合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        代寫INFS3208、代做Python語言編程
        代寫INFS3208、代做Python語言編程

        時間:2024-10-11  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



        School of Information Technology and Electrical Engineering 
        INFS**08 – Cloud Computing 
        Programming Assignment Task III (10 Marks) 
        Task description: 
        In this assignment, you are asked to write a piece of Spark code to count occurrences of verbs in the 
        UN debates and find the most similar debate contents. The returned result should be the top 10 
        verbs that are most frequently used in all debates and the debate that is most similar to the one 
        we provide. This assignment is to test your ability to use transformation and action operations in Spark 
        RDD programming and your understanding of Vector Database. You will be given three files, 
        including a UN General Debates dataset (un-general-debates.csv), a verb list (all_verbs.txt) 
        and a verb dictionary file (verb_dict.txt). These source files are expected to be stored in a HDFS. 
        You can choose either Scala or Python to complete this assignment in the Jupyter Notebook. There are 
        some technical requirements in your code submission as follows: 
         
        Objectives: 
        1. Read Source Files from HDFS and Create RDDs (1.5 marks): 
        • Read the UN General Debates dataset (un-general-debates.csv) from HDFS and 
        convert only the “text” column into an RDD. Details of un-general-debates.csv are 
        provided in the Preparation section below (1 mark). 
        • Read the verb list file (all_verbs.txt) and verb dictionary file (verb_dict.txt) from 
        HDFS and load them into separate RDDs (0.5 marks). 
        • Note: If you failed to read files from HDFS, you can still read them from the local file 
        system in work/nbs/ and complete the following tasks. 
        2. Use Learned RDD Operations to Preprocess the Debate Texts (3 marks): 
        • Remove empty lines (0.5 marks). 
        • Remove punctuations that could attach to the verbs (0.5 marks). 
        o E.g., “work,” and “work” will be counted differently, if you DO NOT remove the 
        punctuation. 
        • Change the capitalization or case of text (0.5 marks). 
        o E.g., “WORK”, “Work” and “work” will be counted as three different verbs, if you 
        DO NOT make all of them in lower-case. 
        • Find all verbs in the RDD by matching the words in the given verb list (all_verbs.txt) 
        (0.5 mark). 
        • Convert all verbs in different tenses into the simple present tense by looking up the 
        verbs in the verb dictionary list (verb_dict.txt) (1 mark). 
        o E.g., regular verb: “work” - works”, “worked”, and “working”. 
        o E.g., irregular verb: “begin” - “begins”, “began”, and “begun”. o E.g., linking verb “be” and its various forms, including “is”, “am”, “are”, “was”, 
        “were”, “being” and “been”. 
        o E.g., (work, 100), (works,50), (working,150) should be counted as (work, 300). 
        3. Use learned RDD Operations to Count Verb Frequency (3 marks): 
        • Count the top 10 frequently used verbs in UN debates (2 marks). 
        • Display the results in the format (“verb1”, count1), (“verb2”, count2), … and in a 
        descending order of the counts (1 marks). 
        4. Use Vector Database (Faiss) to Find the Most Similar Debate (2.5 marks): 
        • Convert the original debates into vectors and store them in a proper Index (1.5 mark). 
        • Search the debate content that has the most similar idea to “Global climate change is 
        both a serious threat to our planet and survival.” (1 mark) 
         
         
        Preparation: 
        In this individual coding assignment, you will apply your knowledge of Vector Database, Spark, Spark 
        RDD Programming and HDFS (in Lectures 7-10). Firstly, you should read Task Description to 
        understand what the task is and what the technical requirements include. Secondly, you should review 
        the creation and usage of Faiss, transformations and actions in Spark, and usage of HDFS in Lectures 
        and Practicals 7-10. In the Appendix, there are some transformation and action operations you could 
        use in this assignment. Lastly, you need to write the code (Scala or Python) in the Jupyter Notebook. 
        All technical requirements need to be fully met to achieve full marks. You can either practise on 
        the GCP’s VM or your local machine with Oracle Virtualbox if you are unable to access GCP. Please 
        read the Example of writing Spark code below to have more details. 
         
