99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

COMP52715 代做、代寫 Python設計編程

時間:2024-04-22  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



COMP52715 Deep Learning for Computer Vision & Robotics (Epiphany Term, 202**4)
Summative Coursework - 3D PacMan
Coursework Credit - 15 Credits Estimated Hours of Work - 48 Hours Submission Method - via Ultra
Release On: February 16 2024 (2pm UK Time)
Due On: March 15 2024 (2pm UK Time)
– All rights reserved. Do NOT Distribute. –
  Compiled on November 16, 2023 by Dr. Jingjing Deng

1
1.
2.
3.
4.
5.
6.
Coursework Specification
This coursework constitutes **% of your final mark for this module, where there are two mandatory tasks: Python programming and report writing. You must upload your work to Ultra before the deadline specified on the cover page.
The other 10% will be assessed separately based on seminar participation. There are 3 seminar sessions in total, the mark awarding rule is as such: (A) participating in none=0%, (B) participating in 1 session=2%, (C) participating in 2 sessions=5%, (D) participating in all sessions=10%.
This coursework is to be completed by students working individually. You should NOT ask for help from your peers, lecturer, and lab tutors regarding the coursework. You will be assessed on your code and report submissions. You must comply with the University rules regarding plagiarism and collusion. Using external code without proper referencing is also considered as breaching academic integrity.
Code Submission: The code must be written in Jupyter Notebook with appropriate comments. For constructing deep neural network models, use PyTorch1 library only. Zip Jupyter Note- book source files (*.ipynb), your dataset (if there is any new), pretrained models (*.pth), and a README.txt (code instruction) into one single archive. Do NOT include the original “Pac- Man Helper.py”, “PacMan Helper Demo.ipynb”, “PacMan Skeleton.ipynb”, “TrainingImages.zip”, “cloudPositions.npy” and “cloudColors.npy” files. Submit a single Zip file to GradeScope - Code entry on Ultra.
Report Submission: The report must NOT exceed 5 pages (including figures, tables, references and supplementary materials) with a single column format. The minimum font size is 11pt (use Arial, Calibri, Times New Roman only). Submit a single PDF file to GradeScope - Report entry on Ultra.
Academic Misconduct is a major offence which will be dealt with in accordance with the University’s General Regulation IV – Discipline. Please ensure you have read and understood the University’s regulations on plagiarism and other assessment irregularities as noted in the Learning and Teaching Handbook: 6.2.4: Academic Misconduct2.
            Figure 1: The mysterious PhD Lab.
 1 https://pytorch.org/
2 https://durhamuniversity.sharepoint.com/teams/LTH/SitePages/6.2.4.aspx
1

2 Task Description (**% in total)
2.1 Task 1 - Python Programming (40% subtotal)
In this coursework, you are given a set of 3D point-clouds with appearance features (i.e. RGB values). These point-clouds were collected using a Kinect system in a mysterious PhD Lab (see Figure.1). Several virtual objects are also positioned among those point clouds. Your task is to write a Python program that can automatically detect those objects from an image and use them as anchors to collect the objects and navigate through the 3D scene. If you land close enough to the object it will be automatically captured and removed from the scene. A set of example images that contain those virtual objects are provided. These example images are used to train a classifier (basic solution) and an object detector (advanced solution) using deep learning approaches in order to locate the targets. You are required to attempt both basic and advance solutions. “PacMan Helper.py” provides some basic functions to help you complete the task. “PacMan Helper Demo.ipynb” demonstrates how to use these functions to obtain a 2D image by projecting 3D point-clouds onto the camera image-plane, and how to re-position and rotate the camera etc. All the code and data are available on Ultra. You are encouraged to read the given source codes, particularly “PacMan Skeleton.ipynb”.
Detection Solution using Basic Binary Classifier (10%). Implement a deep neural network model that can classify the image patch into two categories: target object and background. You can use the given images to train your neural network. It then can be used in a sliding window fashion to detect the target object in a given image.
Detection Solution using Advance Object Detector (10%). Implement a deep neural network model that can detect the target object from the image. You may manually or automatically create your own dataset for training the detector. The detector will predict bounding boxes that contain the object from a given image.
Navigation and Collection Task Completion (10%). There are 11 target objects in the scene. Use the trained models to perform scene navigation and object collection. If you land close enough to the object it will be automatically captured and removed from the scene. You may compare the performance of both models.
Visualisation, Coding Style, and Readability (10%). Visualise the data and your experimental results wherever is appropriate. The code should be well structured with sufficient comments for the essential parts to make the implementation of your experiments easy to read and understand. Check the “Google Python Style Guide”3 for guidance.
2.2 Task 2 - Report Writing (50% subtotal)
You will also write a report (maximum five pages) on your work, which you will submit to Ultra alongside your code. The report must contain the following structure:
Introduction and Method (10%). Introduce the task and contextualise the given problem. Make sure to include a few references to previously published work in the field, where you should demon- strate an awareness of the relevant research works. Describe the model(s) and approaches you used to undertake the task. Any decisions on hyper-parameters must be stated here, including motivation for your choices where applicable. If the basis of your decision is experimentation with a number of parameters, then state this.
Result and Discussion(10)%). Describe, compare and contrast the results you obtained on your model(s). Any relationships in the data should be outlined and pointed out here. Only the most important conclusions should be mentioned in the text. By using tables and figures to support the section, you can avoid describing the results fully. Describe the outcome of the experiment and the conclusion that you can draw from these results.
Robot Design (20%). Consider designing an autonomous robot to undertake the given task in the real scene. Discuss the foreseen challenges and propose your design, including robot mechanic configuration, hardware and algorithms for robot sensing and controlling, and system efficiency etc. Provide appropriate justifications for your design choices with evidence from existing literature. You may use simulators such as “CoppeliaSim Edu” or “Gazebo” for visualising your design.
3 https://google.github.io/styleguide/pyguide.html
2
 
