99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫COMPSCI369、代做Python編程設計

時間:2024-05-10  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMPSCI369 - S1 2024
Assignment 3
Due date: See Canvas
Instructions
This assignment is worth 7.5% of the final grade. It is marked out of 75 points.
Provide a solution as a Python notebook and html with output. Your solution should include well
documented code with the calls to reproduce your results.
Include markdown cells with explanation of the results for each question.
Submit the ipynb and html to Canvas:
• the .ipynb file with outputs from the executed code
• a .html version of the notebook with all outputs of executed code showing. (To get this
format, export from the notebook viewer or use nbconvert.)
Within the notebook, set the random seed to some integer of your choosing (using random.seed)
so that the marker can recreate the same output that you get. You can reset the seed before each
question if you like.
Question 1: Simulating random variables and exploring relationships between distributions (20 Points)
(a) Using the inversion sampling technique described in Section 9.2 of the workbook, write a method rand exp that takes a rate parameter λ as input and
produces as output an exponentially distributed random variable with rate parameter λ. Use random.random() to generate uniform random numbers. (4
marks)
(b) Demonstrate your rand exp is correct by comparing the mean and variance
of the output to theoretical values, and also by comparing the output of your
method to a library method. (4 marks)
(c) Use rand exp to write a method rand poiss that takes a parameter λ as input
and produces as output a Poisson distributed random variable with parameter
λ. (4 marks)
(d) Use rand exp to write a method rand gamma that takes an integer parameter
k and rate parameter θ as input and produces as output a gamma distributed
random variable with parameters k and θ. (4 marks)
(e) Explain why your rand gamma method lacks the generality you would typically
want for simulating gamma distributed random variables. (4 marks)
1
Question 2: Simulating outbreaks (55 Points)
A standard model in epidemiology is the SIR model of infectious disease spread. It
has a population of N hosts being divided into 3 compartments, so is known as a
compartmental model:
• the S compartment of those who are susceptible to the disease
• the I compartment of those who are infectious with the disease
• the R compartment of those who are recovered from the disease and now immune (or, more generally, those who are removed from the epidemic through
recovery with immunity, or isolation, or death, etc).
We assume that S + I + R = N.
The model can be deterministic or stochastic. We consider the stochastic version
here. Times between all events are exponentially distributed with the following rates
