99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫INFS3208、代做Python語言編程
代寫INFS3208、代做Python語言編程

時間:2024-10-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



School of Information Technology and Electrical Engineering 
INFS**08 – Cloud Computing 
Programming Assignment Task III (10 Marks) 
Task description: 
In this assignment, you are asked to write a piece of Spark code to count occurrences of verbs in the 
UN debates and find the most similar debate contents. The returned result should be the top 10 
verbs that are most frequently used in all debates and the debate that is most similar to the one 
we provide. This assignment is to test your ability to use transformation and action operations in Spark 
RDD programming and your understanding of Vector Database. You will be given three files, 
including a UN General Debates dataset (un-general-debates.csv), a verb list (all_verbs.txt) 
and a verb dictionary file (verb_dict.txt). These source files are expected to be stored in a HDFS. 
You can choose either Scala or Python to complete this assignment in the Jupyter Notebook. There are 
some technical requirements in your code submission as follows: 
 
Objectives: 
1. Read Source Files from HDFS and Create RDDs (1.5 marks): 
• Read the UN General Debates dataset (un-general-debates.csv) from HDFS and 
convert only the “text” column into an RDD. Details of un-general-debates.csv are 
provided in the Preparation section below (1 mark). 
• Read the verb list file (all_verbs.txt) and verb dictionary file (verb_dict.txt) from 
HDFS and load them into separate RDDs (0.5 marks). 
• Note: If you failed to read files from HDFS, you can still read them from the local file 
system in work/nbs/ and complete the following tasks. 
2. Use Learned RDD Operations to Preprocess the Debate Texts (3 marks): 
• Remove empty lines (0.5 marks). 
• Remove punctuations that could attach to the verbs (0.5 marks). 
o E.g., “work,” and “work” will be counted differently, if you DO NOT remove the 
punctuation. 
• Change the capitalization or case of text (0.5 marks). 
o E.g., “WORK”, “Work” and “work” will be counted as three different verbs, if you 
DO NOT make all of them in lower-case. 
• Find all verbs in the RDD by matching the words in the given verb list (all_verbs.txt) 
(0.5 mark). 
• Convert all verbs in different tenses into the simple present tense by looking up the 
verbs in the verb dictionary list (verb_dict.txt) (1 mark). 
o E.g., regular verb: “work” - works”, “worked”, and “working”. 
o E.g., irregular verb: “begin” - “begins”, “began”, and “begun”. o E.g., linking verb “be” and its various forms, including “is”, “am”, “are”, “was”, 
“were”, “being” and “been”. 
o E.g., (work, 100), (works,50), (working,150) should be counted as (work, 300). 
3. Use learned RDD Operations to Count Verb Frequency (3 marks): 
• Count the top 10 frequently used verbs in UN debates (2 marks). 
• Display the results in the format (“verb1”, count1), (“verb2”, count2), … and in a 
descending order of the counts (1 marks). 
4. Use Vector Database (Faiss) to Find the Most Similar Debate (2.5 marks): 
• Convert the original debates into vectors and store them in a proper Index (1.5 mark). 
• Search the debate content that has the most similar idea to “Global climate change is 
both a serious threat to our planet and survival.” (1 mark) 
 
 
Preparation: 
In this individual coding assignment, you will apply your knowledge of Vector Database, Spark, Spark 
RDD Programming and HDFS (in Lectures 7-10). Firstly, you should read Task Description to 
understand what the task is and what the technical requirements include. Secondly, you should review 
the creation and usage of Faiss, transformations and actions in Spark, and usage of HDFS in Lectures 
and Practicals 7-10. In the Appendix, there are some transformation and action operations you could 
use in this assignment. Lastly, you need to write the code (Scala or Python) in the Jupyter Notebook. 
All technical requirements need to be fully met to achieve full marks. You can either practise on 
the GCP’s VM or your local machine with Oracle Virtualbox if you are unable to access GCP. Please 
read the Example of writing Spark code below to have more details. 
 
