99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COP 3402 代做、代寫 c/c++,Python 程序
COP 3402 代做、代寫 c/c++,Python 程序

時間:2025-02-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Homework 1: P-Machine
COP 3402: Systems Software
Spring 2025
See Webcourses  for due dates.
 
Purpose
In this homework you will form a team and implement a virtual machine called the P-machine.
Teams must be either 1 person team or 2 people team.
Directions
(100 points) Implement and submit the P-machine as described in the rest of this document.
 
For the implementation, your code must be written in ANSI standard C and must compile with gcc and run correctly on Eustis. We recommend using the flag -Wall and fixing all warnings.
What to Read
Our recommended book is Systems Software: Essential Concepts (by Montagne) in which we recommend reading chapters 1-3.
 
In this assignment, you will implement a virtual machine (VM) known as the P-machine (PM/0). 
 
P-Machine Architecture
The P-machine is a stack machine that conceptually has one memory area called the process address space (PAS). The process address space is divided into three contiguous segments: The first 10 locations, called “unused”, the “text”, which contains the instructions for the VM to execute and the “stack,” which is organized as a data-stack to be used by the PM/0 CPU.
Registers
The PM/0 has a few built-in registers used for its execution: The registers are named:
• base pointer (BP), which points to the base of the current activation record
• stack pointer (SP), which points to the current top of the stack. The stack grows downwards., 
• program counter (PC), which points to the next instruction to be executed.
• Instruction Register (IR), which store the instruction to be executed
The use of these registers will be explained in detail below. The stack grows downwards.
Instruction Format
The Instruction Set Architecture (ISA) of the PM/0 hasinstructions that each have three components, which are integers (i.e., they have the C type int) named as follows.
OP​is the operation code.
    L​indicates the lexicographical level (We will give more details on L below)
M​depending of the operators it indicates:
​- A number (when OP is LIT or INC).
​- A program address (when OP is JMP, JPC, or CAL).
​- A data address (when OP is LOD, STO)
​- The identity of the arithmetic/relational operation associated to the OPR op-code. 
    (e.g. OPR 0 2 (ADD) or OPR 0 4 (MUL))
    
The list of instructions for the ISA can be found in Appendix A and B.
P-Machine Cycles
The PM/0 instruction cycle conceptually does the following for each instruction: 
 
The PM/0 instruction cycle is carried out in two steps. The first step is the fetch cycle, where the instruction pointed to by the program counter (PC) is fetched from the “text” segment, placed in the instruction register (IR) and the PC is incremented to point to the next instruction in the code list. In the second stepthe instruction in the IR is executed using the “stack” segment. (This does not mean that the instruction is stored in the “stack segment.”)
Fetch Cycle:
1.- IR.OP ß pas[pc]
​IR.L   ß pas[pc + 1]  
​IR.M  ß pas[pc + 2]
​(note that each instruction need 3 entries in array “TEXT”. 
2.- (PCß PC + 3). 
 
Execute Cycle:
The op-code (OP) component in the IR register (IR.OP) indicates the operation to be executed. For example, if IRencodes the instruction “2 0 2”, then the machine adds the top two elements of the stack, popping them off the stack in the process, and stores the result in the top of the stack (so in the end sp is one less than it was at the start). Note that arithmetic overflows and underflows happen as in C int arithmetic.  ​​​​
PM/0 initial/Default Values
When the PM/0 starts execution. 
 
BP == 499, SP == 500, and PC == 10; 
 
This means that execution starts with the “text segment” element 10. Similarly, the initial “stack” segment values are all zero (BP=499 and SP = BP + 1).
 
The figure bellow illustrates the process address space:
 
 
                                  ​ ​ Last instruction    ​​ ​​​               BP   SP
     0              10                                                    
PAS    UNUSED              TEXT    OP    L    M                      STACK              ??? 
                                                                 499    500     
                    PC                                                            
 
Size Limits
 
Initial values for PM/0 CPU registers are:
BP = 499 
SP = BP + 1; 
PC = 10;
Initial process address space values are all zero:  
pas[0] =0, pas[1] =0, pas[3] =0…..[n-1] = 0. 
Constant Values:
ARRAY_SIZE is 500
 
