99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫INFS3208、代做Python語言編程
代寫INFS3208、代做Python語言編程

時間:2024-10-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



School of Information Technology and Electrical Engineering 
INFS**08 – Cloud Computing 
Programming Assignment Task III (10 Marks) 
Task description: 
In this assignment, you are asked to write a piece of Spark code to count occurrences of verbs in the 
UN debates and find the most similar debate contents. The returned result should be the top 10 
verbs that are most frequently used in all debates and the debate that is most similar to the one 
we provide. This assignment is to test your ability to use transformation and action operations in Spark 
RDD programming and your understanding of Vector Database. You will be given three files, 
including a UN General Debates dataset (un-general-debates.csv), a verb list (all_verbs.txt) 
and a verb dictionary file (verb_dict.txt). These source files are expected to be stored in a HDFS. 
You can choose either Scala or Python to complete this assignment in the Jupyter Notebook. There are 
some technical requirements in your code submission as follows: 
 
Objectives: 
1. Read Source Files from HDFS and Create RDDs (1.5 marks): 
• Read the UN General Debates dataset (un-general-debates.csv) from HDFS and 
convert only the “text” column into an RDD. Details of un-general-debates.csv are 
provided in the Preparation section below (1 mark). 
• Read the verb list file (all_verbs.txt) and verb dictionary file (verb_dict.txt) from 
HDFS and load them into separate RDDs (0.5 marks). 
• Note: If you failed to read files from HDFS, you can still read them from the local file 
system in work/nbs/ and complete the following tasks. 
2. Use Learned RDD Operations to Preprocess the Debate Texts (3 marks): 
• Remove empty lines (0.5 marks). 
• Remove punctuations that could attach to the verbs (0.5 marks). 
o E.g., “work,” and “work” will be counted differently, if you DO NOT remove the 
punctuation. 
• Change the capitalization or case of text (0.5 marks). 
o E.g., “WORK”, “Work” and “work” will be counted as three different verbs, if you 
DO NOT make all of them in lower-case. 
• Find all verbs in the RDD by matching the words in the given verb list (all_verbs.txt) 
(0.5 mark). 
• Convert all verbs in different tenses into the simple present tense by looking up the 
verbs in the verb dictionary list (verb_dict.txt) (1 mark). 
o E.g., regular verb: “work” - works”, “worked”, and “working”. 
o E.g., irregular verb: “begin” - “begins”, “began”, and “begun”. o E.g., linking verb “be” and its various forms, including “is”, “am”, “are”, “was”, 
“were”, “being” and “been”. 
o E.g., (work, 100), (works,50), (working,150) should be counted as (work, 300). 
3. Use learned RDD Operations to Count Verb Frequency (3 marks): 
• Count the top 10 frequently used verbs in UN debates (2 marks). 
• Display the results in the format (“verb1”, count1), (“verb2”, count2), … and in a 
descending order of the counts (1 marks). 
4. Use Vector Database (Faiss) to Find the Most Similar Debate (2.5 marks): 
• Convert the original debates into vectors and store them in a proper Index (1.5 mark). 
• Search the debate content that has the most similar idea to “Global climate change is 
both a serious threat to our planet and survival.” (1 mark) 
 
 
Preparation: 
In this individual coding assignment, you will apply your knowledge of Vector Database, Spark, Spark 
RDD Programming and HDFS (in Lectures 7-10). Firstly, you should read Task Description to 
understand what the task is and what the technical requirements include. Secondly, you should review 
the creation and usage of Faiss, transformations and actions in Spark, and usage of HDFS in Lectures 
and Practicals 7-10. In the Appendix, there are some transformation and action operations you could 
use in this assignment. Lastly, you need to write the code (Scala or Python) in the Jupyter Notebook. 
All technical requirements need to be fully met to achieve full marks. You can either practise on 
the GCP’s VM or your local machine with Oracle Virtualbox if you are unable to access GCP. Please 
read the Example of writing Spark code below to have more details. 
 
 
Assignment Submission: 
 You need to compress only the Jupyter Notebook (.ipynb) file. 
 The name of the compressed file should be named “FirstName_LastName_StudentNo.zip”. 
 You must make an online submission to Blackboard before 3:00 PM on Friday, 11/10/2024 
 Only one extension application could be approved due to medical conditions. 
 