Format, Writing Style, and Presentation (10%). Language usage and report format should be in a professional standard and meet the academic writing criteria, with the explanation appropriately divided as per the structure described above. Tables, figures, and references should be included and cited where appropriate. A guide of citation style can be found at library guide4.
3 Learning Outcome
The following materials from lectures and lab practicals are closely relevant to this task:
1. Basic Deep Neural Networks - Image Classification.
2. Generic Visual Perception - Object Detection.
3. Deep Learning for Robotics Sensing and Controlling - Consideration for Robotic System Design.
The following key learning outcomes are assessed:
1. A critical understanding of the contemporary deep machine learning topics presented, and how these are applicable to relevant industrial problems and have future potential for emerging needs in both a research and industrial setting.
2. An advanced knowledge of the principles and practice of analysing relevant robotics and computer vision deep machine learning based algorithms for problem suitability.
3. Written communication, problem solving and analysis, computational thinking, and advanced pro- gramming skills.
The rubric and feedback sheet are attached at the end of this document.
 4 https://libguides.durham.ac.uk/research_skills/managing_info/plagiarism 3

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:菲律賓申請中國探親簽證流程 入華探親簽辦理材料
  • 下一篇:EEE-6512 代寫、代做 java/c++編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產品研發(fā)/客戶要求/設計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網(wǎng)頁版入口 目錄網(wǎng) 排行網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                精品国产亚洲在线| 99久久婷婷国产综合精品电影 | 精品99一区二区| 国产成人免费xxxxxxxx| 久久超级碰视频| 另类综合日韩欧美亚洲| 美女诱惑一区二区| 午夜精品123| 午夜视频一区在线观看| 亚洲成人午夜电影| 亚洲无线码一区二区三区| 一区二区三区在线影院| 日韩一区中文字幕| 一区二区成人在线| 亚洲国产日日夜夜| 亚洲丶国产丶欧美一区二区三区| 亚洲综合在线视频| 午夜精品久久久久| 亚洲一区二区三区小说| 一区二区三区成人| 日韩高清一区二区| 国产福利视频一区二区三区| 国产精品18久久久久久久久久久久 | 成人蜜臀av电影| 不卡的av中国片| 欧美三级日韩在线| 久久久久成人黄色影片| 国产精品网曝门| 亚洲超丰满肉感bbw| 