 
Note: Be aware that in PM/0 the stack is growing downwards
Assignment Instructions and Guidelines: 
1. The VM must be written in C and must run on Eustis3. If it runs in your PC but not on Eustis, for us it does not run.
2. The input file name should be read as a command line argument at runtime, for example: $ ./a.out input.txt (A deduction of 5 points will be applied to submissions that do not implement this).
3. Program output should be printed to the screen, and should follow the formatting of the example in Appendix C. A deduction of 5 points will be applied to submissions that do not implement this.
4. Submit to Webcourses:
a) A readme text file indicating how to compile and run the VM
b) The source code of your PM/0 VM which should be named “vm.c”
c) A signed sheet indicating the contribution of each team member to the project.
d) Student names should be written in the header comment of each source code file, in the readme, and in the comments of the submission
e) Do not change the ISA. Do not add instructions or combine instructions. Do not change the format of the input. If you do so, your grade will be zero.
f) Include comments in your program. If you do not comments, your grade will be zero.
g) Do not implement each VM instruction with a function. If you do, a penalty of -100 will be applied to your grade. You should only have functions: main, base, auxiliary functions to print but you must not use functions to implement instructions or FETCH. (Appendix D).
h) The team member(s) must be the same for all projects. In case of problems within the team. The team will be split and each member must continue working as a one-member team for all other projects.
i) On late submissions:
o One day late 10% off.
o Two days late 20% off.
o Submissions will not be accepted after two days.
o Resubmissions are not accepted after two days.
o Your latest submission is the one that will be graded.
 
We will be using a bash script to test your programs. This means your program should follow the output guidelines listed (see Appendix C for an example). You don’t need to be concerned about whitespace beyond newline characters. We use diff -w.
 
 
 
 
 
 
Rubric:
If you submit a program from another semester or we detect plagiarism your grade is F for this course. 
Using functions to implement instructions even if only one is implemented that way, means that your grade will be “zero”.
Pointers and handling of dynamic data structures is not allowed. If you do your grade is “zero”.  Only file pointer is allowed.
-100 – Does not compile
10 – Compiles
25 – Produces lines of meaningful execution before segfaulting or looping infinitely
5 – Follows IO specifications (takes command line argument for input file name and prints output to console)
10 – README.txt containing author names
5 – Fetch cycle is implemented correctly
10 – Well commented source code
5 – Arithmetic instructions are implemented correctly
5 – Read and write instructions are implemented correctly
10 – Load and store instructions are implemented correctly
10 – Call and return instructions are implemented correctly
5 – Follows formatting guidelines correctly, source code is named vm.c
Appendix A 
 
Instruction Set Architecture (ISA) – (eventually we will use “stack” to refer to the    stack segment in PAS)
 
In the following tables, italicized names (such as p) are meta-variables that refer to integers.  If an instruction’s field is notated as “-“, then its value does not matter (we use 0 as a placeholder for such values in examples).
 
ISA:
01   – ​LIT​0, M​​Pushes a constant value (literal) M onto the stack
 
02   – ​OPR​0, M​​Operation to be performed on the data at the top of the stack.​​​ ​​(orreturn from function)
 
03   – ​LOD​L, M​​Load value to top of stack from the stack location at  offset M from L lexicographical levels down
​​​
04   – ​STO​L, M​​Store value at top of stack in the stack location at offset M 
  from L lexicographical levels down
 
05   – ​CAL​L, M​​Call procedure at code index M (generates new 
   Activation Record and PC ß M)
 
06   – ​INC​0, M​​Allocate M memory words (increment SP by M). First three​​​​​are reserved to   Static Link (SL), Dynamic Link (DL),                    ​​​​​and Return Address (RA)
 
07   – ​JMP​0, M​​Jump to instruction M (PC ßM)
 
08   – ​JPC 0, M​​Jump to instruction M if top stack element is 0
 
09   – ​SYS 0, 1​​Write the top stack element to the screen
 
  ​SYS 0, 2​​Read in input from the user and store it on top of the stack 
 
  SYS 0, 3​​End of program (Set “eop” flag to zero)
   
   
   
 
 
 
OP Code Number    OP Mnemonic    L    M    Comment (Explanation)
01    LIT    0    n    Literal push: sp ß sp- 1; pas[sp] ßn 
02    RTN    0    0    Returns from a subroutine is encoded 0 0 0 and restores the caller’s AR:
sp ← bp + 1; bp ← pas[sp - 2];  pc ← pas[sp -3];
03    LOD    n    a    Load value to top of stack from the stack location at offset o from n lexicographical levels down
sp ß sp - 1;
pas[sp] ß pas[base(bp, n) - o];
04    STO    n    o    Store value at top of stack in the stack location at offset o from n lexicographical levels down
pas[base(bp, n) - o] ß pas[sp];
sp = sp +1;
05    CAL    n    a    Call the procedure at code address a, generating a new activation record and setting PC to a:
pas[sp - 1]  ß  base(bp, n); /* static link (SL)
pas[sp - 2]  ß bp;​/* dynamic link (DL)
pas[sp - 3]  ß pc;​ /*return address (RA)​
bp ß sp - 1;
pc ß a;
06    INC    0    n    Allocate n locals on the stack
sp ß sp - n;
07    JMP    0    a    Jump to address a:
PC ← a
08    JPC    0    a    Jump conditionally: if the value in stack[sp] is 0, then jump to a and pop the stack:if (stack[SP] == 0) then { pc (← a; } sp ← sp+1
09    SYS    0    1    Output of the value in stack[SP] to standard output as a character and pop:putc(stack[sp]); sp ← sp+1
(You can use printf if you wish) 
     SYS    0    2    Read an integer, as character value, from standard input (stdin) and store it on the top of the stack.sp ← sp-1; stack[sp] ← getc(); 
(You can use fscanf if you wish)
     SYS    0    3    Halt the program (Set “eop” flag to zero)
 
