

(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.

A partial tour is a tour that has not yet visited all the vertices.

202**024 1

COMP528

2 The solutions

2.1 Preparation of Solution

You are given a number of coordinate files with this format:

x, y

4.81263062**6921, 8.3**19930253777

2.**156816804616, 0.39593575612759

1.13649642931556, 2.2**59458630845

4.4**7**99682118, 2.9749120444**06

9.8****616851393, 9.107****070**

Figure 2: Format of a coord file

Each line is a coordinate for a vertex, with the x and y coordinate being separated by a

comma. You will need to convert this into a distance matrix.

0.000000 8.177698 7.099481 5.381919 5.0870**

8.177698 0.000000 2.577029 3.029315 11.138848

7.099481 2.577029 0.000000 3.426826 11.068045

5.381919 3.029315 3.426826 0.000000 8.139637

5.0870** 11.138848 11.068045 8.139637 0.000000

Figure 3: A distance matrix for Figure 2

To convert the coordinates to a distance matrix, you will need make use of the euclidean

distance formula.

d =

q

(xi − xj )

2 + (yi − yj )

2

(1)

Figure 4: The euclidean distance formula

Where: d is the distance between 2 vertices vi and vj

, xi and yi are the coordinates of the

vertex vi

, and xj and yj are the coordinates of the vertex vj

.

202**024 2

COMP528

2.2 Cheapest Insertion

The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it looks for a vertex that hasn’t been visited, and inserts it between two connected

vertices in the tour, such that the cost of inserting it between the two connected vertices is

minimal.

These steps can be followed to implement the cheapest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always

pick the lowest index or indices.

1. Start off with a vertex vi

.

Figure 5: Step 1 of Cheapest Insertion

2. Find a vertex vj such that the dist(vi

, vj ) is minimal, and create a partial tour (vi

, vj

, vi)

Figure 6: Step 2 of Cheapest Insertion

3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and

vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +

dist(vn+1, vk) − dist(vn, vn+1) is minimal.

202**024 3

COMP528

Figure 7: Step 3 of Cheapest Insertion

4. Repeat step 3 until all vertices have been visited, and are in the tour.

Figure 8: Step 4 of Cheapest Insertion

Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11

2.3 Farthest Insertion

The farthest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it checks for the farthest vertex not visited from any vertex within the partial tour, and

then inserts it between two connected vertices in the partial tour where the cost of inserting

it between the two connected vertices is minimal.

202**024 4

COMP528

These steps can be followed to implement the farthest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always

pick the lowest index(indices).

1. Start off with a vertex vi

.

Figure 10: Step 1 of Farthest Insertion

2. Find a vertex vj such that dist(vi

, vj ) is maximal, and create a partial tour (vi

, vj

, vi).

Figure 11: Step 2 of Farthest Insertion

3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an

unvisited vertex vk such that dist(vn, vk) is maximal.

Figure 12: Step 3 of Farthest Insertion

202**024 5

COMP528

4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is

a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) − dist(vn, vn+1) is

minimal.

Figure 13: Step 4 of Farthest Insertion

5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.

Figure 14: Step 3(2) of Farthest Insertion

Figure 15: Step 4(2) of Farthest Insertion

202**024 6

COMP528

Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11

3 Running your programs

Your program should be able to be ran like so:

./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >

Therefore, your program should accept a coordinate file, and an output file as arguments.

Note that C considers the first argument as the program executable.

Both implementations should read a coordinate file, run either cheapest insertion or farthest

insertion, and write the tour to the output file.

3.1 Provided Code

You are provided with code that can read the coordinate input from a file, and write the

final tour to a file. This is located in the file coordReader.c. You will need to include this

file when compiling your programs.

The function readNumOfCoords() takes a filename as a parameter and returns the number

of coordinates in the given file as an integer.

The function readCoords() takes the filename and the number of coordinates as parameters,

and returns the coordinates from a file and stores it in a two-dimensional array of doubles,

where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y

coordinate for the ith coordinate.

The function writeTourToFile() takes the tour, the tour length, and the output filename

as parameters, and writes the tour to the given file.

202**02**

University of Liverpool Continuous Assessment 1 COMP528

4 Instructions

• Implement a serial solution for the cheapest insertion and the farthest insertion. Name

these: cInsertion.c, fInsertion.c.

• Implement a parallel solution, using OpenMP, for the cheapest insertion and the farthest insertion. Name these: ompcInsertion.c, ompfInsertion.c.

• Create a Makefile and call it ”Makefile” which performs as the list states below. Without the Makefile, your code will not grade on CodeGrade (see more in section 5.1).

– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU compiler

– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler

– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the

GNU compiler

– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the

GNU compiler

– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with

the Intel compiler

– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel

compiler.

• Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording

the time it takes to solve each one. Record the start time after you read from the

coordinates file, and the end time before you write to the output file. Do all testing

with the large data file.

• Plot a speedup plot with the speedup on the y-axis and the number of threads on the

x-axis for each parallel solution.

• Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of

threads on the x-axis for each parallel solution.

• Write a report that, for each solution, using no more than 1 page per solution,

describes: your serial version, and your parallelisation strategy

• In your report, include: the speedup and parallel efficiency plots, how you conducted

each measurement and calculation to plot these, and sreenshots of you compiling and

running your program. These do not contribute to the page limit

202**024 8

COMP528

• Your final submission should be uploaded onto CodeGrade. The files you

upload should be:

– Makefile

– cInsertion.c

– fInsertion.c

– ompcInsertion.c

– ompfInsertion.c

– report.pdf

5 Hints

You can also parallelise the conversion of the coordinates to the distance matrix.

When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...

int ∗ o n e d a r ra y = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

For a 2-D array:

int ∗∗ twod a r ra y = ( int ∗∗) malloc ( numOfElements ∗ s i z e o f ( int ∗ ) ) ;

for ( int i = 0 ; i < numOfElements ; i ++){

twod a r ra y [ i ] = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

}

5.1 Makefile

You are instructed to use a MakeFile to compile the code in any way you like. An example

of how to use a MakeFile can be used here:

{make command } : { t a r g e t f i l e s }

{compile command}

c i : c I n s e r t i o n . c coordReader . c

gcc c I n s e r t i o n . c coordReader . c −o c i . exe −lm

Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,

the compile command is automatically executed. It is worth noting, the compile command

must be indented. The target files are the files that must be present for the make command

to execute.

