99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP 627代寫、代做Python設計程序
COMP 627代寫、代做Python設計程序

時間:2024-08-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMP 627 – Assignment 1 
 
Note: Refer to Eq. 2.11 in the textbook for weight update. Both weights, w1 and b, need to be adjusted. 
According to Eq. 2.11, for input x1, error E = t-y and learning rate β: 
w1_new=w1_old+ β E x1; 
bnew= bold+ β E 
COMP 627 Neural Networks and Applications 
Assignment 1 
Perceptron and Linear neuron: Manual training and real-life case 
studies 
 
Part 1: Perceptron 
[08 marks] 
 
 
 Download Fish_data.csv file from LEARN page. Use this dataset to answer the two questions (i) and (ii) 
below on Perceptron. The dataset consists of 3 columns. The first two columns are inputs (ring 
diameter of scales of fish grown in sea water and fresh water, respectively). The third column is the 
output which states whether the category of the fish is Canadian or Alaskan (the value is 0 for Canadian 
and 1 for Alaskan). Perceptron model classifies fish into Canadian or Alaskan depending on these two 
measures of ring diameter of scales. 
(i) Extract the first AND last row of data and label these rows 1 and 2. Use an initial weight 
vector of [w1= 102, w2= -28, b= 5.0] and learning rate β of 0.5 for training a perceptron 
model manually as below: 
Adjust the weights in example-by-example mode of learning using the two input vectors. 
Present the input data in the order of rows 1 and 2 to the perceptron. After presentation 
of each input vector and corresponding weight adjustment, show the resulting 
classification boundary on the two data points as in Fig. 2.15 in the book. For each round 
of weight adjustment, there will be a new classification boundary line. You can do the 
plots on Excel, by hand, python or any other plotting software. Repeat this for 2 epochs 
(i.e., pass the two input vectors twice through the perceptron). 
(4 marks) 
 
 
(ii) Write python code to create a perceptron model to use the whole dataset in fish.csv to 
classify fish into Canadian or Alaskan depending on the two input measures of ring 
diameter of scales. Use 200 epochs for accurate models. 
 
Modify your python code to show the final classification boundary on the data. 
 
Write the equation of this boundary line. 
Compare with the classification boundary in the book. 
(4 marks) 2 
COMP 627 – Assignment 1 
 
Note: For adjusting weights, follow the batch learning example for linear neuron on page 57 of the 
textbook that follows Eq. 2.36. After each epoch, adjust the weights as follows: 
 
 w1_new=w1_old + β (E1 x1 + E2 x2)/2 
bnew= bold + β (E1 + E2)/2 
where E1 and E2 are the errors for the two inputs. 
 
 
 
Part 2: Single Linear Neuron 
 
[12 marks] 
Download heat_influx_north_south.csv file from LEARN page. Use this dataset to develop a single 
linear neuron model to answer the questions (i) to (v) below. This is the dataset that we learned about 
in the text book and lectures where a linear neuron model had been trained to predict heat influx in 
to a house from the north and south elevations of the house. Note that the dataset has been 
normalised (between 0 and 1) to increase the accuracy of the models. When data (inputs and outputs) 
have very different ranges, normalisation helps balance this issue. 
(i) Use two rows of data (rows 1 and 2 (0.319, 0.929) and (0.302, 0.49)), respectively, to train 
a linear neuron manually to predict heat influx into a home based on the north elevation 
(angle of exposure to the sun) of the home (value in ‘North’ column is the input for the 
single neuron where output is the value in ‘HeatFlux’ column). Use an initial weight vector 
of [b (bias) = 2.1, w1= -0.2] and learning rate of 0.5. Bias input =1. You need to adjust 
both weights, b and w1. 
(3 marks) 
 
a) Train the linear neuron manually in batch mode. Repeat this for 2 epochs. 
 
Note: 
Try to separate the dataset into two datasets based on the value in ‘Canadian_0_Alaskan_1’ column. 
Example code is given below. 
#create dataframe X1 with input columns of the rows with the value 0 in 'Canadian_0_Alaskan_1' column 
X1 = df.loc[df["Canadian_0_Alaskan_1"] == 0].iloc[:, 0:2] 
 
 
Plot the data of two datasets with different markers ‘o’ and ‘x’. 
Plot the decision boundary line using the equation used in Laboratory Tutorial 2 – Part 2 (Please note 
that there is a correction in the equation and the updated assignment is available on LEARN). 
Final plot should be like this. 3 
COMP 627 – Assignment 1 
 
1 2 
Note: To retrieve the mean squared error, you can use the following code 
 
from sklearn.metrics import mean_squared_error 
print(mean_squared_error(Y, predicted_y)) 
b) After the training with the 2 epochs is over, use your final weights to test how the 
neuron is now performing by passing the same two data points again into the neuron 
and computing error for each input (E1 and E2). Compute Mean Square Error (MSE) 
for the 2 inputs using the formula below. 
 
