99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫COMPSCI369、代做Python編程設計

時間:2024-05-10  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMPSCI369 - S1 2024
Assignment 3
Due date: See Canvas
Instructions
This assignment is worth 7.5% of the final grade. It is marked out of 75 points.
Provide a solution as a Python notebook and html with output. Your solution should include well
documented code with the calls to reproduce your results.
Include markdown cells with explanation of the results for each question.
Submit the ipynb and html to Canvas:
• the .ipynb file with outputs from the executed code
• a .html version of the notebook with all outputs of executed code showing. (To get this
format, export from the notebook viewer or use nbconvert.)
Within the notebook, set the random seed to some integer of your choosing (using random.seed)
so that the marker can recreate the same output that you get. You can reset the seed before each
question if you like.
Question 1: Simulating random variables and exploring relationships between distributions (20 Points)
(a) Using the inversion sampling technique described in Section 9.2 of the workbook, write a method rand exp that takes a rate parameter λ as input and
produces as output an exponentially distributed random variable with rate parameter λ. Use random.random() to generate uniform random numbers. (4
marks)
(b) Demonstrate your rand exp is correct by comparing the mean and variance
of the output to theoretical values, and also by comparing the output of your
method to a library method. (4 marks)
(c) Use rand exp to write a method rand poiss that takes a parameter λ as input
and produces as output a Poisson distributed random variable with parameter
λ. (4 marks)
(d) Use rand exp to write a method rand gamma that takes an integer parameter
k and rate parameter θ as input and produces as output a gamma distributed
random variable with parameters k and θ. (4 marks)
(e) Explain why your rand gamma method lacks the generality you would typically
want for simulating gamma distributed random variables. (4 marks)
1
Question 2: Simulating outbreaks (55 Points)
A standard model in epidemiology is the SIR model of infectious disease spread. It
has a population of N hosts being divided into 3 compartments, so is known as a
compartmental model:
• the S compartment of those who are susceptible to the disease
• the I compartment of those who are infectious with the disease
• the R compartment of those who are recovered from the disease and now immune (or, more generally, those who are removed from the epidemic through
recovery with immunity, or isolation, or death, etc).
We assume that S + I + R = N.
The model can be deterministic or stochastic. We consider the stochastic version
here. Times between all events are exponentially distributed with the following rates
which depend on the current state of the outbreak, assumed to be (S, I, R):
