99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做MATH2110、代寫c/c++,Python程序
代做MATH2110、代寫c/c++,Python程序

時間:2025-03-16  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



The University of Nottingham
SCHOOL OF MATHEMATICAL SCIENCES
SPRING SEMESTER SEMESTER 2025
MATH2110 - STATISTICS 3
Coursework 1
Deadline: 3pm, Friday 14/3/2025
Your neat, clearly-legible solutions should be submitted electronically as a Jupyter or PDF file via the MATH2110
Moodle page by the deadline indicated there. As this work is assessed, your submission must be entirely your
own work (see the University’s policy on Academic Misconduct).
Submissions up to five working days late will be subject to a penalty of 5% of the maximum mark per working
day.
Deadline extensions due to Support Plans and Extenuating Circumstances can be requested according to
School and University policies, as applicable to this module. Because of these policies, solutions (where
appropriate) and feedback cannot normally be released earlier than 10 working days after the main cohort
submission deadline.
Please post any academic queries in the corresponding Moodle forum, so that everyone receives the same
assistance. As it’s assessed work, I will only be able to answer points of clarification.
The work is intended to be approximately equal to a week’s worth of study time on the module for a student
who has worked through the module content as intended - including the R aspects. If you have any issues
relating to your own personal circumstances, then please email me.
THE DATA
The objective is to build a predictive model for the median house price in Boston neighbourhoods using various
neighbourhood characteristics. Median house price is a crucial indicator for urban planning and economic
studies. It is important to understand how different social indicators affect it. To this end, the dataset we will
analyse here contains detailed records of 506 neighbourhoods, capturing factors such as crime rates, age of
the properties, etc.
The training and test data are provided in the files BostonTrain.csv and BostonTest.csv available at the Moodle
page. The train file contains observations for 404 neighbourhoods. The target variable is medv, median value
of houses in thousands of dollars. The predictors include:
• crim, which contains the per capita crime rate by town.
• zn, which contains the proportion of residential land.
• rm, which contains the average number of rooms per house.
• age, which contains the proportion of houses built before 1940.
• dis, which contains distances to large employment centres.
MATH2110 Turn Over
2 MATH2110
• ptratio, which contains the student-teacher ratio by town.
• lstat, which contains the percentage of lower-status population.
The test data is provided in the file BostonTest.csv, containing observations for 102 neighbourhoods. The
test data should only be used to evaluate the predictive performance of your models.
THE TASKS
(a) (80 marks) Using only the training data (BostonTrain.csv), develop one or more models to predict the
median house price (medv) based on the predictor variables. You may use any methods covered in this
module. For this part, the test data must not be used. Your analysis should include:
– Model selection and justification.
– Diagnostics to assess the quality of your model(s).
– Interpretation of the model parameters. Which parameters seem to have a greater importance for
prediction?
(b) (20 marks) Use your “best” model(s) from (a) to predict the median house price (medv) for the neighbourhoods
in the test dataset (BostonTest.csv). Provide appropriate numerical summaries and plots to evaluate the
quality of your predictions. Compare your predictions to those of a simple linear model of the form:
medv ∼ crim.
NOTES
• An approximate breakdown of marks for part (a) is: exploratory analysis (20 marks), model selection
(40 marks), model checking and discussion (20 marks). About half the marks for each are for doing
technically correct and relevant things, and half for discussion and interpretation of the output. However,
this is only a guide, and the work does not have to be rigidly set out in this manner. There is some natural
overlap between these parts, and overall level of presentation and focus of the analysis are also important
in the assessment. The above marks are also not indicative of the relative amount of output/discussion
needed for each part, it is the quality of what is produced/discussed which matters.
• As always, the first step should be to do some exploratory analysis. However, you do not need to go
overboard on this. Explore the data yourself, but you only need to report the general picture, plus any
findings you think are particularly important.
• For the model fitting/selection, you can use any of the frequentist techniques we have covered to investigate
potential models - automated methods can be used to narrow down the search, but you can still use
hypothesis tests, e.g. if two different automated methods/criteria suggest slightly different models.