202**024 9

COMP528

6 Marking scheme

1 Code that compiles without errors or warnings 15%

2 Same numerical results for test cases 20%

3 Speedup plot 10%

4 Parallel Efficiency Plot 10%

5 Parallel efficiency up to ** threads 15%

6 Speed of program 10%

11 Clean code and comments 10%

12 Report 10%

Table 1: Marking scheme

7 Deadline

202**024 10

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:MA2552代做、代寫Matlab編程語言
  • 下一篇:代寫選股公式 代做通達信量中尋莊副圖指標
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                夫妻av一区二区| 99re这里只有精品6| 一区二区在线看| 国产日韩欧美精品电影三级在线| 91精品国产综合久久久蜜臀粉嫩| 欧美丝袜丝交足nylons| 日本韩国一区二区三区视频| 91年精品国产| 欧美日韩午夜精品| 欧美亚一区二区| 欧美在线观看禁18| 欧美日韩亚洲综合一区| 91精品国产高清一区二区三区蜜臀| 欧美在线观看视频在线| 欧美日韩久久久| 欧美成人精品1314www| 久久先锋资源网| 久久久午夜精品| 1024精品合集| 日日骚欧美日韩| 国产酒店精品激情| 99riav久久精品riav| 欧美日韩三级一区| 欧美一区二区三区在线观看视频| 日韩午夜在线观看视频| 久久精品人人做人人爽人人| 国产精品亲子伦对白| 亚洲人精品一区| 三级影片在线观看欧美日韩一区二区| 日韩二区三区在线观看| 成人中文字幕在线| 在线免费观看日韩欧美| 日韩欧美国产精品一区| 欧美高清在线一区二区| 午夜精品久久久久久久久久| 精品一区二区影视| 91丨porny丨蝌蚪视频| 91精品国产综合久久精品麻豆| 精品国产三级电影在线观看| 亚洲天堂网中文字| 久久超碰97中文字幕| 91老师国产黑色丝袜在线| 欧美精品三级在线观看| 国产午夜精品在线观看| 日韩av一区二| 91小视频免费看| 久久亚洲一级片| 亚洲高清一区二区三区| 高清shemale亚洲人妖| 欧美另类高清zo欧美| 综合久久给合久久狠狠狠97色| 日本少妇一区二区| 91啪亚洲精品| 亚洲国产成人在线| 另类综合日韩欧美亚洲| 欧美三级欧美一级| 伊人婷婷欧美激情| 高清视频一区二区| 2023国产一二三区日本精品2022| 亚洲资源在线观看| 91小视频免费看| 欧美极品美女视频| 狠狠色丁香婷婷综合| 欧美三日本三级三级在线播放| 国产亚洲精品aa| 国产真实乱子伦精品视频| 在线播放一区二区三区| 亚洲乱码精品一二三四区日韩在线| 国产乱妇无码大片在线观看| 日韩一级免费观看| 一区二区三区在线观看网站| 成人成人成人在线视频| 国产精品嫩草影院com| 国产福利一区二区三区| 久久久久97国产精华液好用吗| 蜜臀久久99精品久久久久久9| 欧美亚洲动漫精品| 亚洲国产一区视频| 欧美日韩中文字幕一区二区| 国产精品成人一区二区艾草| 99久久久久久| 亚洲女同一区二区| 欧美中文字幕一区| 亚洲chinese男男1069| 欧美在线不卡视频| 视频一区国产视频| 日韩免费电影网站| 国产乱码精品1区2区3区| 久久先锋影音av| 91在线高清观看| 视频在线观看91| 91麻豆精品国产91久久久资源速度 | 欧美tickle裸体挠脚心vk| 极品少妇一区二区| 国产精品网站在线| 色就色 综合激情| 天堂影院一区二区| 欧美一区二区三区爱爱| 国产一区二区三区美女| 国产精品高潮呻吟| 色婷婷精品久久二区二区蜜臂av| 亚洲第一福利一区| 精品国产凹凸成av人导航| 国产馆精品极品| 亚洲一区二区在线视频| 日韩亚洲欧美一区| eeuss影院一区二区三区| 亚洲午夜激情网站| 国产日韩欧美制服另类| 欧美三级电影在线看| 国产精品99久久久久久似苏梦涵 | 精品国产区一区| 91在线观看污| 久久激情五月婷婷| 亚洲精品日韩一| 精品久久久久久久久久久久包黑料 | 成人午夜精品一区二区三区| 亚洲女爱视频在线| 欧美成人福利视频| 97久久精品人人做人人爽| 日本不卡视频在线| 伊人性伊人情综合网| 久久久欧美精品sm网站| 91黄色免费观看| 国产激情偷乱视频一区二区三区| 一区二区三区免费看视频| 欧美v亚洲v综合ⅴ国产v| 色狠狠综合天天综合综合| 九色porny丨国产精品| 亚洲欧美aⅴ...| 欧美国产一区二区| 欧美成人精精品一区二区频| 欧美视频一区二| 91免费视频网| 国产酒店精品激情| 久久国产精品第一页| 午夜伦欧美伦电影理论片| 中文字幕日韩一区二区| 国产三级精品在线| 日韩欧美亚洲一区二区| 欧美一区二区三区啪啪| 欧美三级蜜桃2在线观看| 91美女精品福利| www.在线欧美| av色综合久久天堂av综合| 丁香五精品蜜臀久久久久99网站 | 国产精品女主播在线观看| 欧美国产欧美亚州国产日韩mv天天看完整 | 亚洲视频 欧洲视频| 国产精品不卡视频| 国产精品精品国产色婷婷| 国产欧美一区二区精品久导航| 欧美成人性战久久| 欧美一区二区在线不卡| 日韩视频免费直播| 91精品午夜视频| 欧美成人精精品一区二区频| 欧美mv日韩mv| 国产女主播一区| 亚洲人快播电影网| 亚洲一区在线看| 亚洲成年人影院| 欧美a级一区二区| 国产自产v一区二区三区c| 久久99精品国产91久久来源| 国产在线精品一区二区夜色| 国产一区欧美一区| 99久久精品免费看国产| 在线影视一区二区三区| 欧美精品在线视频| 日韩精品专区在线影院观看 | 欧美伊人久久久久久久久影院| 欧美日韩精品高清| 日韩欧美色综合| 国产午夜精品一区二区三区嫩草| 中文字幕欧美激情| 亚洲一区二区三区免费视频| 日本欧美加勒比视频| 激情欧美一区二区三区在线观看| 国产91在线|亚洲| 欧美一级黄色大片| 国产日本一区二区| 玉米视频成人免费看| 18欧美亚洲精品| 亚洲国产另类av| 国产一区二区视频在线| 91麻豆福利精品推荐| 日韩午夜精品视频| 国产精品入口麻豆九色| 日韩国产高清在线| 风流少妇一区二区| 欧美日韩你懂得| 国产欧美精品一区aⅴ影院| 亚洲国产视频直播| 国产一区二区三区免费播放| 欧美亚洲自拍偷拍| 国产女主播视频一区二区| 视频一区免费在线观看| 色综合久久综合| 久久婷婷国产综合国色天香|