99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫EMATM0050 DSMP MSc in Data Science

時間:2024-04-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



 University of Bristol MSc in Data Science; DSMP (Data Science Mini Project; EMATM0050)
Predicting T-Cell Receptor Specificity
T cells (T lymphocytes) are among the most important immune system cells with a vital role in adaptive immunity. T cells recognise cells in the body infected by viruses, bacteria or cells that have undergone cancer transformation. After recognising the infected or cancerous cells, T cells eliminate them from the body thereby preventing the spread of infection or cancer.
T cells recognise their targets through their T Cell Receptors (TCRs) expressed on their cell membrane. A T Cell Receptor consists of an alpha and a beta subunit. The evolutionary arms race between pathogens and the immune system has resulted in a mechanism for generation of a huge number of unique TCRs: and this is essential for a proper immune response against infections and cancer. Although TCR genes are encoded in the genome, their diversity is massively enhanced in several ways: (i) each TCR is composed of a pair of proteins (either alpha + beta chains or gamma + delta chains); (ii) rather than being encoded as a single gene, the DNA encoding the variable region of each of these chains is formed by joining 3 or 4 different stretches of DNA (gene segments) in a process is called VDJ recombination. Each alpha subunit contains a single V and J segment and each beta subunit contains a single V, a D and a J segment. Diversity is provided by the fact that the genome encodes multiple V, D and J segment; (iii) The joining of these segments involves mechanisms which insert and delete nucleotides in a pseudorandom fashion, maximising diversity in the joining region (the CDR3), the region of the TCR chain which contacts the peptide antigen. (ref 1)
T Cell Receptors (TCRs) constitute one of the most promising classes of emerging therapeutics. Whilst TCRs are amongst the most complex facets of immune biology, engineering of an optimum TCR can transform immunotherapies and personalised medicines. The TCR repertoire at any time point reflects on the person’s health and contains a memory of all past experiences. However, CRs are highly variable and their specificities aren’t easily predictable with traditional empirical methods.
In this project you will analyse TCR repertoire from the VDJdb (link) and use machine learning to predict TCRs that will bind to specific epitopes.
 
 Tasks
1. Data Download and Preprocessing
1.1 Download the zip file from GitHub and focus on the VDJdb.txt file.
1.2 Preprocess the dataset. Figure out what each column represents and keep
columns that will help you complete the project.
Predicting TCR specificity from sequence alone is the holy grail of immunotherapy. TCRs that are specific to the same target, often have very similar sequences, thereby TCR sequence – target patterns emerge in the data.
A crude approach could be to represent amino acids of the TCR or key regions of it using one-hot representation.
2. What are the limitations of this approach in downstream analysis? Could you describe a way to overcome them (Hint: Consider the CDR3 length distribution. We are looking for a high level description of the limitation and an approach that would overcome it. No algorithm development is required.)
A common method to predict specificity from a sequence is described in Vujovic et.al. (1). It creates some kind of distance or similarity score matrix of TCR sequences and uses that representation to train models that can classify TCRs based on specificity (Fig 1.).
 
  3. Estimate a distance/similarity matrix representation of the data. Calculate these metrics for the alpha and the beta chains separately, then calculate these for the combined alpha and beta chains too. (Hint: TCRDist, GLIPH or GIANA can be used for this. Alternatively, you can define your own similarity metric.)
4. Plot the TCRs in 2 dimensions and colour them based on specificity. Compare the plots for the alpha, the beta and the combined alpha-beta chains. Comment on your findings. (Hint: scikit-learn has a plethora of dimensionality reduction tools. Some examples are PCA, tSNE and UMAP.)
5. Write code to cluster TCRs. How well do TCRs cluster based on specificity? Can you explain why they do/don’t?
6. Write an algorithm that can predict antigen specificity from sequence. You can use any supervised/unsupervised algorithm to predict specificity. Comment on the performance of the model and reason why it performs good or bad. (Hint: Any reasonable modelling approach is fine. However, keep in mind that simpler models sometimes provide more insights regarding the underlying problem.)