• Please make use of the help files for 𝑅 commands. Some functions may require you to change their
arguments a little from examples in the notes, or behaviour/output can be controlled by setting optional
arguments.
• You should check the model assumptions and whether conclusions are materially affected by any influential
data points.
• The task is deliberately open-ended: as this is a realistic situation with real data, there is not one single
correct answer, and different selection methods may suggest different “best” models - this is normal.
Your job is to investigate potential models using the information and techniques we have covered. The
important point is that you correctly use some of the relevant techniques in a logical and principled
manner, and provide a concise but insightful summary of your findings and reasoning. Note however
that you do not have to produce a report in a formal “report” format.
MATH2110
3 MATH2110
• You do not need to include all your 𝑅 output, as you will likely generate lots of output when experimenting.
For example, you may look at quite a large number of different plots and you might do lots of experimentation
in the model development stage. You only need to report the important plots/output which justify your
decisions and conclusions, and whilst there is no word or page limit, an overly-verbose analysis with
unnecessary output will detract from the impact.
MATH2110 End

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:推動電機行業創新升級,開創智能驅動未來新篇章
  • 下一篇:代寫 MATH5905、代做 Python/java 程序
  • ·代寫SE360、Java/Python程序代做
  • ·MISCADA代做、代寫Python程序語言
  • ·代寫CSE 231、代做Python程序語言
  • ·CP414編程代寫、代做Java/Python程序
  • ·CIV6782代做、代寫Python程序語言
  • ·CS305程序代做、代寫Python程序語言
  • ·代寫FN6806、代做c/c++,Python程序語言
  • ·代寫CS-UY 4563、Python程序語言代做
  • ·CE235編程代寫、代做python程序設計
  • ·COMP2010J代做、代寫c/c++,Python程序
