合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代寫COMP34212、代做Java/C++編程
        代寫COMP34212、代做Java/C++編程

        時間:2025-04-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        COMP34212 Cognitive Robotics Angelo Cangelosi 
        COMP34212: Coursework on Deep Learning and Robotics
        34212-Lab-S-Report
        Release: February 2025
        Submission deadline: 27 March 2025, 18:00 (BlackBoard)
        Aim and Deliverable
        The aim of this coursework is (i) to analyse the role of the deep learning approach within the 
        context of the state of the art in robotics, and (ii) to develop skills on the design, execution and 
        evaluation of deep neural networks experiments for a vision recognition task. The assignment will 
        in particular address the learning outcome LO1 on the analysis of the methods and software 
        technologies for robotics, and LO3 on applying different machine learning methods for intelligent 
        behaviour.
        The first task is to do a brief literature review of deep learning models in robotics. You can give a 
        summary discussion of various applications of DNN to different robotics domains/applications. 
        Alternatively, you can focus on one robotic application, and discuss the different DNN models used 
        for this application. In either case, the report should show a good understanding of the key works in 
        the topic chosen.
        The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron 
        (MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and 
        analyse new training simulations. This will allow you to evaluate the role of different 
        hyperparameter values and explain and interpret the general pattern of results to optimise the 
        training for robotics (vision) applications.
        You can use the standard object recognition datasets (e.g. CIFAR, COCO, not the simple MNIST) or 
        robotics vision datasets (e.g. iCub World1
        , RGB-D Object Dataset2
        ). You are also allowed to use 
        other deep learning models beyond those presented in the lab.
        The deliverable to submit is a report (max 5 pages including figures/tables and references) to 
        describe and discuss the training simulations done and their context within robotics research and 
        applications. The report must also include the link to the Code/Notebook, or add the code as 
        appendix (the Code Appendix is in addition to the 5 pages of the core report). Do not use AI/LLM 
        models to generate your report. Demonstrate a credible analysis and discussion of your own 
        simulation setup and results, not of generic CNN simulations. And demonstrate a credible, 
        personalised analysis of the literature backed by cited references.
        COMP34212 Cognitive Robotics Angelo Cangelosi 
        Marking Criteria (out of 30)
        1. Contextualisation and state of the art in robotics and deep learning, with proper use of 
        citations backing your academic review and statements (marks given for 
        clarity/completeness of the overview of the state of the art, with spectrum of deep learning 
        methods considered in robotics; credible personalised critical analysis of the deep learning 
        role in robotics; quality and use of the references cited) [10]
        2. A clear introductory to the DNN classification problem and the methodology used, with 
        explanation and justification of the dataset, the network topology and the hyperparameters 
        chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
        3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity 
        and appropriateness of the network topology; hyperparameter exploration approach; data 
        processing and coding requirements) [4]
        4. Description, interpretation, and assessment of the results on the hyperparameter testing 
        simulations; include appropriate figures and tables to support the results; depth of the 
        interpretation and assessment of the quality of the results (the text must clearly and 
        credibly explain the data in the charts/tables); Discussion of alternative/future simulations 
        to complement the results obtained) [13]
        5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if 
        code/notebook (link to external repository or as appendix) is not included.
        Due Date: 27 March 2025, 18:00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



         

        掃一掃在手機打開當前頁
      1. 上一篇:出評 開團工具
      2. 下一篇:INFO20003代做、代寫SQL編程設計
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 无码少妇丰满熟妇一区二区| 中文字幕日韩欧美一区二区三区| 亚洲国产欧美一区二区三区| 日韩一区二区在线观看| 亚洲精品一区二区三区四区乱码| 国产一区二区视频免费| 国产av一区最新精品| 中文字幕精品一区影音先锋 | 在线观看精品一区| 2021国产精品一区二区在线 | 色噜噜一区二区三区| 久久精品无码一区二区三区免费 | 无码国产精品一区二区免费| 国产精品日本一区二区不卡视频 | 夜色阁亚洲一区二区三区| 日韩在线一区高清在线| 爆乳无码AV一区二区三区| 精品国产福利一区二区| 蜜桃臀无码内射一区二区三区| 日本成人一区二区| 国产成人久久精品一区二区三区 | 国产免费私拍一区二区三区| 国产午夜一区二区在线观看| 国产丝袜无码一区二区视频| 国产一区在线电影| 一区二区免费电影| 亚洲一区二区三区偷拍女厕| 中文字幕精品亚洲无线码一区| 三上悠亚精品一区二区久久| 国产伦理一区二区| 精品性影院一区二区三区内射| 成人免费观看一区二区| 天堂一区人妻无码| 精品一区二区三区无码视频| 国产另类ts人妖一区二区三区 | 亚洲综合无码AV一区二区| 精品国产一区二区三区免费 | 无码8090精品久久一区| 99精品国产一区二区三区| 伊人久久精品无码av一区| 色狠狠AV一区二区三区|