99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP 627代寫、代做Python設計程序
COMP 627代寫、代做Python設計程序

時間:2024-08-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMP 627 – Assignment 1 
 
Note: Refer to Eq. 2.11 in the textbook for weight update. Both weights, w1 and b, need to be adjusted. 
According to Eq. 2.11, for input x1, error E = t-y and learning rate β: 
w1_new=w1_old+ β E x1; 
bnew= bold+ β E 
COMP 627 Neural Networks and Applications 
Assignment 1 
Perceptron and Linear neuron: Manual training and real-life case 
studies 
 
Part 1: Perceptron 
[08 marks] 
 
 
 Download Fish_data.csv file from LEARN page. Use this dataset to answer the two questions (i) and (ii) 
below on Perceptron. The dataset consists of 3 columns. The first two columns are inputs (ring 
diameter of scales of fish grown in sea water and fresh water, respectively). The third column is the 
output which states whether the category of the fish is Canadian or Alaskan (the value is 0 for Canadian 
and 1 for Alaskan). Perceptron model classifies fish into Canadian or Alaskan depending on these two 
measures of ring diameter of scales. 
(i) Extract the first AND last row of data and label these rows 1 and 2. Use an initial weight 
vector of [w1= 102, w2= -28, b= 5.0] and learning rate β of 0.5 for training a perceptron 
model manually as below: 
Adjust the weights in example-by-example mode of learning using the two input vectors. 
Present the input data in the order of rows 1 and 2 to the perceptron. After presentation 
of each input vector and corresponding weight adjustment, show the resulting 
classification boundary on the two data points as in Fig. 2.15 in the book. For each round 
of weight adjustment, there will be a new classification boundary line. You can do the 
plots on Excel, by hand, python or any other plotting software. Repeat this for 2 epochs 
(i.e., pass the two input vectors twice through the perceptron). 
(4 marks) 
 
 
(ii) Write python code to create a perceptron model to use the whole dataset in fish.csv to 
classify fish into Canadian or Alaskan depending on the two input measures of ring 
diameter of scales. Use 200 epochs for accurate models. 
 
Modify your python code to show the final classification boundary on the data. 
 
Write the equation of this boundary line. 
Compare with the classification boundary in the book. 
(4 marks) 2 
COMP 627 – Assignment 1 
 
Note: For adjusting weights, follow the batch learning example for linear neuron on page 57 of the 
textbook that follows Eq. 2.36. After each epoch, adjust the weights as follows: 
 
 w1_new=w1_old + β (E1 x1 + E2 x2)/2 
bnew= bold + β (E1 + E2)/2 
where E1 and E2 are the errors for the two inputs. 
 
 
 
Part 2: Single Linear Neuron 
 
[12 marks] 
Download heat_influx_north_south.csv file from LEARN page. Use this dataset to develop a single 
linear neuron model to answer the questions (i) to (v) below. This is the dataset that we learned about 
in the text book and lectures where a linear neuron model had been trained to predict heat influx in 
to a house from the north and south elevations of the house. Note that the dataset has been 
normalised (between 0 and 1) to increase the accuracy of the models. When data (inputs and outputs) 
have very different ranges, normalisation helps balance this issue. 
(i) Use two rows of data (rows 1 and 2 (0.319, 0.929) and (0.302, 0.49)), respectively, to train 
a linear neuron manually to predict heat influx into a home based on the north elevation 
(angle of exposure to the sun) of the home (value in ‘North’ column is the input for the 
single neuron where output is the value in ‘HeatFlux’ column). Use an initial weight vector 
of [b (bias) = 2.1, w1= -0.2] and learning rate of 0.5. Bias input =1. You need to adjust 
both weights, b and w1. 
(3 marks) 
 
a) Train the linear neuron manually in batch mode. Repeat this for 2 epochs. 
 
Note: 
Try to separate the dataset into two datasets based on the value in ‘Canadian_0_Alaskan_1’ column. 
Example code is given below. 
#create dataframe X1 with input columns of the rows with the value 0 in 'Canadian_0_Alaskan_1' column 
X1 = df.loc[df["Canadian_0_Alaskan_1"] == 0].iloc[:, 0:2] 
 
 
Plot the data of two datasets with different markers ‘o’ and ‘x’. 
Plot the decision boundary line using the equation used in Laboratory Tutorial 2 – Part 2 (Please note 
that there is a correction in the equation and the updated assignment is available on LEARN). 
Final plot should be like this. 3 
COMP 627 – Assignment 1 
 
1 2 
Note: To retrieve the mean squared error, you can use the following code 
 
from sklearn.metrics import mean_squared_error 
print(mean_squared_error(Y, predicted_y)) 
b) After the training with the 2 epochs is over, use your final weights to test how the 
neuron is now performing by passing the same two data points again into the neuron 
and computing error for each input (E1 and E2). Compute Mean Square Error (MSE) 
for the 2 inputs using the formula below. 
 