 
Assignment Submission: 
 You need to compress only the Jupyter Notebook (.ipynb) file. 
 The name of the compressed file should be named “FirstName_LastName_StudentNo.zip”. 
 You must make an online submission to Blackboard before 3:00 PM on Friday, 11/10/2024 
 Only one extension application could be approved due to medical conditions. 
 
 
Main Steps: 
Step 1: 
Log in your VM instance and change to your home directory. We recommend using a VM instance 
with at least 4 vCPUs, 8G memory and 20GB free disk space. 
 
Step 2: 
git clone https://github.com/csenw/cca3.git && cd cca3 
Run these commands to download the required docker-compose.yml file and configuration files. Step 3: 
sudo chmod -R 777 nbs/ 
docker-compose up -d 
Run all the containers using docker-compose 
 
 
 
Step 4: 
Open the Jupyter Notebook (http://external_IP:8888) and you can find all the files under the 
work/nbs/ folder. This is also the folder where you should write the notebook (.ipynb) file. 
 
 Step 5: 
docker ps 
docker exec <container_id> hdfs dfs -put /home/nbs/all_verbs.txt /all_verbs.txt 
docker exec <container_id> hdfs dfs -put /home/nbs/verb_dict.txt /verb_dict.txt 
docker exec <container_id> hdfs dfs -put /home/nbs/un-general-debates.csv /ungeneral-debates.csv

Run the above commands to put the three source files into HDFS. Substitute <container_id> with 
your namenode container ID. After that, you should see the three files from HDFS web interface at 
http://external_IP/explorer.html 
 
 
Step 6: 
The un-general-debates.csv is a dataset that includes the text of each country’s statement from 
the general debate, separated by “country”, “session”, “year” and “text”. This dataset includes over 
forty years of data from different countries, which allows for the exploration of differences between 
countries and over time [1,2]. It is organized in the following format: 
 
In this assignment, we only consider the “text” column. 
The verb_dict.txt file contains different tenses of each verb, separated by commas. The first word 
is the simple present tense of the verb. 
 The all_verbs.txt file contains all the verbs. 
 
 
Step 7: 
Create a Jupyter Notebook to complete the programming objectives. 
We provide some intermediate output samples below. Please note that these outputs are NOT answers 
and may vary from your outputs due to different implementations and different Spark behaviours. 
• Intermediate output sample 1, take only verbs: 
 
 
• Intermediate output sample 2, top 10 verb counts (without converting verb tenses): 
 
 • Intermediate output sample 3, most similar debate: 
 
You are free to use your own implementation. However, your result should reasonably reflect the top 
10 verbs that are most frequently used in UN debates, and the most similar debate contents to the 
sentence “Global climate change is both a serious threat to our planet and survival.” 
 
 
Reference: 
[1] UN General Debates, https://www.kaggle.com/datasets/unitednations/un-general-debates. 
[2] Alexander Baturo, Niheer Dasandi, and Slava Mikhaylov, "Understanding State Preferences With 
Text As Data: Introducing the UN General Debate Corpus". Research & Politics, 2017. 
 
 Appendix: 
Transformations: 
Transformation Meaning 
map(func) Return a new distributed dataset formed by passing each element of the 
source through a function func. 
filter(func) Return a new dataset formed by selecting those elements of the source on 
which funcreturns true. 
flatMap(func) Similar to map, but each input item can be mapped to 0 or more output 
items (so funcshould return a Seq rather than a single item). 
union(otherDataset) Return a new dataset that contains the union of the elements in the source 
dataset and the argument. 
intersection(otherDataset) Return a new RDD that contains the intersection of elements in the source 
dataset and the argument. 
distinct([numPartitions])) Return a new dataset that contains the distinct elements of the source 
dataset. 
groupByKey([numPartitions]) When called on a dataset of (K, V) pairs, returns a dataset of (K, 
Iterable<V>) pairs. 
Note: If you are grouping in order to perform an aggregation (such as a 
sum or average) over each key, using reduceByKey or aggregateByKey will 
yield much better performance. 
Note: By default, the level of parallelism in the output depends on the 
number of partitions of the parent RDD. You can pass an 
optional numPartitions argument to set a different number of tasks. 
reduceByKey(func, 
[numPartitions]) 
When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs 
where the values for each key are aggregated using the given reduce 
function func, which must be of type (V,V) => V. Like in groupByKey, the 
number of reduce tasks is configurable through an optional second 
argument. 
sortByKey([ascending], 
[numPartitions]) 
When called on a dataset of (K, V) pairs where K implements Ordered, 
returns a dataset of (K, V) pairs sorted by keys in ascending or descending 
order, as specified in the boolean ascending argument. 
join(otherDataset, 
[numPartitions]) 
When called on datasets of type (K, V) and (K, W), returns a dataset of (K, 
(V, W)) pairs with all pairs of elements for each key. Outer joins are 
supported through leftOuterJoin, rightOuterJoin, and fullOuterJoin. 
 
