99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代做3DA3 C02、Java/python編程代寫
代做3DA3 C02、Java/python編程代寫

時間:2024-10-21  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Assignment 1, Commerce 3DA3 C02 - Predictive Data Analytics
To complete this assignment, please create a Jupyter notebook. The code in your jupyter notebook should provide answers to questions asked in the assignment. Please submit the assignment by uploading the file(s) into the "Assignment 1" folder on Avenue to Learn. You can find this folder under "Assessments>Assignments" on the course page. The deadline for submission is 11:59PM on Monday Oct. 21.
Background
In the past decade, we witnessed the rise of online grocery shopping. With the convenience of ordering groceries from the comfort of home, more people are turning to digital platforms for their everyday needs. This shift has been further fueled by factors such as busy lifestyles, the increasing use of mobile devices, and the covid-19 pandemic, which underscored the importance of contactless shopping.
For online grocery platforms, conducting data analysis on sales records is critical for understanding customer behavior, enhancing the overall shopping experience, and make data-driven decisions that lead to higher customer satisfaction and profitability.
Data: We will make use of two datasets from the transaction records of an online grocery delivery platform, stored in the files orders.csv (click to download) and order_products.csv (click to download).
The dataset in orders.csv includes the following columns:
order_id: This is the unique identifier of every customer order
customer_id: This is the unique identifier of every customer who placed the order order_dow: This indicates the day of the week, on which the order took place. 0 stands for Sunday, **5 indiates Monday-Friday, and 6 indicates a Saturday. order_hour_of_day: This indicates during which hour the order took place; for example, 14 indicates that the order was placed between 14:00 and 14:59. days_since_prior_order: This indicates how many days have passed since the customer's last order
coupon_use: This shows if the customer used a coupon to (partially) pay for the order
The dataset in order_products.csv records which products are purchased in an order. It

 includes the following columns:
order_id: This is the order idenfitier (same as in order.csv).
product_id: This is the identifier of a product that is purchased in the corresponding order.
quantity: This is the quantity of the product purchased in the corresponding order. unit_price: This is the unit price (in dollars) of the product purchased in the corresponding order.
customer_id: This is the identifier of the customer who purchased the product.
Please note that order_id in order_products.csv does not need to be unique. If two rows in order_products.csv share the same order_id, it means that in the same order, the products in those two rows are both purchased.
For example, suppose that the following row exists in order.csv:
order_id customer_id order_dow order_hour_of_day days_since_prior_order coupon_u
O1234 C6217 2 10 11 yes and the following two rows exist in order_products.csv:
         order_id
O1234
O1234
product_id quantity
P0217 1
P0219 2
unit price customer_id
9.99 C6217
19.99 C6217
         then we know that in the same order (order_id O1234), 1 unit of product P0217 and 2 units of product P0219 are purchased. And this order O1234 is the same order as the order O1234 in order.csv.
Imagine that you are a data analyst at the grocery delivery platform. Based on the datasets, please answer the following questions/tasks.
Questions 0.
In the first cell of your Jupyter notebook, please create the following as markdown. Add your first and last name, and your Student ID.
se

  Important: For the remaining questions, please make sure to create a markdown cell before you answer each question and in it indicate the question number, e.g., Question 1, Question 2, etc.
For each question, you should use one or more code cells to present your codes. Please make sure that you run each cell and display all the requested results. Please also ensure that you will use markdown cells to provide necessary explanations of your codes and results.
The Jupyter notebook should be a easy-to-read report that presents your analysis and results. The grading will be based on both the correctness of your coding and the readability of your notebook.
Question 1.
Import the two .csv files and assign them to a dataframe called df_orders and df_order_products , respectively. Then,
use a line of codes to review the first few rows of the dataframes. The result should be clearly displayed in the notebook after you run the code cells.
get the structures of the dataframes (number of rows, column types, etc.) using the
info() function. Review the first few rows of the dataframe.
In a markdown cell,explain the results returned by this function as comprehensive as you
can..
Question 2.
For the DataFrame df_orders loaded from orders.csv, perform the following steps in the given order.
1. Find how many missing value each column contains.
2. For any missing value in the column   , replace it with 'unknown_order'
3. For any missing value in the column   , replace it with
     'unknown_customer'
order_id
customer_id

