合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代做CS 839、代寫python/Java設計編程
        代做CS 839、代寫python/Java設計編程

        時間:2024-10-05  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        CS 839: FOUNDATION MODELS HOMEWORK 1
        Instructions: Read the two problems below. Type up your results and include your plots in LaTeX. Submit your answers in two weeks (i.e., Oct. 3 2024, end of day). You will need a machine for this assignment, but a laptop (even without GPU) should still work. You may also need an OpenAI account to use ChatGPT, but a free account should work.
        1. NanoGPT Experiments. We will experiment with a few aspects of GPT training. While this normally requires significant resources, we will use a mini-implementation that can be made to run (for the character level) on any laptop. If you have a GPU on your machine (or access to one), even better, but no resources are strictly required.
        • 1. Clone Karpathy’s nanoGPT repo (https://github.com/karpathy/nanoGPT). We will use this repo for all the experiments in this problem. Read and get acquainted with the README.
        • 2. Setup and Reproduction. Run the Shakespeare character-level GPT model. Start by running the prep code, then a basic run with the default settings. Note that you will use a different command line if you have a GPU versus a non-GPU. After completing training, produce samples. In your answer, include the first two lines you’ve generated.
        • 3. Hyperparameter Experimentation. Modify the number of layers and heads, but do not take more than 10 minutes per run. What is the lowest loss you can obtain? What settings produce it on your machine?
        • 4. Evaluation Metrics. Implement a specific and a general evaluation metric. You can pick any that you would like, but with the following goals: Your specific metric is meant to capture how close your generated data distribution is to the training distribution. Your general metric need not necessarily do this and should be applicable without comparing against the training dataset. Explain your choices and report your metrics on the settings above.
        • 5.Dataset.Obtainyourfavoritetextdataset.Thismightbecollecteddatabyawriter(butnotShakespeare!), text in a different language, or whatever you would prefer. Scrape and format this data. Train nanoGPT on your new data. Vary the amount of characters of your dataset. Draw a plot on number of training characters versus your metrics from the previous part. How much data do you need to produce a reasonable score according to your metrics?
        • 6. Fine-tuning. Fine-tune the trained Shakespeare model on the dataset you built above. How much data and training do you need to go from Shakesperean output to something that resembles your dataset?
        2. Prompting. We will attempt to see how ChatGPT can cope with challenging questions.
        • 1. Zero-shot vs. Few-shot. Find an example of a prompt that ChatGPT cannot answer in a zero-shot manner,
        but can with a few-shot approach.
        • 2. Ensembling and Majority Vote. Use a zero-shot question and vary the temperature parameter to obtain multiple samples. How many samples are required before majority vote recovers the correct answer?
        • 3. Rot13. In this problem our goal is to use Rot13 encoding and ‘teach’ ChatGPT how to apply it. You can use rot13.com to quickly encode and decode. Also read about it at https://en.wikipedia.org/wiki/ROT13. Our goal is to ask questions like
        but encoded with Rot13, i.e.,
        What is the capital of France?, Jung vf gur pncvgny bs Senapr?,
        1

        Homework 1 CS 839: Foundation Models
         – What do you obtain if you ask a question like this zero-shot? Note: you may need to decode back. – What do you obtain with a few-shot variant?
        – Provide the model with additional instructions. What can you obtain?
        – Find a strategy to ultimately produce the correct answer to an encoded geographic (or other) question like this one.
        2

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







         

        掃一掃在手機打開當前頁
      1. 上一篇:CPSC 219代做、代寫Java語言設計
      2. 下一篇:UMEECS542代做、代寫Java/c++編程語言
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 爱爱帝国亚洲一区二区三区| 亚洲一区二区三区在线观看精品中文| 日韩一区二区三区不卡视频| 狠狠爱无码一区二区三区| 国产福利精品一区二区| 一区二区高清在线| 大香伊人久久精品一区二区| 高清国产AV一区二区三区| 亚洲A∨精品一区二区三区| 日韩精品人妻一区二区三区四区| 亚洲国产精品一区第二页| 国产在线精品一区二区三区不卡| 日本福利一区二区| 女同一区二区在线观看| 偷拍激情视频一区二区三区| 免费观看一区二区三区| 精品日韩在线视频一区二区三区 | 91精品福利一区二区三区野战| 国产99精品一区二区三区免费| 亚洲国产精品一区二区九九| 日韩电影在线观看第一区| 免费无码AV一区二区| 福利一区福利二区| 精品伦精品一区二区三区视频| 精品人妻一区二区三区毛片| 相泽亚洲一区中文字幕| 久久久久国产一区二区| 国产一区二区三区高清在线观看 | 精品久久久久久中文字幕一区| 精品国产乱子伦一区二区三区 | 日本精品夜色视频一区二区| 国产亚洲综合精品一区二区三区 | 国产免费私拍一区二区三区| 国产精品盗摄一区二区在线| 精品视频在线观看一区二区三区| 福利一区国产原创多挂探花| 精品国产一区二区三区2021| 日韩一区二区久久久久久| 91在线看片一区国产| 极品少妇一区二区三区四区| 一区二区免费在线观看|