• the rate of transmissions is βSI/N and the new state is (S − 1, I + 1, R), and
• the rate of recoveries is γI and the new state is (S, I − 1, R + 1).
You can use any functions from the random module that you like for this question.
Probably the only one you need is random.expovariate.
(a) At what point will the epidemic finish? (2 marks)
(b) Write method sim SIR that takes as inputs N, I0, β, γ and produces as output
a list of the event times and the number susceptible, infected and recovered at
each time point. All outbreaks start at time t = 0 with S0 = N −I0. (8 marks)
(c) Run a simulation with N = 1000, I0 = 10, β = 3, γ = 2 and plot the number
infected through time. (4 marks)
(d) Run an experiment and report the results to approximate the probability that
a large outbreak occurs using the same parameters as above but with only one
initial infected. What has usually happened if there is no large outbreak? (6
marks)
(e) The reproduction number R0 = β/γ of the epidemic is the mean number of
transmissions by a single infected in an otherwise susceptible population (Note
there is a bit of a notation clash: we are not referring to the number of recovered
individuals at time 0 in this case.) Using the same parameters as in part (c)
but allowing β to vary, select five values of R0 above and below 1 to explore
whether or not you get an outbreak. Report and explain your results. (6
marks)
(f) Suppose now that the infectious period is fixed, so that hosts are infectious
for exactly 1 time unit. Is the process still Markov? How would you go about
writing code to simulate such an epidemic? (You do not have to actually write
the code here.) (4 marks)
2
(g) Another common model breaks the infectious period up into m sub-periods,
I1, I2, . . . , Im so is an SI1I2 . . . ImR model. Assuming the amount of time each
individual spends in compartment Ij
is exponential with rate γ, what is the
distribution of the total time spent in I1 to Im? (4 marks)
(h) Drawing on what you know about infections, explain why neither a fixed length
nor an exponential distributed infectious period is a great model and why the
m sub-period model may be preferable. What computational advantage does
this formalism have that makes it easier to work with than some arbitrary
distribution for the infection period? (6 marks)
(i) Consider another compartmental model where there is no immunity to an infection so individuals recover straight back into a susceptible state and can get
infected again. This is know as birth death or SIS process. If we look at only
the type of events and ignore the waiting times between them, this process can
be described as a simple Markov chain. If the population size were fixed at
N = 5, and using transition rates (S, I) → (S − 1, I + 1) at rate βSI/N and
(S, I) → (S + 1, I − 1) at rate γI, write down the transition matrix for the
chain. (5 marks)
