合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代寫COMP34212、代做Java/C++編程
        代寫COMP34212、代做Java/C++編程

        時間:2025-04-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        COMP34212 Cognitive Robotics Angelo Cangelosi 
        COMP34212: Coursework on Deep Learning and Robotics
        34212-Lab-S-Report
        Release: February 2025
        Submission deadline: 27 March 2025, 18:00 (BlackBoard)
        Aim and Deliverable
        The aim of this coursework is (i) to analyse the role of the deep learning approach within the 
        context of the state of the art in robotics, and (ii) to develop skills on the design, execution and 
        evaluation of deep neural networks experiments for a vision recognition task. The assignment will 
        in particular address the learning outcome LO1 on the analysis of the methods and software 
        technologies for robotics, and LO3 on applying different machine learning methods for intelligent 
        behaviour.
        The first task is to do a brief literature review of deep learning models in robotics. You can give a 
        summary discussion of various applications of DNN to different robotics domains/applications. 
        Alternatively, you can focus on one robotic application, and discuss the different DNN models used 
        for this application. In either case, the report should show a good understanding of the key works in 
        the topic chosen.
        The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron 
        (MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and 
        analyse new training simulations. This will allow you to evaluate the role of different 
        hyperparameter values and explain and interpret the general pattern of results to optimise the 
        training for robotics (vision) applications.
        You can use the standard object recognition datasets (e.g. CIFAR, COCO, not the simple MNIST) or 
        robotics vision datasets (e.g. iCub World1
        , RGB-D Object Dataset2
        ). You are also allowed to use 
        other deep learning models beyond those presented in the lab.
        The deliverable to submit is a report (max 5 pages including figures/tables and references) to 
        describe and discuss the training simulations done and their context within robotics research and 
        applications. The report must also include the link to the Code/Notebook, or add the code as 
        appendix (the Code Appendix is in addition to the 5 pages of the core report). Do not use AI/LLM 
        models to generate your report. Demonstrate a credible analysis and discussion of your own 
        simulation setup and results, not of generic CNN simulations. And demonstrate a credible, 
        personalised analysis of the literature backed by cited references.
        COMP34212 Cognitive Robotics Angelo Cangelosi 
        Marking Criteria (out of 30)
        1. Contextualisation and state of the art in robotics and deep learning, with proper use of 
        citations backing your academic review and statements (marks given for 
        clarity/completeness of the overview of the state of the art, with spectrum of deep learning 
        methods considered in robotics; credible personalised critical analysis of the deep learning 
        role in robotics; quality and use of the references cited) [10]
        2. A clear introductory to the DNN classification problem and the methodology used, with 
        explanation and justification of the dataset, the network topology and the hyperparameters 
        chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
        3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity 
        and appropriateness of the network topology; hyperparameter exploration approach; data 
        processing and coding requirements) [4]
        4. Description, interpretation, and assessment of the results on the hyperparameter testing 
        simulations; include appropriate figures and tables to support the results; depth of the 
        interpretation and assessment of the quality of the results (the text must clearly and 
        credibly explain the data in the charts/tables); Discussion of alternative/future simulations 
        to complement the results obtained) [13]
        5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if 
        code/notebook (link to external repository or as appendix) is not included.
        Due Date: 27 March 2025, 18:00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



         

        掃一掃在手機打開當前頁
      1. 上一篇:出評 開團工具
      2. 下一篇:INFO20003代做、代寫SQL編程設計
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 AI生成PPT

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 国产精品综合一区二区| 无码人妻精品一区二区三区在线| 久久一本一区二区三区| 美女视频免费看一区二区| 亚洲综合激情五月色一区| 无码人妻精品一区二区三18禁 | 天堂Aⅴ无码一区二区三区| 亚洲av无码一区二区三区四区| 国产一区三区二区中文在线 | 中文字幕一区二区日产乱码| 日本在线视频一区二区三区 | 日韩亚洲AV无码一区二区不卡 | 亚洲线精品一区二区三区| 亚洲国产高清在线一区二区三区| 国产主播一区二区三区在线观看 | 日韩精品一区二区三区老鸭窝 | 成人区人妻精品一区二区不卡| 久久精品亚洲一区二区| 久久国产午夜一区二区福利| 无码一区二区三区| 无码人妻久久一区二区三区免费| 中日av乱码一区二区三区乱码| 久久久精品日本一区二区三区| 一区二区三区四区在线观看视频| 福利视频一区二区牛牛| 日韩精品一区二区三区不卡| 天天看高清无码一区二区三区 | 人妻aⅴ无码一区二区三区| 日韩精品区一区二区三VR| 蜜臀AV免费一区二区三区| 激情亚洲一区国产精品| 国模大胆一区二区三区| 一区 二区 三区 中文字幕 | 日本精品一区二区三区在线观看| 亚洲欧洲∨国产一区二区三区| 鲁丝片一区二区三区免费| 人妖在线精品一区二区三区| 亚洲国产一区二区三区在线观看| 国产萌白酱在线一区二区| 久久久久国产一区二区| 2022年亚洲午夜一区二区福利|