 Actions: 
Action Meaning 
reduce(func) Aggregate the elements of the dataset using a function func (which takes 
two arguments and returns one). The function should be commutative 
and associative so that it can be computed correctly in parallel. 
collect() Return all the elements of the dataset as an array at the driver program. 
This is usually useful after a filter or other operation that returns a 
sufficiently small subset of the data. 
count() Return the number of elements in the dataset. 
first() Return the first element of the dataset (similar to take(1)). 
take(n) Return an array with the first n elements of the dataset. 
countByKey() Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs 
with the count of each key. 
foreach(func) Run a function func on each element of the dataset. This is usually done 
for side effects such as updating an Accumulator or interacting with 
external storage systems. 
Note: modifying variables other than Accumulators outside of 
the foreach() may result in undefined behavior. See Understanding 
closures for more details. 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫comp2022、代做c/c++,Python程序設計
  • 下一篇:代做320SC編程、代寫Python設計程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          免费不卡视频| 亚洲在线观看| 国产精品爽黄69| 欧美电影免费观看网站| 亚洲摸下面视频| 一区二区av| 亚洲激情成人网| 黄色影院成人| 国产一区二区三区日韩| 国产精品视频精品| 欧美伦理在线观看| 老巨人导航500精品| 久久成人18免费网站| 亚洲欧美日韩另类精品一区二区三区| 亚洲精品一区二区三区av| 激情成人综合| 在线观看福利一区| 国内视频精品| 狠狠色综合色区| 黄网站免费久久| 国产亚洲午夜高清国产拍精品| 国产精品普通话对白| 国产精品美女久久久久久久| 欧美日韩一区二区免费在线观看| 欧美激情国产日韩| 欧美日韩国产在线看| 欧美日韩国产三区| 欧美天堂亚洲电影院在线观看 | 亚洲九九精品| 日韩视频欧美视频| 一本久久知道综合久久| 夜夜爽夜夜爽精品视频| 中文有码久久| 午夜免费在线观看精品视频| 亚洲欧美大片| 久久久久九九九| 美国成人直播| 欧美日本国产| 国产精品视频导航| 国产夜色精品一区二区av| 玉米视频成人免费看| 亚洲黄色在线视频| 亚洲视频你懂的| 欧美一站二站| 欧美极品色图| 国产欧美日韩综合一区在线观看 | 久久久精品国产99久久精品芒果| 欧美在线观看网站| 久久躁狠狠躁夜夜爽| 欧美大成色www永久网站婷| 欧美日韩一区在线| 国产亚洲综合在线| 亚洲另类自拍| 欧美在线视频一区二区| 欧美成va人片在线观看| 欧美无乱码久久久免费午夜一区 | 久久艳片www.17c.com| 欧美精品九九99久久| 国产精品无码专区在线观看| 亚洲成色最大综合在线| 亚洲影院污污.