   
2+   
2
 
MSE = 

 
(ii) Write a python program to train a single linear neuron model using all data to predict heat 
influx from north elevation (value in ‘North’ column is the input for the single neuron 
where output is the value in ‘HeatFlux’ column) using all data. Train the model with 3000 
epochs for high accuracy. 
 
Extract the weights of the model and write the equation for the neuron function (linear 
equation showing input-output relationship as in Eq. 2.44) and plot the neuron function 
on data as in Figure 2.34 in the textbook. 
 
Modify the code to retrieve the mean square error (MSE) and R
2
 score for the trained 
neuron model. 
(3 marks) 
 
 
(iii) Write a python program to train a linear neuron on the whole data set to predict heat 
influx from north and south elevations (using the two inputs from the two columns 
‘South’ and ‘North’). Train the model with 3000 epochs for high accuracy. 
 
Extract the weights of the model and write the equation for the network function. 
 
Modify your program to find the Mean Square Error (MSE) and R
2
 score of the model. 
 
Compare the error difference between the previous one-input case (in part (ii)) and the 
current two-input case. 
(4 marks) 
 
(iv) Modify the program to plot the data and the network function on the same plot (Refer to 
the Laboratory Tutorial 4). Plot the network function on the data (3D plot of predicted 
heat influx as a function plotted against north and south elevations.(1 marks) 
Note: Neural Network develops a function (plane/surface) that goes through the data as closely as 
possible. Here, we want to see how close this surface is to the data. Since we have 2 inputs, we need a 
3-D plot to see this. We plot the network function against the two inputs. 
Your final output should look like this: 4 
COMP 627 – Assignment 1 
 