 
Main Steps: 
Step 1: 
Log in your VM instance and change to your home directory. We recommend using a VM instance 
with at least 4 vCPUs, 8G memory and 20GB free disk space. 
 
Step 2: 
git clone https://github.com/csenw/cca3.git && cd cca3 
Run these commands to download the required docker-compose.yml file and configuration files. Step 3: 
sudo chmod -R 777 nbs/ 
docker-compose up -d 
Run all the containers using docker-compose 
 
 
 
Step 4: 
Open the Jupyter Notebook (http://external_IP:8888) and you can find all the files under the 
work/nbs/ folder. This is also the folder where you should write the notebook (.ipynb) file. 
 
 Step 5: 
docker ps 
docker exec <container_id> hdfs dfs -put /home/nbs/all_verbs.txt /all_verbs.txt 
docker exec <container_id> hdfs dfs -put /home/nbs/verb_dict.txt /verb_dict.txt 
docker exec <container_id> hdfs dfs -put /home/nbs/un-general-debates.csv /ungeneral-debates.csv

Run the above commands to put the three source files into HDFS. Substitute <container_id> with 
your namenode container ID. After that, you should see the three files from HDFS web interface at 
http://external_IP/explorer.html 
 
 
Step 6: 
The un-general-debates.csv is a dataset that includes the text of each country’s statement from 
the general debate, separated by “country”, “session”, “year” and “text”. This dataset includes over 
forty years of data from different countries, which allows for the exploration of differences between 
countries and over time [1,2]. It is organized in the following format: 
 
In this assignment, we only consider the “text” column. 
The verb_dict.txt file contains different tenses of each verb, separated by commas. The first word 
is the simple present tense of the verb. 
 The all_verbs.txt file contains all the verbs. 
 
 
Step 7: 
Create a Jupyter Notebook to complete the programming objectives. 
We provide some intermediate output samples below. Please note that these outputs are NOT answers 
and may vary from your outputs due to different implementations and different Spark behaviours. 
• Intermediate output sample 1, take only verbs: 
 
 
• Intermediate output sample 2, top 10 verb counts (without converting verb tenses): 
 
 • Intermediate output sample 3, most similar debate: 
 
You are free to use your own implementation. However, your result should reasonably reflect the top 
10 verbs that are most frequently used in UN debates, and the most similar debate contents to the 
sentence “Global climate change is both a serious threat to our planet and survival.” 
 
 
Reference: 
[1] UN General Debates, https://www.kaggle.com/datasets/unitednations/un-general-debates. 
[2] Alexander Baturo, Niheer Dasandi, and Slava Mikhaylov, "Understanding State Preferences With 
Text As Data: Introducing the UN General Debate Corpus". Research & Politics, 2017. 
 
 Appendix: 
Transformations: 
Transformation Meaning 
map(func) Return a new distributed dataset formed by passing each element of the 
source through a function func. 
filter(func) Return a new dataset formed by selecting those elements of the source on 
which funcreturns true. 
flatMap(func) Similar to map, but each input item can be mapped to 0 or more output 
items (so funcshould return a Seq rather than a single item). 
union(otherDataset) Return a new dataset that contains the union of the elements in the source 
dataset and the argument. 
intersection(otherDataset) Return a new RDD that contains the intersection of elements in the source 
dataset and the argument. 
distinct([numPartitions])) Return a new dataset that contains the distinct elements of the source 
dataset. 
groupByKey([numPartitions]) When called on a dataset of (K, V) pairs, returns a dataset of (K, 
Iterable<V>) pairs. 
Note: If you are grouping in order to perform an aggregation (such as a 
sum or average) over each key, using reduceByKey or aggregateByKey will 
yield much better performance. 
Note: By default, the level of parallelism in the output depends on the 
number of partitions of the parent RDD. You can pass an 
optional numPartitions argument to set a different number of tasks. 
reduceByKey(func, 
[numPartitions]) 
When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs 
where the values for each key are aggregated using the given reduce 
function func, which must be of type (V,V) => V. Like in groupByKey, the 
number of reduce tasks is configurable through an optional second 
argument. 
sortByKey([ascending], 
[numPartitions]) 
When called on a dataset of (K, V) pairs where K implements Ordered, 
returns a dataset of (K, V) pairs sorted by keys in ascending or descending 
order, as specified in the boolean ascending argument. 
join(otherDataset, 
[numPartitions]) 
When called on datasets of type (K, V) and (K, W), returns a dataset of (K, 
(V, W)) pairs with all pairs of elements for each key. Outer joins are 
supported through leftOuterJoin, rightOuterJoin, and fullOuterJoin. 
 