| 欧美大胆成人| 国产在线观看91精品一区| 亚洲日本无吗高清不卡| 久久狠狠亚洲综合| 欧美亚男人的天堂| 亚洲欧洲精品一区| 久久精品99无色码中文字幕| 欧美日韩视频在线第一区| 国产一区二区三区在线观看免费视频 | 麻豆九一精品爱看视频在线观看免费| 欧美日韩人人澡狠狠躁视频| 精品不卡视频| 欧美亚洲日本网站| 欧美视频亚洲视频| 亚洲精品少妇| 久久一区视频| 精品99一区二区三区| 欧美一区网站| 国产精品人人爽人人做我的可爱| 亚洲老板91色精品久久| 欧美福利视频网站| 亚洲国产成人午夜在线一区| 久久精品久久99精品久久| 国产精品区一区二区三区| av成人免费观看| 欧美日韩高清在线一区| 亚洲精品视频在线播放| 欧美激情综合网| 亚洲激精日韩激精欧美精品| 欧美大片专区| 日韩午夜剧场| 欧美日韩国产一区| 夜夜嗨av一区二区三区中文字幕 | 久久精品女人的天堂av| 国产亚洲成年网址在线观看| 亚洲欧美怡红院| 国产午夜精品一区二区三区欧美 | 亚洲国产高清一区| 欧美成人精品1314www| 亚洲肉体裸体xxxx137| 欧美久久成人| 亚洲一区二区三区四区在线观看 | 9色精品在线| 欧美视频一区二区三区| 亚洲欧美日韩在线高清直播| 国产欧美一区二区三区沐欲| 久久久久久久尹人综合网亚洲| 国产综合色精品一区二区三区| 久久午夜色播影院免费高清| 亚洲国产欧美在线| 欧美日韩精品国产| 亚洲欧美一区二区在线观看| 国产免费亚洲高清| 久久中文字幕导航| 99天天综合性| 国产拍揄自揄精品视频麻豆| 老司机成人在线视频| 一区二区高清在线| 国产色综合久久| 免费视频亚洲| 亚洲男女自偷自拍图片另类| 一区二区三区在线观看视频| 欧美精品一区在线发布| 亚洲欧美成人一区二区三区| 在线播放精品| 国产精品久久久久久久9999| 久久久久在线| 亚洲亚洲精品三区日韩精品在线视频| 狠狠久久综合婷婷不卡| 欧美日韩亚洲视频一区| 久久久不卡网国产精品一区| 亚洲精品影视在线观看| 国产一区二区久久精品| 欧美日韩成人在线| 久久岛国电影| 亚洲一区二区av电影| 亚洲福利久久| 韩日成人在线| 国产精品日韩一区| 欧美精品国产精品| 久久青青草原一区二区| 亚洲欧美日韩国产综合精品二区 | 欧美日本中文| 久久免费视频观看| 欧美一区二区三区四区在线观看地址 | 久久精品视频va| 亚洲欧美一区二区激情| 日韩视频一区二区在线观看 | 免费看的黄色欧美网站| 欧美一区日韩一区| 亚洲一区三区电影在线观看| 91久久精品国产91性色tv| 国产在线高清精品| 国产免费成人| 国产视频在线观看一区| 国产精品免费网站| 国产精品大片wwwwww| 欧美日韩亚洲网| 欧美日韩在线观看一区二区| 欧美激情免费观看| 欧美黑人在线播放| 欧美另类在线观看| 欧美日韩高清在线| 欧美精品一区在线观看| 欧美激情四色 | 国产日本欧美一区二区| 国产精品毛片在线看| 欧美婷婷在线| 国产精品自拍三区| 国产亚洲视频在线| 一区二区视频在线观看| 亚洲欧洲视频在线| 99精品国产高清一区二区| 一本色道久久99精品综合| 亚洲视频免费在线观看| 亚洲综合电影| 久久九九全国免费精品观看| 另类av导航| 欧美精品尤物在线| 国产精品日韩精品欧美精品| 国产精品一区二区你懂得| 狠狠色狠色综合曰曰| 最新中文字幕一区二区三区| 9色精品在线| 亚洲欧美中文日韩v在线观看| 久久久久久久久久久久久女国产乱| 久久一区二区三区四区| 欧美日本韩国一区| 国产日韩成人精品| 亚洲片在线观看| 亚洲欧美成aⅴ人在线观看| 久久久久久夜| 欧美色图首页| 亚洲丶国产丶欧美一区二区三区| 一卡二卡3卡四卡高清精品视频| 欧美一级视频| 欧美日本乱大交xxxxx| 国产亚洲毛片在线| 一区二区三区成人|