Appendix B (Arithmetic/Logical Instructions)
 
ISA Pseudo Code
   
 
02 – OPR  0, #​​(1 <= # <= 10)
    
 
​​​​1​ADD​​pas[sp + 1] ß pas[sp + 1] + pas[sp]
​​​​​​​sp ß sp + 1;
 
  2​SUB​​pas[sp + 1] ß pas[sp + 1] - pas[sp]
​​​​​​​sp ß sp + 1;
 
  3​MUL​​pas[sp + 1] ß pas[sp + 1] * pas[sp]
​​​​​​​sp ß sp + 1;
 
  4​DIV​​pas[sp + 1] ß pas[sp + 1] / pas[sp]
​​​​​​​sp ß sp + 1;
 
  5​EQL​​pas[sp + 1] ß pas[sp + 1] == pas[sp]
​​​​​​​sp ß sp + 1;
 
  6​NEQ​​pas[sp + 1] ß pas[sp + 1] != pas[sp]
​​​​​​​sp ß sp + 1;
 
  7​LSS​​pas[sp + 1] ß pas[sp + 1] < pas[sp]
​​​​​​​sp ß sp + 1;
 
  8​LEQ​​pas[sp + 1] ß pas[sp + 1] <= pas[sp]
​​​​​​​sp ß sp + 1;
 
  9​GTR​​pas[sp + 1] ß pas[sp + 1] > pas[sp]
​​​​​​​sp ß sp + 1;
 
  10​GEQ​​pas[sp + 1] ß pas[sp + 1] >= pas[sp]
​​​​​​​sp ß sp + 1;
 
   
 
 
 
 
Appendix C
Example of Execution
 
This example shows how to print the stack after the execution of each instruction.
 
INPUT FILE (In this example the program was stored at memory address zero)
For every line, there must be 3 values representing OP, Land M.
 
7 0 45
7 0 6
6 0 4
1 0 4
1 0 3
2 0 3
4 1 4
1 0 14
3 1 4
2 0 7
8 0 39
1 0 7
7 0 42
1 0 5
2 0 0
6 0 5
9 0 2
5 0 6
9 0 1
9 0 3
 
When the input file (program) is read in to be stored in the text segment starting at location 10 in the process address space, each instruction will need three memory locations to be stored. Therefore, the PC must be incremented by 3 in the fetch cycle.
 
10              13              16              19              22              25              …
7    0    45    7    0    6    6    0    4    1    0    4    1    0    3    2    0    4    etc
 
 
The initial CPU register values for the example in this appendix are:
SP = 500;
BP = SP - 1; 
PC = 10;
IR  = 0 0 0; (a struct or a linear array can be used to implement IR) 
Hint: Each instruction uses 3 array elements and each data value just uses 1 array element. 
 
 
OUTPUT FILE (In this example the program was storedat memory address zero)
Print out the execution of the program in the virtual machine, showing the stack and pc, bp, and sp.
 
NOTE: It is necessary to separate each Activation Record with a bar “|”.  
 