 4. For any missing value in the column   , replace it with the mean value of the column
5. After completing the above steps, repeat the codes in Step 1 to check again the number of missing values in each column
6. For any remaining missing values, drop all rows containing a missing value
Question 3.
The grocery delivery platform is interested in assessing if offering coupons will increase customers' purchase frequency. To that end, let us again make use of the DataFrame
df_orders (loaded from orders.csv) to perform the following tasks.
1. Select all rows in df_orders where use of a coupon is yes , and assign those rows as a new DataFrame named df_orders_coupon .
2. Calculate the mean value of 'days_since_prior_order' in df_orders_coupon .
3. Select all rows in where use of a coupon is no , and assign those rows
as a new DataFrame named .
4. Calculate the mean value of 'days_since_prior_order' in df_orders_no_coupon .
Based on your findings of the above steps, answer the following question in a markdown cell:
Is the use of coupon associated with higher/lower order frequency? Please briefly explain your answer in the markdown cell.
Questions 4.
The platform is also interested in measuring the total number of orders received on each day of the week. To do this, they would like you to complete the following tasks.
Divide the order id's in the 'order_id' column of the DataFrame df_orders (loaded from orders.csv) into groups, based on the day of the week ('order_dow') when the order is placed. The result should be a Groupby object.
Construct and display the content of a pandas Series, which should show the total number of orders for each day of the week.
Question 5.
As observed, each row of the data in order_products.csv is the sales information of a product in a certain order. The information includes the per-unit price and number of units ordered, but it does not directly provide the revenue.
     df_orders
 df_orders_no_coupon
   days_since_prior_order

 Let us now create a new column named 'revenue' in the DataFrame df_order_products constructed from order_products.csv. For each row, the
column should contain the corresponding revenue, calcuated as 'quantity'×'unit price'. See the following two-row example for a demonstration.
order_id product_id quantity unit_price customer_id revenue
O1234 P0217 1 9.99 C6217 9.99
O1234 P0219 2 19.99 C621**9.98
After you have added the new column, further complete the following tasks:
Display the first few rows of the updated df_order_products DataFrame. Calculate the total revenue by summing up revenues in each row.
Question 6
From time to time, there will be customers who would like to review their purchase record. To do that, they will need to supply their customer id.
Suppose a customer with the id '0421MWMT' just contacted Customer Service and would like to see all their purchases. Perform the following tasks for the customer.
Select all rows related to this customer's purchases in the DataFrame df_order_products (loaded from order_products.csv), and assign them to a
new DataFrame named 'df_cust_inquiry'. Display the content of this DataFrame. Calculate the customer's total purchase in dollar amount.
              