Note: In the plot in part (iv) above, the network function was shown as a surface plotted against the 2 
inputs. However, you can also calculate the NN predicted heat influx for those exact input values for north 
and south elevations in the dataset (as opposed to showing the function) and then plot the predicted heat 
influx and target heat influx on the same 3D plot against the 2 inputs. 
Your final output should look like this: 
(v) Plot the network predicted heat influx values and target heat influx values against the two 
inputs (3D data plot). 
(1 marks) 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代做COMP5216、代寫Java設計編程
  • 下一篇:代做QBUS3330、c++,Python編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美视频日韩视频在线观看| 久久精品国产999大香线蕉| 国产精品久久午夜| 久久精品综合一区| 一本色道久久综合亚洲精品小说 | 国产日韩欧美在线播放不卡| 欧美激情视频在线免费观看 欧美视频免费一| 99视频有精品| 极品少妇一区二区| 国产三区二区一区久久| 欧美日韩无遮挡| 久久午夜激情| 欧美尤物巨大精品爽| 亚洲夜间福利| 日韩小视频在线观看专区| 黄色成人精品网站| 国产一区二区三区的电影| 国产精品爱啪在线线免费观看 | 日韩视频精品| 亚洲国产精品www| 在线观看中文字幕不卡| 国产中文一区二区三区| 国产麻豆精品视频| 国产精品欧美风情| 国产精品日韩久久久久| 欧美视频中文字幕| 国产精品久久久久久户外露出| 欧美日韩美女| 欧美天堂亚洲电影院在线观看| 欧美精品xxxxbbbb| 欧美伦理在线观看| 欧美久久久久久久| 欧美日韩精品免费看| 欧美午夜视频在线观看| 国产精品jizz在线观看美国| 国产精品丝袜白浆摸在线| 国产乱码精品一区二区三区av| 国产老女人精品毛片久久| 国产乱人伦精品一区二区| 国产精品亚洲成人| 一区二区亚洲精品国产| 亚洲丁香婷深爱综合| 亚洲黄色影院| 99综合在线| 午夜在线观看免费一区| 香蕉精品999视频一区二区| 久久精品99国产精品酒店日本| 欧美伊久线香蕉线新在线| 久久av资源网| 麻豆91精品91久久久的内涵| 欧美不卡在线| 国产美女精品视频免费观看| 精品51国产黑色丝袜高跟鞋| 亚洲精品乱码久久久久久蜜桃麻豆| 亚洲精品中文字幕在线| 亚洲综合色在线| 美女精品网站| 国产精品香蕉在线观看| 激情自拍一区| 中文国产一区| 久久免费精品日本久久中文字幕| 欧美精品综合| 国产一区二区三区在线播放免费观看| 在线日韩欧美| 性欧美在线看片a免费观看| 蜜桃av噜噜一区| 国产精品黄页免费高清在线观看| 黑人极品videos精品欧美裸| 日韩视频精品在线观看| 久久久精品动漫| 国产精品成人观看视频国产奇米| 狠狠色伊人亚洲综合网站色| 在线视频你懂得一区| 免费人成精品欧美精品| 国产精品日韩在线一区| 亚洲精品欧美精品| 久久综合久色欧美综合狠狠| 国产欧美日韩精品丝袜高跟鞋| 亚洲国产精品日韩| 久久麻豆一区二区| 国产日本欧美一区二区| 日韩亚洲欧美高清| 欧美激情影院| **性色生活片久久毛片| 欧美在线播放高清精品| 欧美色欧美亚洲高清在线视频| 在线欧美一区| 久久久噜噜噜久久中文字免| 国产精品自在欧美一区| 亚洲性图久久| 国产精品日韩在线| 亚洲一级特黄| 欧美日韩一区二区精品| 亚洲精品视频免费观看| 欧美高清视频一区二区三区在线观看| 精品二区视频| 久久精品视频在线| 激情综合色综合久久| 久久久久久一区二区三区| 韩国免费一区| 可以看av的网站久久看| 好男人免费精品视频| 久久久人人人| 黑人操亚洲美女惩罚| 老司机午夜精品| 亚洲国产欧美另类丝袜| 美女脱光内衣内裤视频久久影院 | 欧美日韩免费看| 在线综合+亚洲+欧美中文字幕| 欧美日韩另类在线| 一区二区日韩欧美| 国产精品视频网站| 久久精品国产综合精品| 亚洲国产精品久久精品怡红院| 欧美第一黄网免费网站| 99精品99| 国产一区三区三区| 欧美激情一区三区| 亚洲在线视频一区| 黑丝一区二区三区| 欧美第一黄色网| 亚洲一区综合| 加勒比av一区二区| 国产精品v片在线观看不卡| 欧美一区二区久久久| 亚洲激情女人| 国产精品一级| 欧美国产1区2区| 欧美亚洲系列| 亚洲精品日韩精品| 国产一区二区三区观看 | 99re在线精品| 国产一区二区三区四区hd| 欧美精品三级在线观看| 欧美永久精品| 在线亚洲一区二区| 在线播放国产一区中文字幕剧情欧美| 欧美日韩精品免费| 久久久另类综合| 亚洲无线观看| 亚洲精品视频在线观看网站 | 国产一区导航| 欧美私人啪啪vps| 欧美成人精品| 久久免费少妇高潮久久精品99| 99精品视频免费全部在线| 国精品一区二区| 国产精品视频一二三| 欧美日韩一区二区欧美激情| 久久久久久久久久码影片| 亚洲自拍偷拍麻豆| 9国产精品视频| 亚洲国产精品久久久久久女王| 国产精品一区二区男女羞羞无遮挡| 欧美日产国产成人免费图片| 久久综合伊人77777| 久久国产精品第一页 | 国产婷婷色综合av蜜臀av| 欧美日韩hd| 欧美成人性生活| 毛片精品免费在线观看| 久久久噜噜噜久久中文字免| 性视频1819p久久| 亚洲自拍偷拍网址| 亚洲一区三区视频在线观看| 亚洲精品国精品久久99热| 亚洲欧洲综合| 日韩一级网站| 一区二区精品国产| 宅男66日本亚洲欧美视频| 亚洲深夜福利网站| 亚洲专区一区| 欧美一区二区三区免费在线看| 亚洲欧美一区二区三区在线 | 黄色综合网站| 伊人久久成人| 亚洲第一主播视频| 亚洲人成人一区二区在线观看| 亚洲日本欧美在线| 99视频精品全部免费在线| 日韩一级片网址| 亚洲女性喷水在线观看一区| 久久精品中文字幕一区| 免费在线亚洲| 欧美视频一区二区| 国产欧美日韩在线 | 免费在线亚洲欧美| 欧美日韩在线免费| 国产三级精品三级| 亚洲国产精品精华液网站| 99视频精品全国免费| 一区二区三区四区在线| 久久国产毛片| 欧美成人综合网站| 国产精品欧美一区喷水| 国语自产偷拍精品视频偷| 亚洲国产高清在线| 亚洲一区二区毛片| 久久久久国色av免费看影院| 欧美激情一区二区三区全黄|