​​​​PC​BP​SP​stack
Initial values:​10​499​500
 
​JMP​0​45​45​499​500​
​INC​0​5​48​499​495​0 0 0 0 0 
Please Enter an Integer: 3
​SYS​0​2​51​499​494​0 0 0 0 0 3 
​CAL​0​6​6​493​494​0 0 0 0 0 3 
​INC​0​4​9​493​490​0 0 0 0 0 3 | 499 499 54 0 
​LIT​0​4​12​493​489​0 0 0 0 0 3 | 499 499 54 0 4 
​LIT​0​3​15​493​488​0 0 0 0 0 3 | 499 499 54 0 4 3 
​MUL​0​3​18​493​489​0 0 0 0 0 3 | 499 499 54 0 12 
​STO​1​4​21​493​490​0 0 0 0 12 3 | 499 499 54 0 
​LIT​0​14​24​493​489​0 0 0 0 12 3 | 499 499 54 0 14 
​LOD​1​4​27​493​488​0 0 0 0 12 3 | 499 499 54 0 14 12 
​LSS​0​7​30​493​489​0 0 0 0 12 3 | 499 499 54 0 0 
​JPC​0​39​39​493​490​0 0 0 0 12 3 | 499 499 54 0 
​LIT​0​5​42​493​489​0 0 0 0 12 3 | 499 499 54 0 5 
​RTN​0​0​54​499​494​0 0 0 0 12 3 
Output result is: 3
​SYS​0​1​57​499​495​0 0 0 0 12 
​SYS​0​3​60​499​495​0 0 0 0 12 
 
 
 
 
Appendix D
 
Helpful Tips
 
This function will be helpful to find a variable in a different Activation Record some L levels down:
 
/**********************************************/
/*​​Find base L levels down​​ */
/*​​​​​​​ */
/**********************************************/
 
int base( int BP, int L)
{
​int arb = BP;​// arb = activation record base
​while ( L > 0)     //find base L levels down
​{
​​arb = pas[arb];
​​L--;
​}
​return arb;
}
 
For example in the instruction:
 
STO L, M  - You can do stack [base (IR.L) +  IR.M]= pas[SP] to store the content of  the top of the stack into an AR in the stack,  located L levels down from the current AR.
 
Note1: we are working at the CPU level therefore the instruction format must have only 3 fields. Any program whose number of fields in the instruction format is graterthan 3 will get a zero.
 
Note2: If your program does not follow the specifications, your grade will get a zero.
 
Note3: if any of the instructions is implemented by calling a function, your grade will be zero.
 
Note4: If you use dynamic memory handling, your grade will be zero.
 
Note5: Pointers are not allowed, except to read a file.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