         
        Assignment Submission: 
         You need to compress only the Jupyter Notebook (.ipynb) file. 
         The name of the compressed file should be named “FirstName_LastName_StudentNo.zip”. 
         You must make an online submission to Blackboard before 3:00 PM on Friday, 11/10/2024 
         Only one extension application could be approved due to medical conditions. 
         
         
        Main Steps: 
        Step 1: 
        Log in your VM instance and change to your home directory. We recommend using a VM instance 
        with at least 4 vCPUs, 8G memory and 20GB free disk space. 
         
        Step 2: 
        git clone https://github.com/csenw/cca3.git && cd cca3 
        Run these commands to download the required docker-compose.yml file and configuration files. Step 3: 
        sudo chmod -R 777 nbs/ 
        docker-compose up -d 
        Run all the containers using docker-compose 
         
         
         
        Step 4: 
        Open the Jupyter Notebook (http://external_IP:8888) and you can find all the files under the 
        work/nbs/ folder. This is also the folder where you should write the notebook (.ipynb) file. 
         
         Step 5: 
        docker ps 
        docker exec <container_id> hdfs dfs -put /home/nbs/all_verbs.txt /all_verbs.txt 
        docker exec <container_id> hdfs dfs -put /home/nbs/verb_dict.txt /verb_dict.txt 
        docker exec <container_id> hdfs dfs -put /home/nbs/un-general-debates.csv /ungeneral-debates.csv

        Run the above commands to put the three source files into HDFS. Substitute <container_id> with 
        your namenode container ID. After that, you should see the three files from HDFS web interface at 
        http://external_IP/explorer.html 
         
         
        Step 6: 
        The un-general-debates.csv is a dataset that includes the text of each country’s statement from 
        the general debate, separated by “country”, “session”, “year” and “text”. This dataset includes over 
        forty years of data from different countries, which allows for the exploration of differences between 
        countries and over time [1,2]. It is organized in the following format: 
         
        In this assignment, we only consider the “text” column. 
        The verb_dict.txt file contains different tenses of each verb, separated by commas. The first word 
        is the simple present tense of the verb. 
         The all_verbs.txt file contains all the verbs. 
         
         
        Step 7: 
        Create a Jupyter Notebook to complete the programming objectives. 
        We provide some intermediate output samples below. Please note that these outputs are NOT answers 
        and may vary from your outputs due to different implementations and different Spark behaviours. 
        • Intermediate output sample 1, take only verbs: 
         
         
        • Intermediate output sample 2, top 10 verb counts (without converting verb tenses): 
         
         • Intermediate output sample 3, most similar debate: 
         
        You are free to use your own implementation. However, your result should reasonably reflect the top 
        10 verbs that are most frequently used in UN debates, and the most similar debate contents to the 
        sentence “Global climate change is both a serious threat to our planet and survival.” 
         
         
        Reference: 
        [1] UN General Debates, https://www.kaggle.com/datasets/unitednations/un-general-debates. 
        [2] Alexander Baturo, Niheer Dasandi, and Slava Mikhaylov, "Understanding State Preferences With 
        Text As Data: Introducing the UN General Debate Corpus". Research & Politics, 2017. 
         