   
2+   
2
 
MSE = 

 
(ii) Write a python program to train a single linear neuron model using all data to predict heat 
influx from north elevation (value in ‘North’ column is the input for the single neuron 
where output is the value in ‘HeatFlux’ column) using all data. Train the model with 3000 
epochs for high accuracy. 
 
Extract the weights of the model and write the equation for the neuron function (linear 
equation showing input-output relationship as in Eq. 2.44) and plot the neuron function 
on data as in Figure 2.34 in the textbook. 
 
Modify the code to retrieve the mean square error (MSE) and R
2
 score for the trained 
neuron model. 
(3 marks) 
 
 
(iii) Write a python program to train a linear neuron on the whole data set to predict heat 
influx from north and south elevations (using the two inputs from the two columns 
‘South’ and ‘North’). Train the model with 3000 epochs for high accuracy. 
 
Extract the weights of the model and write the equation for the network function. 
 
Modify your program to find the Mean Square Error (MSE) and R
2
 score of the model. 
 
Compare the error difference between the previous one-input case (in part (ii)) and the 
current two-input case. 
(4 marks) 
 
(iv) Modify the program to plot the data and the network function on the same plot (Refer to 
the Laboratory Tutorial 4). Plot the network function on the data (3D plot of predicted 
heat influx as a function plotted against north and south elevations.(1 marks) 
Note: Neural Network develops a function (plane/surface) that goes through the data as closely as 
possible. Here, we want to see how close this surface is to the data. Since we have 2 inputs, we need a 
3-D plot to see this. We plot the network function against the two inputs. 
Your final output should look like this: 4 
COMP 627 – Assignment 1 
 