​​​​​​​

掃一掃在手機打開當前頁
  • 上一篇:代寫指標 通達信【備戰龍妖】副圖指標
  • 下一篇:代寫 CMU 18-879、代做 Python 編程語言
  • ·CIV6782代做、代寫Python程序語言
  • ·CS305程序代做、代寫Python程序語言
  • ·代寫FN6806、代做c/c++,Python程序語言
  • ·代寫CS-UY 4563、Python程序語言代做
  • ·CE235編程代寫、代做python程序設計
  • ·COMP2010J代做、代寫c/c++,Python程序
  • ·COMP09110代做、代寫Python程序設計
  • ·&#160;COMP338編程代做、代寫Python程序語言
  • ·代寫MATH36031、Python程序設計代做
  • ·CDS523編程代寫、代做Python程序語言
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                婷婷成人激情在线网| 中文字幕巨乱亚洲| 国产福利不卡视频| 美女看a上一区| 国产毛片精品一区| 一本色道综合亚洲| 国产在线一区二区| va亚洲va日韩不卡在线观看| 成人精品视频一区二区三区尤物| 成人天堂资源www在线| 波多野结衣欧美| 欧美精品在线观看播放| 国产亚洲精品资源在线26u| 日本丰满少妇一区二区三区| 欧美体内she精高潮| 亚洲国产精品天堂| 99综合电影在线视频| 欧美精品一区二区三区在线播放| 亚洲欧美另类久久久精品2019| 日本一区二区免费在线| 亚洲综合区在线| 国产一区二区电影| 国产suv精品一区二区883| 色婷婷精品大在线视频| 久久综合资源网| 日韩电影在线免费看| 国产精品一区二区久激情瑜伽| 欧美丝袜自拍制服另类| 精品国产百合女同互慰| 亚洲视频在线一区观看| 捆绑调教一区二区三区| 欧美三区在线观看| 一区二区视频在线看| 99久久久久久| 日韩精品专区在线影院重磅| 免费高清在线一区| 欧美亚洲丝袜传媒另类| 午夜欧美大尺度福利影院在线看 | 国产麻豆精品在线| 91精品国产欧美日韩| 五月婷婷激情综合| 欧美性极品少妇| 日韩福利电影在线| 国产午夜精品一区二区| 99久久国产综合精品麻豆| 亚洲综合视频网| 欧美另类高清zo欧美| 成人黄色av电影| 日韩电影免费一区| 欧美国产日韩在线观看| 色综合中文字幕| 亚洲激情在线播放| 国产麻豆视频一区| 亚洲一区免费在线观看| 成人激情午夜影院| 樱花草国产18久久久久| 91在线观看高清| 琪琪一区二区三区| 欧美一区永久视频免费观看| 久久成人羞羞网站| 亚洲色图视频网| 国产亚洲自拍一区| 97超碰欧美中文字幕| 免费在线看成人av| 一区二区三区中文字幕在线观看| 亚洲色图视频网站| 精品99999| 欧美日本在线播放| 成人av网站在线| 国产一区二三区| 日韩黄色片在线观看| 一区二区三区不卡视频| 国产亚洲成av人在线观看导航| 欧美午夜影院一区| 亚洲三级电影全部在线观看高清| 欧美一级在线视频| 欧美日韩免费观看一区三区| 91视频你懂的| 欧美精品一区二区三区蜜桃| 激情欧美日韩一区二区| 日韩av中文字幕一区二区| 奇米影视一区二区三区| 午夜精品一区二区三区电影天堂| 《视频一区视频二区| 亚洲理论在线观看| 一区二区视频在线看| 天天综合色天天综合色h| 亚洲资源中文字幕| 精品一区二区三区香蕉蜜桃| 国产成人午夜片在线观看高清观看| 成人免费看的视频| 国内精品不卡在线| 一本一道综合狠狠老| 欧美精品一二三四| 2023国产精品自拍| 亚洲码国产岛国毛片在线| 亚洲一区二区三区免费视频| 中文字幕一区二区不卡| 亚洲欧洲在线观看av| 偷拍日韩校园综合在线| 国产超碰在线一区| 一本到高清视频免费精品| 91麻豆精品国产91久久久使用方法 | 国产成人h网站| 成人av资源在线| 欧美一级午夜免费电影| 国产精品国产自产拍在线| 国产欧美日韩在线观看| 成人免费毛片aaaaa**| 欧美性videosxxxxx| 国产日产亚洲精品系列| 亚洲高清免费观看| 成人不卡免费av| 欧美一级二级三级乱码| 亚洲综合色丁香婷婷六月图片| 丁香一区二区三区| 99久久久精品| 欧美激情一区二区| 久久福利视频一区二区| 一片黄亚洲嫩模| 91香蕉视频在线| 亚洲色图色小说| 91福利在线观看| 亚洲精品一区二区三区99| 久久久精品免费观看| 国产福利一区二区三区视频| 国产在线看一区| 久久久一区二区| 成人一区二区三区在线观看| 久久精品视频一区二区三区| 国产成人亚洲综合a∨婷婷 | 欧美成人一级视频| 精品卡一卡二卡三卡四在线| 日韩经典中文字幕一区| 26uuu精品一区二区在线观看| 蜜桃视频在线一区| 欧洲日韩一区二区三区| 国产欧美日韩亚州综合| 国产一区二区网址| 专区另类欧美日韩| 2023国产精品自拍| 欧美日韩一区视频| 九九九精品视频| 亚洲色图欧美在线| 国产精品日韩成人| 国产精品女同一区二区三区| 91蜜桃婷婷狠狠久久综合9色| 亚洲国产欧美在线| 国产日韩精品一区二区三区在线| 香蕉影视欧美成人| 琪琪久久久久日韩精品| 国产精品色哟哟网站| 日韩亚洲国产中文字幕欧美| 国内一区二区在线| 亚洲一二三四在线| 亚洲三级小视频| 国产人久久人人人人爽| 欧美大片在线观看| 欧美日韩久久一区二区| 欧美日韩亚洲国产综合| 夜夜揉揉日日人人青青一国产精品 | 成人免费视频免费观看| 午夜精品福利一区二区三区蜜桃| 中文字幕在线不卡| 国产成人免费av在线| 日韩欧美国产1| 亚洲综合色成人| 亚洲午夜激情av| 日本成人在线电影网| 日韩精品成人一区二区三区| 亚洲一区免费观看| 国产精品欧美综合在线| 久久精品无码一区二区三区| 中文字幕免费在线观看视频一区| 精品国产sm最大网站| 久久久99精品免费观看不卡| 欧美人与z0zoxxxx视频| 这里只有精品99re| 久久婷婷综合激情| 精品国产网站在线观看| 国产精品成人一区二区艾草| 亚洲精品免费播放| 日韩电影在线一区二区| 成人av在线看| 亚洲午夜电影网| 亚洲一二三四在线观看| 麻豆精品新av中文字幕| eeuss影院一区二区三区| av高清不卡在线| 欧美日本视频在线| xnxx国产精品| 中文字幕在线一区二区三区| 日本不卡在线视频| 国产伦理精品不卡| 色婷婷综合久久久久中文一区二区 | 成人avav影音| 欧美精选一区二区| 欧美成人欧美edvon| 日韩精品乱码av一区二区| 在线影院国内精品|