which depend on the current state of the outbreak, assumed to be (S, I, R):
• the rate of transmissions is βSI/N and the new state is (S − 1, I + 1, R), and
• the rate of recoveries is γI and the new state is (S, I − 1, R + 1).
You can use any functions from the random module that you like for this question.
Probably the only one you need is random.expovariate.
(a) At what point will the epidemic finish? (2 marks)
(b) Write method sim SIR that takes as inputs N, I0, β, γ and produces as output
a list of the event times and the number susceptible, infected and recovered at
each time point. All outbreaks start at time t = 0 with S0 = N −I0. (8 marks)
(c) Run a simulation with N = 1000, I0 = 10, β = 3, γ = 2 and plot the number
infected through time. (4 marks)
(d) Run an experiment and report the results to approximate the probability that
a large outbreak occurs using the same parameters as above but with only one
initial infected. What has usually happened if there is no large outbreak? (6
marks)
(e) The reproduction number R0 = β/γ of the epidemic is the mean number of
transmissions by a single infected in an otherwise susceptible population (Note
there is a bit of a notation clash: we are not referring to the number of recovered
individuals at time 0 in this case.) Using the same parameters as in part (c)
but allowing β to vary, select five values of R0 above and below 1 to explore
whether or not you get an outbreak. Report and explain your results. (6
marks)
(f) Suppose now that the infectious period is fixed, so that hosts are infectious
for exactly 1 time unit. Is the process still Markov? How would you go about
writing code to simulate such an epidemic? (You do not have to actually write
the code here.) (4 marks)
2
(g) Another common model breaks the infectious period up into m sub-periods,
I1, I2, . . . , Im so is an SI1I2 . . . ImR model. Assuming the amount of time each
individual spends in compartment Ij
is exponential with rate γ, what is the
distribution of the total time spent in I1 to Im? (4 marks)
(h) Drawing on what you know about infections, explain why neither a fixed length
nor an exponential distributed infectious period is a great model and why the
m sub-period model may be preferable. What computational advantage does
this formalism have that makes it easier to work with than some arbitrary
distribution for the infection period? (6 marks)
(i) Consider another compartmental model where there is no immunity to an infection so individuals recover straight back into a susceptible state and can get
infected again. This is know as birth death or SIS process. If we look at only
the type of events and ignore the waiting times between them, this process can
be described as a simple Markov chain. If the population size were fixed at
N = 5, and using transition rates (S, I) → (S − 1, I + 1) at rate βSI/N and
(S, I) → (S + 1, I − 1) at rate γI, write down the transition matrix for the