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:INT 404代做、代寫Matlab程序設(shè)計(jì)
  • 下一篇:代寫CS 551、代做C/C++編程語言
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美日韩精品免费观看视频| 欧美午夜片在线观看| 日本午夜精品视频在线观看| 日韩国产精品久久| 国产91在线看| 丁香六月综合激情| 91成人看片片| 久久久久久久久久电影| 亚洲成人av福利| 粉嫩一区二区三区性色av| 欧美狂野另类xxxxoooo| 国产精品女同互慰在线看| 青草国产精品久久久久久| 色综合视频一区二区三区高清| 精品国产一区二区亚洲人成毛片| 亚洲一区二区三区在线| 国产91精品精华液一区二区三区| 欧美精品久久一区二区三区 | 国产精品久久99| 紧缚奴在线一区二区三区| 欧洲精品中文字幕| 1024成人网| 成人午夜视频在线| 精品少妇一区二区三区在线播放| 亚洲h精品动漫在线观看| 一本色道a无线码一区v| 国产精品久久久久久久久免费樱桃 | 亚洲一区二区三区四区五区中文 | 日韩片之四级片| 肉丝袜脚交视频一区二区| 欧美三级视频在线播放| 一区二区三区欧美视频| 色偷偷久久一区二区三区| 亚洲美女免费视频| 一本色道a无线码一区v| 国产精品国产成人国产三级| 成人黄色免费短视频| 国产精品久久久久久久久晋中 | 国产91露脸合集magnet| 久久久三级国产网站| 国产中文一区二区三区| 久久婷婷国产综合国色天香| 国产一区久久久| 国产色产综合产在线视频| 国产乱淫av一区二区三区| 久久精品一区二区三区四区| 国产成人综合亚洲网站| 国产色产综合产在线视频| 国产**成人网毛片九色| 国产精品水嫩水嫩| 99在线精品观看| 亚洲国产精品久久人人爱 | 日韩vs国产vs欧美| 日韩欧美视频一区| 国产久卡久卡久卡久卡视频精品| 国产欧美日韩一区二区三区在线观看 | 日本不卡123| 精品国产乱码91久久久久久网站| 国精品**一区二区三区在线蜜桃| 日本一区二区三区dvd视频在线| 成人av影院在线| 亚洲国产日韩精品| 精品国产免费人成电影在线观看四季| 狠狠色伊人亚洲综合成人| 中文字幕不卡一区| 欧美日韩电影一区| 国内精品伊人久久久久av一坑 | 欧美三级日韩在线| 国内久久精品视频| 国产精品美女久久久久久久网站| 一本大道久久a久久综合 | 7777精品伊人久久久大香线蕉完整版 | 欧美国产日本视频| 色综合久久综合中文综合网| 日日摸夜夜添夜夜添精品视频| 亚洲精品在线免费播放| 91色视频在线| 狠狠色丁香久久婷婷综| 亚洲日本欧美天堂| 精品国产乱码久久久久久闺蜜| 色综合视频在线观看| 激情欧美一区二区三区在线观看| 亚洲视频1区2区| 精品欧美久久久| 91麻豆视频网站| 九九**精品视频免费播放| 亚洲精选在线视频| 久久久噜噜噜久久中文字幕色伊伊| 色偷偷成人一区二区三区91 | 日本一区二区三区四区在线视频| 在线免费精品视频| 国产成人av电影在线播放| 亚洲成人久久影院| 国产精品污污网站在线观看| 欧美精品久久一区| 91丨porny丨户外露出| 国产精品资源在线看| 日本成人在线电影网| 一区二区成人在线| 国产精品视频一二三| 日韩精品中文字幕一区| 欧美视频一区在线| 色综合久久久久网| 国产成人精品一区二区三区网站观看 | 国产激情一区二区三区四区| 免费在线视频一区| 亚洲高清不卡在线| 1024成人网色www| 亚洲国产成人自拍| 久久亚区不卡日本| 日韩一级高清毛片| 精品视频在线免费| 色94色欧美sute亚洲线路一ni | 亚洲日本一区二区| 中日韩免费视频中文字幕| 欧美成人vps| 欧美一级一级性生活免费录像| 欧美综合一区二区三区| 一本大道久久a久久综合婷婷| 成人性生交大片免费看中文网站| 国内精品免费在线观看| 免费在线观看视频一区| 天天影视涩香欲综合网| 午夜成人免费视频| 亚洲gay无套男同| 天天亚洲美女在线视频| 亚洲成av人在线观看| 亚洲va欧美va天堂v国产综合| 亚洲国产日韩在线一区模特| 亚洲国产aⅴ成人精品无吗| 亚洲一级在线观看| 天堂在线一区二区| 人人精品人人爱| 麻豆国产精品官网| 国产美女视频一区| 国产精品 日产精品 欧美精品| 福利一区二区在线观看| 99久久精品费精品国产一区二区| 波多野结衣在线aⅴ中文字幕不卡| 波多野结衣精品在线| 在线一区二区视频| 欧美一卡二卡三卡| 久久久久久久久久久久久久久99 | 99v久久综合狠狠综合久久| 成人小视频免费观看| caoporn国产精品| 精品视频一区二区三区免费| 欧美人妖巨大在线| 久久综合一区二区| 亚洲同性同志一二三专区| 性欧美疯狂xxxxbbbb| 紧缚奴在线一区二区三区| 成人午夜视频免费看| 欧美撒尿777hd撒尿| 精品999久久久| 亚洲色图在线播放| 丝袜亚洲另类丝袜在线| 国产福利一区二区三区视频在线 | 8x8x8国产精品| 久久精品日产第一区二区三区高清版 | 91精品国产综合久久蜜臀| 26uuu色噜噜精品一区二区| 中文字幕一区av| 青青国产91久久久久久| 成人av网站在线| 5566中文字幕一区二区电影| 国产亚洲精品bt天堂精选| 亚洲一区二区在线免费观看视频| 激情五月婷婷综合网| 欧美在线观看禁18| 国产农村妇女毛片精品久久麻豆| 一卡二卡三卡日韩欧美| 国产久卡久卡久卡久卡视频精品| 欧美亚洲国产一区二区三区va| 日韩欧美国产麻豆| 亚洲色图清纯唯美| 国产乱人伦精品一区二区在线观看 | 精品国产91洋老外米糕| 亚洲男人的天堂在线观看| 精品一区在线看| 91久久精品网| 亚洲国产精品成人久久综合一区| 日韩综合一区二区| 91麻豆国产在线观看| 国产三级一区二区| 美腿丝袜在线亚洲一区| 在线免费观看视频一区| 国产精品视频第一区| 久久69国产一区二区蜜臀| 欧美日韩一区小说| 综合中文字幕亚洲| 国产91富婆露脸刺激对白| 欧美一区二区日韩| 亚洲成人免费av| 日本精品免费观看高清观看| 欧美激情在线免费观看| 国产乱码精品一区二区三区五月婷| 91精品国产一区二区三区| 亚洲国产成人91porn| 欧洲视频一区二区|