 Actions: 
Action Meaning 
reduce(func) Aggregate the elements of the dataset using a function func (which takes 
two arguments and returns one). The function should be commutative 
and associative so that it can be computed correctly in parallel. 
collect() Return all the elements of the dataset as an array at the driver program. 
This is usually useful after a filter or other operation that returns a 
sufficiently small subset of the data. 
count() Return the number of elements in the dataset. 
first() Return the first element of the dataset (similar to take(1)). 
take(n) Return an array with the first n elements of the dataset. 
countByKey() Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs 
with the count of each key. 
foreach(func) Run a function func on each element of the dataset. This is usually done 
for side effects such as updating an Accumulator or interacting with 
external storage systems. 
Note: modifying variables other than Accumulators outside of 
the foreach() may result in undefined behavior. See Understanding 
closures for more details. 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫comp2022、代做c/c++,Python程序設計
  • 下一篇:代做320SC編程、代寫Python設計程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲一二三级电影| 久久久九九九九| 精品国产91洋老外米糕| 五月综合激情网| 久久一留热品黄| 91亚洲精品乱码久久久久久蜜桃| 综合自拍亚洲综合图不卡区| 91色.com| 国产在线不卡一区| 亚洲欧美日韩久久| 五月综合激情网| 久久精品亚洲乱码伦伦中文| 成人综合激情网| 亚洲国产另类av| 日韩免费在线观看| 丁香网亚洲国际| 一区二区三区欧美亚洲| 日韩欧美色电影| 91首页免费视频| 免费在线观看精品| 亚洲视频每日更新| 欧美mv日韩mv国产网站| av在线播放一区二区三区| 日韩av电影天堂| 国产亚洲自拍一区| 欧美色精品在线视频| 久久99九九99精品| 亚洲一区二区黄色| 精品国产乱码久久久久久影片| 一本一本大道香蕉久在线精品 | 一本到三区不卡视频| 婷婷久久综合九色综合绿巨人 | 成人午夜视频在线观看| 亚洲国产精品影院| 国产精品灌醉下药二区| 久久青草国产手机看片福利盒子 | 色综合视频在线观看| 久草精品在线观看| 蜜桃视频免费观看一区| 日韩在线一区二区三区| 亚洲图片欧美色图| 亚洲午夜一区二区三区| 一区二区三区在线免费播放| 中文字幕高清一区| 精品电影一区二区三区| wwww国产精品欧美| 欧美哺乳videos| 日韩欧美色电影| 欧美一区二区三区男人的天堂| 欧美日韩你懂的| 在线不卡免费欧美| 