chain. (5 marks)
(j) Implement an SIS process which takes inputs N, I0, β, γ, t, where t is the number
of iterations (i.e., infection or recovery events) the simulation runs for. (6
marks)
(k) Run a simulation study using the SIS simulator with N = 1000, I0 = 10, β =
3, γ = 2 to determine the long term behaviour of this process. Discuss your
results. (4 marks)

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp














 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓碧瑤到務宿多久 宿務的景點有什么
  • 下一篇:代寫CPT204、代做Java編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          永久域名在线精品| 国内一区二区在线视频观看| 欧美精品一区二区视频| 欧美黄色一级视频| 欧美日韩一区二区视频在线| 欧美精品麻豆| 国产精品影院在线观看| 国产美女精品视频免费观看| 国产精品v日韩精品| 欧美日韩一区二区三区高清| 欧美日韩视频不卡| 国产日韩综合| 亚洲精品国产精品国自产观看| 亚洲第一精品夜夜躁人人爽| 亚洲久久一区二区| 欧美一区二区成人| 欧美视频一区二区| 国产精品99久久久久久人| 欧美国产精品va在线观看| 欲香欲色天天天综合和网| 欧美资源在线| 在线观看日韩www视频免费| aⅴ色国产欧美| 国产精品成人一区二区三区吃奶| 黄网动漫久久久| 久久永久免费| 91久久一区二区| 欧美日韩日日骚| 欧美一级视频精品观看| 国产精品一区二区女厕厕| 在线观看日产精品| 裸体歌舞表演一区二区| 国内精品视频666| 久久五月婷婷丁香社区| 一区在线电影| 欧美日韩免费一区二区三区视频| 日韩视频免费在线| 国产精品美女www爽爽爽| 久久精品毛片| 一道本一区二区| 黄色国产精品一区二区三区| 欧美激情第4页| 久久精品中文字幕一区| 亚洲免费观看| 伊人久久男人天堂| 国产精品女人网站| 欧美美女日韩| 免费在线观看一区二区| 亚洲欧美日韩久久精品| 韩国一区二区三区美女美女秀| 欧美v亚洲v综合ⅴ国产v| 亚洲欧美国产高清va在线播| 在线精品国产欧美| 国产伦精品一区二区三区免费迷| 欧美美女bbbb| 欧美日韩国产成人在线| 欧美.www| 欧美精品激情blacked18| 蜜臀av国产精品久久久久| 久久久精品五月天| 久久亚洲国产精品日日av夜夜| 欧美一区二区三区四区在线| 亚洲专区一二三| 正在播放亚洲| 久久精品在线观看| 米奇777超碰欧美日韩亚洲| 欧美激情中文不卡| 欧美日韩另类视频| 国产酒店精品激情| 精品69视频一区二区三区| 在线观看成人小视频| 在线日本高清免费不卡| 亚洲精品国产精品国自产观看浪潮 | 亚洲免费电影在线观看| 一区二区三区黄色| 久久久久久久久久码影片| 免费欧美在线| 国产欧美精品久久| 国产日韩欧美高清免费| 国产在线一区二区三区四区| 亚洲欧洲日韩女同| 欧美在线一区二区| 国产精品二区在线| 亚洲国产高清在线观看视频| 亚洲欧美日韩精品久久久| 蜜臀91精品一区二区三区| 国产伦精品一区二区三区视频孕妇 | 久久国产色av| 欧美激情免费在线| 亚洲国产精品成人va在线观看| 中文久久精品| 欧美午夜片在线观看| 亚洲青色在线| 欧美搞黄网站| 亚洲国产欧美一区二区三区同亚洲 | 亚洲美女视频| 欧美国产精品人人做人人爱| 亚洲国产精品电影在线观看| 久久精品一区四区| 国产一区日韩欧美| 蜜臀av一级做a爰片久久| 亚洲二区视频| 欧美日韩午夜剧场| 一级成人国产| 国产亚洲精品资源在线26u| 欧美在线高清| 亚洲第一精品在线| 欧美日韩国产成人在线免费| 一本一道久久综合狠狠老精东影业| 欧美韩国日本综合| 亚洲网友自拍| 黄色一区二区三区| 欧美理论电影在线观看| 午夜精品999| 一区在线观看| 国产精品区二区三区日本| 久久蜜桃av一区精品变态类天堂| 亚洲欧洲在线播放| 国产欧美精品日韩区二区麻豆天美| 久久久久久久91| 国产在线观看一区| 久久人体大胆视频| 午夜一区二区三视频在线观看 | 亚洲黄色高清| 国产日韩欧美一区二区三区在线观看 | 欧美午夜不卡在线观看免费| 欧美在线观看一区二区| 亚洲深夜福利| 国产在线欧美| 国产精品日本一区二区| 欧美国产精品一区| 久久综合久久88| 久久狠狠亚洲综合| 亚洲综合视频网| 一级成人国产| 久久这里有精品15一区二区三区 | 国产精品99久久久久久久vr | 欧美一区二区黄色| 99国内精品久久| 一本色道久久综合亚洲91| 亚洲日本久久| 亚洲日本免费| 亚洲综合欧美日韩| 亚洲欧美日韩一区二区在线| 欧美亚洲网站| 老司机成人网| 欧美视频在线观看一区| 国产精品自拍网站| 亚洲福利视频专区| 一本色道久久综合精品竹菊| 亚洲淫性视频| 久久久久免费观看| 欧美视频在线一区| 国内成人精品视频| 一本不卡影院| 久久久成人精品| 欧美三区美女| 亚洲激情不卡| 久久久久久91香蕉国产| 欧美日韩第一页| 国产一区二区三区免费不卡| 99视频精品| 欧美精品123区| 亚洲激情成人网| 久久精品五月| 国产精品婷婷午夜在线观看| 亚洲日韩成人| 欧美成人dvd在线视频| 尹人成人综合网| 久久精品电影| 国内揄拍国内精品久久| 亚洲午夜一区二区| 欧美日韩成人| 宅男66日本亚洲欧美视频| 欧美国产日韩一区| 亚洲精品午夜| 欧美日韩一区二区三区免费| 日韩一区二区精品| 欧美日韩精品国产| 亚洲一区二区三区777| 国产精品久久久久久亚洲毛片| 99re66热这里只有精品3直播 | 亚洲精品一区中文| 欧美日韩18| 午夜在线成人av| 国产在线一区二区三区四区 | 精品91在线| 欧美韩日亚洲| 午夜视频精品| 91久久精品国产91久久| 国产精品久久久久久久久久尿| 亚洲欧美在线网| 亚洲国产精品成人综合| 欧美国产先锋| 校园春色国产精品| 日韩一级在线观看| 狠狠色综合日日| 国产精品欧美日韩一区二区| 久久高清一区| 欧美一区二区三区男人的天堂 |