(j) Implement an SIS process which takes inputs N, I0, β, γ, t, where t is the number
of iterations (i.e., infection or recovery events) the simulation runs for. (6
marks)
(k) Run a simulation study using the SIS simulator with N = 1000, I0 = 10, β =
3, γ = 2 to determine the long term behaviour of this process. Discuss your
results. (4 marks)

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp














 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓碧瑤到務宿多久 宿務的景點有什么
  • 下一篇:代寫CPT204、代做Java編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲精品五月天| 美女网站色91| 亚洲午夜在线电影| 国产一区二区三区美女| 在线观看日韩电影| 中文字幕欧美激情| 国产在线国偷精品免费看| 欧美日韩高清一区二区不卡| 精品91自产拍在线观看一区| 精品国内片67194| 国产曰批免费观看久久久| 91论坛在线播放| 欧美日韩亚洲综合在线 | √…a在线天堂一区| 黄色小说综合网站| 日韩欧美国产综合一区| 五月激情丁香一区二区三区| 欧美性欧美巨大黑白大战| 亚洲美女视频在线| 97久久精品人人做人人爽| 国产欧美精品一区| 日本不卡视频在线观看| 欧美亚洲另类激情小说| 亚洲激情校园春色| 在线中文字幕一区二区| 亚洲精品菠萝久久久久久久| 91麻豆免费观看| 精品日本一线二线三线不卡| 成人中文字幕合集| 久久品道一品道久久精品| 美女网站色91| 日韩女优av电影| 六月丁香综合在线视频| 欧美性xxxxxxxx| 亚洲mv在线观看| 91精品国产综合久久精品麻豆 | 久久精品一区二区三区不卡| 精品伊人久久久久7777人| 日韩免费看的电影| 国产精品资源在线看| 日本一区二区免费在线| av一二三不卡影片| 一区二区三区四区在线免费观看| 91麻豆视频网站| 亚洲美女在线国产| 欧美在线免费观看视频| 国产乱码精品1区2区3区| 久久网站最新地址| 激情五月激情综合网| 欧美xxxx老人做受| 国产成人综合在线播放| 日韩一区二区三区在线视频| 激情综合网av| 国产精品区一区二区三| 一本久久a久久精品亚洲| 国产精品毛片久久久久久| 91视频xxxx| 日韩和欧美一区二区| 欧美不卡一区二区三区| 国产成人精品免费网站| 一区在线观看免费| 6080国产精品一区二区| 国产成人精品1024| 亚洲mv在线观看| 久久久精品人体av艺术| 99精品黄色片免费大全| 视频在线观看一区| 国产精品美女久久久久久| 欧美日韩成人综合天天影院| 国产一区二区毛片| 亚洲成人av一区| 欧美国产一区在线| 欧美一区二区三区四区高清| 成人国产精品免费观看动漫| 亚洲成av人片一区二区梦乃| 国产清纯美女被跳蛋高潮一区二区久久w| 91黄视频在线观看| 国产最新精品免费| 久久亚洲精华国产精华液| 国产精品情趣视频| 精品视频一区二区不卡| 激情丁香综合五月| 亚洲精品五月天| 久久你懂得1024| 欧美唯美清纯偷拍| 成人午夜电影小说| 日本在线不卡一区| 亚洲欧洲国产日韩| 亚洲精品在线电影| 欧美亚洲国产一卡| 99热精品国产| 国产成人亚洲综合色影视| 亚洲电影一级片| 亚洲一区二区四区蜜桃| 国产精品伦理一区二区| 久久久久高清精品| 久久久久成人黄色影片| 久久久久亚洲蜜桃| 久久精品日产第一区二区三区高清版 | 韩国精品免费视频| 久久99久国产精品黄毛片色诱| 美女视频黄 久久| 国产一区二区三区免费看| 国产精品自产自拍| 成人黄页毛片网站| 欧美在线免费观看视频| 欧美一区二区三区人| 日韩一区二区三区电影| 2020国产成人综合网| 国产精品网站在线| 亚洲午夜三级在线| 蜜臀av一级做a爰片久久| 国产一区二区三区四区五区入口| 国产成人一区在线| 91无套直看片红桃| 一区二区三区成人在线视频| 欧美精品一区二区久久久| 日韩欧美国产三级电影视频| 欧美sm极限捆绑bd| 国产日韩精品一区二区三区在线| 国产精品久久久久影院| 一个色妞综合视频在线观看| 欧美aaaaa成人免费观看视频| 国产乱一区二区| 97久久超碰国产精品| 欧美三级日韩三级| 久久夜色精品一区| 亚洲激情图片qvod| 久久99国产乱子伦精品免费| 99国产精品久久| 91精品国模一区二区三区| 国产精品美女久久久久久久| 亚洲国产视频一区二区| 国产毛片精品国产一区二区三区| 色视频一区二区| 精品国产伦一区二区三区免费| 亚洲天堂av老司机| 久久99精品久久久久婷婷| 91捆绑美女网站| 久久亚洲一级片| 亚洲综合无码一区二区| 久久久久成人黄色影片| 综合网在线视频| 日韩电影一区二区三区四区| 国产精品自产自拍| 欧美日韩亚洲综合在线 欧美亚洲特黄一级 | 久久毛片高清国产| 艳妇臀荡乳欲伦亚洲一区| 狠狠色丁香久久婷婷综合_中| 91久久线看在观草草青青| 久久亚洲捆绑美女| 日韩综合小视频| 色呦呦网站一区| 国产精品视频看| 韩国女主播成人在线观看| 欧美在线免费观看亚洲| 欧美激情一区二区在线| 蜜桃久久精品一区二区| 欧美丝袜丝交足nylons| 日韩一区中文字幕| 国产精品1区二区.| 精品久久久久久亚洲综合网| 亚洲成人av一区二区| 色av一区二区| 亚洲免费在线观看| 成人激情电影免费在线观看| 26uuu精品一区二区在线观看| 亚洲影视资源网| 色乱码一区二区三区88| 国产精品传媒视频| 成人一级片网址| 国产欧美日韩在线视频| 国产美女久久久久| www成人在线观看| 亚洲制服丝袜av| 99国内精品久久| 中文字幕av资源一区| 精品一区二区三区免费播放| 日韩一级完整毛片| 奇米色一区二区| 精品不卡在线视频| 国内精品不卡在线| 久久一区二区三区四区| 国产一区二区不卡| 中文字幕欧美三区| 成人av网在线| 亚洲视频综合在线| 日本精品一级二级| 亚洲成国产人片在线观看| 欧美日本一道本在线视频| 日韩精品电影一区亚洲| 日韩一区二区电影| 国产精品亚洲人在线观看| 国产日韩欧美a| 成人av网址在线观看| 亚洲精品中文字幕乱码三区| 欧美亚洲尤物久久| 男女性色大片免费观看一区二区 | 精品视频一区三区九区| 午夜电影一区二区|