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          亚洲午夜一区| 久久久久久伊人| 午夜精品久久久久久久久久久久 | 午夜精品久久久久久久久久久久久| 这里只有精品电影| 欧美一区二区三区四区在线观看地址 | 欧美午夜精品久久久久久人妖 | 牛人盗摄一区二区三区视频| 欧美国产三区| 国产精品国产a| 狠狠色综合日日| 一区二区欧美视频| 久久久精品国产免费观看同学| 欧美成人精品一区| 国产欧美日韩91| 亚洲欧洲日产国码二区| 亚洲综合99| 女女同性精品视频| 国产欧美日韩视频| 最新国产乱人伦偷精品免费网站| 中文av字幕一区| 玖玖综合伊人| 国产精品欧美日韩久久| 亚洲国产mv| 欧美一区永久视频免费观看| 欧美激情在线观看| 一区二区三区自拍| 亚洲欧美日韩国产成人| 欧美激情国产日韩精品一区18| 国产精品免费在线| 一本色道久久综合精品竹菊| 久久最新视频| 国产一区二区三区久久悠悠色av| 亚洲精品国偷自产在线99热| 久久久精彩视频| 国产精品视频最多的网站| 亚洲精品国产视频| 久久中文久久字幕| 国产自产精品| 欧美一区二区三区免费视频| 欧美日韩国产成人| 91久久久亚洲精品| 欧美 日韩 国产精品免费观看| 国产一区二区欧美日韩| 性久久久久久久| 国产精品嫩草99a| 亚洲一区二区三区免费在线观看 | 一区二区视频在线观看| 午夜视频久久久| 国产精品毛片高清在线完整版| 一本一本久久a久久精品综合麻豆| 农夫在线精品视频免费观看| 在线观看91精品国产麻豆| 欧美一区二区大片| 国产亚洲免费的视频看| 欧美一区二区三区电影在线观看| 国产精品亚洲成人| 欧美亚洲日本网站| 合欧美一区二区三区| 久久人人超碰| …久久精品99久久香蕉国产 | 好吊色欧美一区二区三区四区 | 极品av少妇一区二区| 久热精品在线| 亚洲精品在线免费| 欧美视频官网| 欧美一区二区三区在线观看| 韩国精品久久久999| 久久久水蜜桃| 最新热久久免费视频| 欧美日韩精品久久久| 一区二区三区视频在线播放| 国产精品jizz在线观看美国| 亚洲欧美在线另类| 激情综合久久| 欧美日韩精品久久久| 香蕉精品999视频一区二区| 狠狠色狠狠色综合日日tαg| 欧美成年人网| 亚洲欧美日本精品| 在线免费观看成人网| 欧美三级日本三级少妇99| 小黄鸭视频精品导航| 欲色影视综合吧| 欧美日韩亚洲一区二区三区在线| 午夜久久影院| 亚洲精品久久7777| 国产美女诱惑一区二区| 男女激情久久| 亚洲欧美国产精品专区久久| 在线成人亚洲| 国产农村妇女精品一二区| 可以看av的网站久久看| 亚洲一区在线免费| 亚洲国产精品国自产拍av秋霞| 国产精品mm| 欧美v日韩v国产v| 亚洲欧美在线免费| 亚洲伦理中文字幕| 激情一区二区| 国产欧美日韩视频一区二区三区| 欧美精品久久99| 久久久久国内| 香蕉久久夜色精品国产| 日韩视频一区二区三区在线播放免费观看 | 裸体丰满少妇做受久久99精品| 99在线热播精品免费99热| 狠久久av成人天堂| 国产精品视频不卡| 欧美日韩国产限制| 欧美成人一区二区三区在线观看| 羞羞答答国产精品www一本| a91a精品视频在线观看| 亚洲国产经典视频| 激情成人综合网| 国产亚洲一区二区三区| 国产精品视频网址| 欧美性色综合| 欧美日韩一级大片网址| 欧美精品在线免费| 欧美激情黄色片| 欧美激情亚洲视频| 欧美国产日韩在线观看| 欧美福利在线观看| 欧美成人资源| 男人的天堂亚洲| 久久综合电影| 久久综合九色综合久99| 久久久免费精品视频| 久久精品国产综合| 久久久久成人网| 久久影视精品| 欧美国产亚洲视频| 欧美人体xx| 欧美区一区二区三区| 欧美日韩视频在线观看一区二区三区 | 国产一区二区三区黄| 国产欧美一区二区三区国产幕精品| 国产精品高精视频免费| 国产精品午夜av在线| 国产亚洲精品一区二区| 国内欧美视频一区二区| 亚洲大片在线| 日韩视频一区二区三区在线播放免费观看| 亚洲国产欧美国产综合一区| 亚洲精品一区二区三区av| 9l国产精品久久久久麻豆| 亚洲欧美韩国| 久久久久久久综合| 欧美国产在线电影| 欧美色网在线| 国产亚洲在线观看| 亚洲福利久久| 亚洲一区图片| 久热这里只精品99re8久| 欧美日韩国产在线播放网站| 国产精品福利片| 国内精品视频一区| 亚洲精品欧美日韩专区| 亚洲综合视频一区| 久热精品视频在线| 欧美视频一区二区三区在线观看| 国产精品亚洲产品| 亚洲韩国青草视频| 亚洲伊人色欲综合网| 久久久久99| 欧美视频在线观看免费| 黄色在线一区| 亚洲一区二区在线免费观看视频| 久久久久免费| 国产精品日韩| 亚洲人精品午夜| 久久精品论坛| 国产精品美腿一区在线看| 亚洲国产高清一区| 性欧美激情精品| 欧美日本三级| 亚洲第一区在线观看| 久久爱另类一区二区小说| 欧美日韩亚洲高清| 亚洲电影av| 久久黄金**| 国产精品视频久久一区| 亚洲乱码国产乱码精品精天堂| 久久精品91| 国产美女精品| 亚洲一卡久久| 欧美日韩中文字幕精品| 亚洲成人在线免费| 久久激情五月婷婷| 国产麻豆成人精品| 亚洲欧美日本国产专区一区| 欧美日韩午夜在线| 亚洲美女中出| 蜜桃av噜噜一区| …久久精品99久久香蕉国产 | 亚洲欧洲一区二区在线播放| 狂野欧美一区| 一区视频在线| 免费在线一区二区|