男女男精品视频网| 国产·精品毛片| 在线观看亚洲一区| 日韩一区二区精品在线观看| 欧美国产97人人爽人人喊| 一区二区视频在线看| 日韩av不卡在线观看| 国产成人av一区二区三区在线| 91首页免费视频| 欧美一级在线视频| 日本一区二区三区电影| 亚洲综合色自拍一区| 国产福利一区在线| 欧美中文字幕一区二区三区亚洲| 日韩欧美一级片| 一区二区三区不卡视频| 国产一区中文字幕| 欧美日韩一区二区三区在线看| 久久久久国色av免费看影院| 五月综合激情日本mⅴ| 懂色av一区二区在线播放| 欧美久久久久久蜜桃| 国产精品久久久久久久久免费桃花| 亚洲一级二级三级| 国产精品综合二区| 欧美一区二区三区影视| 中文字幕亚洲综合久久菠萝蜜| 蜜臀精品一区二区三区在线观看| av爱爱亚洲一区| ww亚洲ww在线观看国产| 亚洲成国产人片在线观看| 成人自拍视频在线| 久久亚洲精精品中文字幕早川悠里 | 日产国产欧美视频一区精品| 成人午夜免费av| 久久久午夜精品| 蜜乳av一区二区三区| 欧美亚洲禁片免费| 亚洲激情欧美激情| 色老汉av一区二区三区| 中文字幕永久在线不卡| 夫妻av一区二区| 久久久精品国产免费观看同学| 日韩成人午夜电影| 欧美精品欧美精品系列| 亚洲图片欧美视频| 欧美在线制服丝袜| 一区二区三区国产精华| 色久优优欧美色久优优| 一区二区三区在线免费观看 | 日韩福利视频网| 91精品在线免费| 日本网站在线观看一区二区三区| 精品视频在线免费观看| 亚洲国产中文字幕| 欧美日韩在线综合| 亚洲亚洲精品在线观看| 在线看不卡av| 亚洲成人在线网站| 日韩一区二区电影| 国产一区二区三区电影在线观看| 久久久久久亚洲综合| 国产电影精品久久禁18| 欧美高清在线视频| 色噜噜狠狠成人中文综合| 亚洲国产精品久久艾草纯爱| 制服丝袜一区二区三区| 久久成人久久鬼色| 国产人成一区二区三区影院| 99国产精品久久久| 性做久久久久久免费观看| 日韩视频免费直播| 国产 日韩 欧美大片| 国产精品国产三级国产aⅴ中文 | 一区二区三区美女视频| 欧美日韩视频在线第一区| 日韩中文字幕不卡| 26uuuu精品一区二区| 成av人片一区二区| 婷婷综合久久一区二区三区| 精品成人免费观看| 波多野结衣亚洲| 一区二区三区精品视频| 日韩视频永久免费| 成人网页在线观看| 亚洲18女电影在线观看| 精品国偷自产国产一区| 9人人澡人人爽人人精品| 天堂成人国产精品一区| 国产精品热久久久久夜色精品三区 | 日韩一卡二卡三卡国产欧美| 粉嫩高潮美女一区二区三区 | 欧美日韩在线三级| 国产91丝袜在线18| 亚洲国产人成综合网站| 久久久久亚洲综合| 在线播放视频一区| 91蝌蚪porny| 国产精品资源网| 亚洲网友自拍偷拍| 中文字幕亚洲一区二区va在线| 欧美一区国产二区| 欧美在线高清视频| 成人午夜激情在线| 另类人妖一区二区av| 洋洋成人永久网站入口| 亚洲国产成人私人影院tom| 欧美久久久久久久久| 不卡大黄网站免费看| 国内久久精品视频| 午夜在线成人av| 亚洲卡通动漫在线| 国产精品美女久久久久久久网站| 精品免费一区二区三区| 在线综合亚洲欧美在线视频| 日本高清免费不卡视频| 成人av小说网| 国产福利91精品一区| 国产在线视频精品一区| 蜜桃视频免费观看一区| 五月综合激情婷婷六月色窝| 夜夜精品视频一区二区| 一区二区欧美精品| 亚洲免费观看高清完整版在线 | 精品免费视频一区二区| 7777精品伊人久久久大香线蕉的 | 国产精品视频第一区| 久久久国产午夜精品| 精品国精品国产| 2021中文字幕一区亚洲| 337p日本欧洲亚洲大胆精品| 日韩欧美国产三级| 欧美一级理论片| 日韩欧美www| 精品国内二区三区| 2021中文字幕一区亚洲| 久久精品男人的天堂| 国产情人综合久久777777| 日本一区二区三区视频视频| 国产精品网站在线观看| 亚洲婷婷综合色高清在线| 日韩毛片精品高清免费| 夜夜嗨av一区二区三区中文字幕 | 国产欧美综合色| 国产精品久久久久久久久快鸭 | 久久综合久久99| 国产色产综合色产在线视频| 国产亚洲女人久久久久毛片| 国产精品网站导航| 久久久精品免费观看| 久久久久久久综合日本| 26uuu国产在线精品一区二区| 久久夜色精品国产噜噜av| 欧美国产一区二区| 亚洲色图另类专区| 亚洲第一久久影院| 日韩中文字幕1| 亚洲成a人片在线不卡一二三区 | 国产精品资源在线| www.欧美.com| 欧美久久久久免费| 日韩欧美一级在线播放| 中文字幕av一区二区三区免费看 | 午夜精品福利一区二区三区av| 亚洲va国产天堂va久久en| 蜜桃久久av一区| 国产主播一区二区三区| 国产成人啪免费观看软件 | 精品福利二区三区| 国产精品伦一区二区三级视频| 一区二区三区加勒比av|