制服视频三区第一页精品| 色系网站成人免费| 色哟哟欧美精品| 欧美亚洲高清一区二区三区不卡| 91影院在线观看| 91国产免费观看| 欧美一区二区福利视频| 亚洲精品一区二区三区香蕉 | 一级精品视频在线观看宜春院| 国产欧美日韩综合精品一区二区| 国产亚洲欧美日韩在线一区| 精品国产3级a| 国产精品超碰97尤物18| 一级精品视频在线观看宜春院 | 欧美特级限制片免费在线观看| 不卡电影免费在线播放一区| 成人av资源网站| 91黄视频在线| 91精品国产91久久久久久一区二区| 日韩免费性生活视频播放| 久久日一线二线三线suv| 亚洲国产精品成人综合色在线婷婷| 自拍偷拍国产亚洲| 日本亚洲免费观看| 成人中文字幕在线| 欧美日韩高清影院| 2023国产精华国产精品| 成人欧美一区二区三区黑人麻豆| 亚洲午夜视频在线观看| 国产99久久久国产精品潘金网站| 欧美亚洲日本一区| 欧美激情一区三区| 免费高清在线视频一区·| 成人免费电影视频| 日韩一级精品视频在线观看| 国产精品福利一区二区三区| 亚洲精品视频在线观看网站| 1024成人网| 久久99国产精品久久| www.日韩在线| 久久一日本道色综合| 一区二区三区高清| 成人免费av资源| 精品乱码亚洲一区二区不卡| 亚洲国产美女搞黄色| 成人一区在线观看| 精品国产一区二区国模嫣然| 丝袜美腿亚洲综合| 91国在线观看| 国产精品久久久久久久久动漫| 精品一区二区三区免费| 欧美日韩亚州综合| 一区二区三区日韩精品视频| 成人精品gif动图一区| 日韩三级电影网址| 亚洲成人av一区二区| 99久久99精品久久久久久| 久久午夜国产精品| 久草中文综合在线| 欧美zozo另类异族| 精一区二区三区| 欧美一区二区三区在线电影| 亚洲国产精品自拍| 日本电影亚洲天堂一区| 亚洲视频一区二区免费在线观看 | 成人激情黄色小说| 久久精品一区二区三区不卡牛牛| 久草这里只有精品视频| 欧美xxxx在线观看| 激情伊人五月天久久综合| 日韩欧美另类在线| 国产一区二区导航在线播放| 久久亚洲综合色一区二区三区| 精品一区二区三区免费观看| 日韩色视频在线观看| 人人超碰91尤物精品国产| 日韩欧美一级在线播放| 久久99久久久久| 久久久久久久精| 不卡欧美aaaaa| 一区二区三区在线观看视频| 欧美视频精品在线观看| 日本最新不卡在线| 久久久综合网站| 成人免费av网站| 亚洲国产毛片aaaaa无费看 | 欧美tickling网站挠脚心| 理论片日本一区| 国产婷婷色一区二区三区在线| 成人av网址在线观看| 亚洲与欧洲av电影| 欧美www视频| 99国产精品视频免费观看| 亚洲v中文字幕| 久久精品一区二区| 在线中文字幕一区二区| 蜜桃视频在线观看一区二区| 国产亚洲综合性久久久影院| 色综合久久久久综合99| 秋霞av亚洲一区二区三| 久久免费偷拍视频| 91亚洲午夜精品久久久久久| 日本中文字幕一区| 亚洲特黄一级片| 欧美va亚洲va香蕉在线| 91在线国内视频| 看国产成人h片视频| 亚洲码国产岛国毛片在线| 精品国产一区二区三区不卡| 在线视频你懂得一区二区三区| 亚洲一区在线观看网站| 国产视频一区在线播放| 欧美日韩激情一区二区| 国产成+人+日韩+欧美+亚洲| 日韩有码一区二区三区| 国产精品免费视频网站| 欧美电影免费观看高清完整版在线观看| 成人黄色一级视频| 九色综合狠狠综合久久| 日韩中文字幕1| 亚洲一区二区欧美| 亚洲欧美自拍偷拍| 337p日本欧洲亚洲大胆精品 | 精品视频一区三区九区| 成人av在线一区二区三区| 韩国v欧美v日本v亚洲v| 午夜日韩在线电影| 亚洲男人天堂av网| 国产精品久久三| 欧美不卡视频一区| 69久久99精品久久久久婷婷| 一本在线高清不卡dvd| 国产盗摄视频一区二区三区| 久久精品国产秦先生| 午夜精品福利视频网站| 亚洲一区二区三区在线看| 亚洲免费色视频| 亚洲精品视频一区| 亚洲精品网站在线观看| 成人欧美一区二区三区视频网页| 久久久久久亚洲综合影院红桃| 日韩视频免费观看高清在线视频| 欧美日韩日本视频| 欧美日本一区二区三区四区 | 欧美日本一区二区三区四区| 日本久久一区二区三区| 91麻豆精品在线观看| 亚洲欧洲另类国产综合| 视频一区二区中文字幕|