Note: In the plot in part (iv) above, the network function was shown as a surface plotted against the 2 
inputs. However, you can also calculate the NN predicted heat influx for those exact input values for north 
and south elevations in the dataset (as opposed to showing the function) and then plot the predicted heat 
influx and target heat influx on the same 3D plot against the 2 inputs. 
Your final output should look like this: 
(v) Plot the network predicted heat influx values and target heat influx values against the two 
inputs (3D data plot). 
(1 marks) 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代做COMP5216、代寫Java設計編程
  • 下一篇:代做QBUS3330、c++,Python編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                一区二区三区在线视频观看| 日本高清无吗v一区| 日韩免费一区二区| 免费人成网站在线观看欧美高清| 日韩一区二区三区视频| 国产成人高清在线| 日本不卡不码高清免费观看| 欧美电影免费观看高清完整版| 久久综合av免费| 在线观看免费亚洲| 91丨porny丨首页| 韩国欧美一区二区| 91麻豆精品国产91久久久使用方法| 捆绑紧缚一区二区三区视频| 亚洲精品乱码久久久久久久久| 欧美一区二区三区电影| 色综合夜色一区| 高清不卡在线观看av| 日韩精品一区二区三区在线| 亚洲日韩欧美一区二区在线| 色香色香欲天天天影视综合网| 国产91色综合久久免费分享| 欧美一区二区人人喊爽| 久久蜜桃一区二区| 懂色av一区二区三区免费看| 亚洲国产欧美在线人成| 亚洲美女免费在线| 亚洲综合色噜噜狠狠| 久久久噜噜噜久噜久久综合| 久久一夜天堂av一区二区三区| www.视频一区| 91精品国产综合久久久久久久久久| 色哟哟精品一区| 亚洲欧美视频一区| 色婷婷综合久久久中文字幕| 国产欧美视频一区二区| 国产欧美日韩亚州综合| 亚洲免费在线看| 视频一区二区三区在线| 亚洲妇女屁股眼交7| 国内精品免费在线观看| 一区二区三区毛片| 亚洲成年人网站在线观看| 日韩欧美一级在线播放| 日韩午夜在线影院| 色视频欧美一区二区三区| 欧美偷拍一区二区| 久久久久国产精品免费免费搜索| 国产婷婷色一区二区三区| 亚洲制服欧美中文字幕中文字幕| 91麻豆精品国产91| 国产日产欧美一区二区三区| 国产ts人妖一区二区| 风流少妇一区二区| 欧美一二三区在线观看| 成人一区二区三区中文字幕| 欧美精品日韩一本| 亚洲乱码中文字幕| 91麻豆精品国产91久久久资源速度| 国产精品入口麻豆九色| 国产综合色在线视频区| 成人黄色一级视频| 中文在线资源观看网站视频免费不卡| 日韩欧美视频在线| 国产乱人伦精品一区二区在线观看 | 91香蕉视频在线| 日韩电影在线观看一区| 91视频xxxx| 蜜乳av一区二区| 欧美一区二区三区喷汁尤物| 久久se精品一区精品二区| caoporen国产精品视频| 91精品国产综合久久久蜜臀图片| 日本一二三不卡| 成人av电影在线网| 国产福利一区二区三区视频在线| 日韩一区二区在线观看| 欧美mv日韩mv亚洲| 成人性生交大片免费看视频在线 | 韩国一区二区在线观看| 亚洲欧美偷拍卡通变态| 亚洲妇熟xx妇色黄| 国产一区二区三区黄视频 | 日韩经典中文字幕一区| 欧美国产精品中文字幕| 91丨porny丨中文| 欧美另类高清zo欧美| 久久久一区二区三区| 亚洲一区在线看| 极品美女销魂一区二区三区免费| 久久嫩草精品久久久精品一| 亚洲国产综合在线| 国产精品123区| 天天色天天爱天天射综合| 亚洲欧美一区二区在线观看| 成人免费一区二区三区在线观看| 欧美日韩国产在线观看| 91亚洲国产成人精品一区二区三| 久久成人18免费观看| 一本到三区不卡视频| 精品一区二区三区在线观看| 欧美日韩国产美| 欧美丰满嫩嫩电影| 日韩欧美精品三级| 中文字幕不卡在线播放| 99热这里都是精品| 亚洲欧美日韩中文字幕一区二区三区 | 这里只有精品免费| 日韩欧美高清dvd碟片| 国产精品―色哟哟| 激情图区综合网| 日韩一区欧美二区| 国产三级久久久| 亚洲v日本v欧美v久久精品| 日韩欧美一区二区视频| 99久久婷婷国产精品综合| 91啪九色porn原创视频在线观看| 久久综合五月天婷婷伊人| 国产精品久久久久精k8| 亚洲欧美日韩一区二区| 美女性感视频久久| 在线观看91视频| 中文欧美字幕免费| 久久成人18免费观看| 欧美亚洲动漫制服丝袜| 国产视频不卡一区| 欧美午夜片在线观看| 久久久www免费人成精品| 欧美a一区二区| 日韩精品一区二区在线| 欧美在线观看你懂的| 91蜜桃视频在线| 亚洲乱码日产精品bd| 色综合色综合色综合| 亚洲美腿欧美偷拍| 国产精品欧美久久久久无广告| 日韩美女天天操| 日本不卡免费在线视频| 免费成人在线观看| 日本大胆欧美人术艺术动态| 色哟哟一区二区| 在线免费不卡视频| 奇米影视7777精品一区二区| 精品国产乱码久久久久久图片| 亚洲精品一区二区三区99| 91精品国产综合久久久久久漫画 | 国产成人一区二区精品非洲| 国产精品久线在线观看| 日本精品视频一区二区三区| 视频一区中文字幕国产| 欧美不卡123| 精品动漫一区二区三区在线观看| 国产在线精品一区二区不卡了| 中文字幕在线不卡国产视频| 国产一区二区三区日韩| 国产清纯美女被跳蛋高潮一区二区久久w | 亚洲精品国产第一综合99久久| 欧美日韩成人综合天天影院| 成人国产在线观看| 国产一区二区三区观看| 奇米精品一区二区三区四区| 亚洲国产综合91精品麻豆| 国产成人av福利| 日韩欧美精品三级| 色偷偷久久人人79超碰人人澡| 国产精品99久久久久久宅男| 日本特黄久久久高潮| 中文字幕一区二区三区蜜月| 欧美视频一区在线| 在线免费精品视频| 日韩一区国产二区欧美三区| 久久综合久久鬼色中文字| 欧美日韩国产首页在线观看| 欧美亚洲国产一区二区三区va| 亚洲小说欧美激情另类| 亚洲成人动漫在线观看| 91成人免费网站| 色播五月激情综合网| 色哟哟一区二区| 麻豆91在线看| 欧美日韩免费电影| 国产精品中文字幕一区二区三区| 亚洲国产成人在线| 欧美日韩激情一区二区三区| 911精品国产一区二区在线| 激情图区综合网| 青青草97国产精品免费观看无弹窗版| 国产欧美日韩另类一区| 美女网站色91| 日韩欧美在线综合网| 亚洲午夜在线观看视频在线| 91麻豆精品91久久久久同性| 成人黄色电影在线 | 欧美日本韩国一区二区三区视频| 欧美丰满少妇xxxxx高潮对白| 欧美激情自拍偷拍| 亚洲成人动漫精品| 国产主播一区二区三区| 狂野欧美性猛交blacked| 久久成人羞羞网站|