         Appendix: 
        Transformations: 
        Transformation Meaning 
        map(func) Return a new distributed dataset formed by passing each element of the 
        source through a function func. 
        filter(func) Return a new dataset formed by selecting those elements of the source on 
        which funcreturns true. 
        flatMap(func) Similar to map, but each input item can be mapped to 0 or more output 
        items (so funcshould return a Seq rather than a single item). 
        union(otherDataset) Return a new dataset that contains the union of the elements in the source 
        dataset and the argument. 
        intersection(otherDataset) Return a new RDD that contains the intersection of elements in the source 
        dataset and the argument. 
        distinct([numPartitions])) Return a new dataset that contains the distinct elements of the source 
        dataset. 
        groupByKey([numPartitions]) When called on a dataset of (K, V) pairs, returns a dataset of (K, 
        Iterable<V>) pairs. 
        Note: If you are grouping in order to perform an aggregation (such as a 
        sum or average) over each key, using reduceByKey or aggregateByKey will 
        yield much better performance. 
        Note: By default, the level of parallelism in the output depends on the 
        number of partitions of the parent RDD. You can pass an 
        optional numPartitions argument to set a different number of tasks. 
        reduceByKey(func, 
        [numPartitions]) 
        When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs 
        where the values for each key are aggregated using the given reduce 
        function func, which must be of type (V,V) => V. Like in groupByKey, the 
        number of reduce tasks is configurable through an optional second 
        argument. 
        sortByKey([ascending], 
        [numPartitions]) 
        When called on a dataset of (K, V) pairs where K implements Ordered, 
        returns a dataset of (K, V) pairs sorted by keys in ascending or descending 
        order, as specified in the boolean ascending argument. 
        join(otherDataset, 
        [numPartitions]) 
        When called on datasets of type (K, V) and (K, W), returns a dataset of (K, 
        (V, W)) pairs with all pairs of elements for each key. Outer joins are 
        supported through leftOuterJoin, rightOuterJoin, and fullOuterJoin. 
         
         Actions: 
        Action Meaning 
        reduce(func) Aggregate the elements of the dataset using a function func (which takes 
        two arguments and returns one). The function should be commutative 
        and associative so that it can be computed correctly in parallel. 
        collect() Return all the elements of the dataset as an array at the driver program. 
        This is usually useful after a filter or other operation that returns a 
        sufficiently small subset of the data. 
        count() Return the number of elements in the dataset. 
        first() Return the first element of the dataset (similar to take(1)). 
        take(n) Return an array with the first n elements of the dataset. 
        countByKey() Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs 
        with the count of each key. 
        foreach(func) Run a function func on each element of the dataset. This is usually done 
        for side effects such as updating an Accumulator or interacting with 
        external storage systems. 
        Note: modifying variables other than Accumulators outside of 
        the foreach() may result in undefined behavior. See Understanding 
        closures for more details. 
         
        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機打開當(dāng)前頁
      1. 上一篇:代寫comp2022、代做c/c++,Python程序設(shè)計
      2. 下一篇:代做320SC編程、代寫Python設(shè)計程序
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發(fā)動機性能
        挖掘機濾芯提升發(fā)動機性能
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時官網(wǎng)400(全國服務(wù)熱線)
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時官網(wǎng)
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話24小時服務(wù)熱線
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話2
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時客服熱線
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 短信驗證碼 酒店vi設(shè)計 投資移民

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 国产无码一区二区在线| 亚洲AV成人精品日韩一区| 激情亚洲一区国产精品| 色窝窝无码一区二区三区色欲| 国产成人精品一区二区三区免费 | 久久久国产一区二区三区| 三上悠亚亚洲一区高清| 亚洲日本精品一区二区| 无码人妻aⅴ一区二区三区有奶水| 国产一区二区三区露脸| 伊人久久精品无码av一区| 亚洲Av高清一区二区三区| 影院成人区精品一区二区婷婷丽春院影视 | 亚洲AV成人精品一区二区三区| 国产一区二区三区内射高清| 亚洲老妈激情一区二区三区| 亚洲一区欧洲一区| 国产精品被窝福利一区 | 无码视频一区二区三区在线观看 | 亚洲一区日韩高清中文字幕亚洲| 国产亚洲一区二区三区在线观看| 日韩一区二区三区四区不卡| 国产福利电影一区二区三区,亚洲国模精品一区 | 国产精品免费一区二区三区| 日本伊人精品一区二区三区| 精品免费AV一区二区三区| 无码囯产精品一区二区免费| 国产伦精品一区二区三区免费下载 | 人妻免费一区二区三区最新| 中文字幕精品一区二区2021年| 精品国产免费一区二区三区| 大香伊人久久精品一区二区| 中文字幕无码免费久久9一区9| 中文字幕在线不卡一区二区| 成人午夜视频精品一区| 相泽南亚洲一区二区在线播放| 久久久精品人妻一区二区三区 | 国产一区视频在线| 无码日韩AV一区二区三区| 91video国产一区| 国模精品一区二区三区|