 Bibliography/References
1. Vujovic M, Degn KF, Marin FI, Schaap-Johansen AL, Chain B, Andresen TL, Kaplinsky J, Marcatili P. T cell receptor sequence clustering and antigen specificity. Comput Struct Biotechnol J (2020) 18:2166–21**. doi:10.1016/j.csbj.2020.06.041
2. Mayer-Blackwell. TCR meta-clonotypes for biomarker discovery with tcrdist3: quantification of public, HLA- 2 restricted TCR biomarkers of SARS-CoV-2 infection. bioRxiv (2020) 1:75–94.
3. Huang H, Wang C, Rubelt F, Scriba TJ, Davis MM. Analyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening. Nat Biotechnol (2020) 38:1194–1202. doi:10.1038/s41587-020-0505-4
4. Zhang H, Zhan X, Li B. GIANA allows computationally-efficient TCR clustering and multi-disease repertoire classification by isometric transformation. Nat Commun (2021) 12:1–11.doi:10.1038/s41467-02**25006-WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:學習英語必備的幾大教材!非常全面
  • 下一篇:代做CS 7642 Reinforcement Learning and Decision
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                精品久久久久久久久久久久久久久久久 | 美女精品一区二区| 一区二区三区精品在线| 亚洲国产精品激情在线观看| 国产麻豆精品一区二区| 国产在线视视频有精品| 国产.精品.日韩.另类.中文.在线.播放| 国产美女在线观看一区| 成人精品免费网站| 91免费精品国自产拍在线不卡| 国产一区二区三区在线看麻豆| 成人激情av网| 欧美日韩一区 二区 三区 久久精品| 亚洲欧美激情一区二区| 亚洲视频 欧洲视频| 久久精品亚洲精品国产欧美| 欧美影视一区在线| 欧美性高清videossexo| 欧美国产精品一区二区| 午夜国产不卡在线观看视频| 国产精品18久久久久久久网站| 91精品在线麻豆| 日韩精品中文字幕一区二区三区| 在线日韩av片| 国产丝袜在线精品| 青青草国产精品亚洲专区无| 99国产精品久久| 国产欧美一区视频| 蜜桃av一区二区三区| 精品视频123区在线观看| 一区二区在线免费观看| 99精品桃花视频在线观看| 久久久久9999亚洲精品| 麻豆国产精品777777在线| 91精品国产入口在线| 日韩国产在线一| 91精品一区二区三区久久久久久 | 国产精品久久久久aaaa樱花 | 欧美专区在线观看一区| 亚洲精品写真福利| 91精品1区2区| 天天综合网天天综合色| 欧美中文字幕久久| 亚洲成人黄色小说| 91精品国产色综合久久ai换脸| 午夜精品福利一区二区三区av| 国产精品天天看| 免费观看30秒视频久久| 久久精品一区二区三区不卡| 日韩精品一区二区三区在线播放| 日韩三级免费观看| 日韩视频一区二区在线观看| 欧美成人性福生活免费看| 欧美成va人片在线观看| 欧美国产日韩精品免费观看| 国产成人免费在线| 91激情五月电影| 一区二区视频免费在线观看| 欧美亚洲禁片免费| 日韩电影网1区2区| 26uuu亚洲婷婷狠狠天堂| 国产福利一区二区三区在线视频| 美女一区二区三区| 91麻豆精品国产自产在线观看一区| 国产成人福利片| 欧美日韩在线直播| 久久精品男人天堂av| 最新中文字幕一区二区三区| 亚洲成av人片在线观看| 国产综合久久久久影院| 色婷婷精品大在线视频| 国产成人精品亚洲午夜麻豆| 欧美大片拔萝卜| 国产成人aaa| 亚洲日穴在线视频| 91精品国产综合久久香蕉麻豆| 国产精品一区二区免费不卡| 亚洲精品免费一二三区| 日韩欧美视频一区| 国产成人av一区二区| 欧洲激情一区二区| 精品中文字幕一区二区| 欧美综合久久久| 亚洲午夜一二三区视频| 成人网在线播放| 欧美激情资源网| 不卡免费追剧大全电视剧网站| 精品欧美一区二区三区精品久久| 久久99精品久久久久婷婷| 国产欧美日韩综合| 欧美浪妇xxxx高跟鞋交| 久久在线观看免费| 热久久国产精品| 51精品久久久久久久蜜臀| 午夜精品久久久久久久99樱桃| 91免费看`日韩一区二区| 国产精品美女久久久久久久 | 亚洲免费av高清| 色综合久久88色综合天天6| 亚洲欧洲日韩综合一区二区| 成人动漫视频在线| 久久久高清一区二区三区| 精品一区二区日韩| 欧美高清在线视频| 91美女在线视频| 亚洲成人一二三| wwwwww.欧美系列| 国产一区二区精品久久99| 精品国产三级a在线观看| 国产一区二区三区免费播放| 中文字幕精品一区二区精品绿巨人| 成人黄页毛片网站| 午夜视频一区在线观看| 久久精品亚洲一区二区三区浴池| av午夜一区麻豆| 久久国产精品99久久人人澡| 日本一区二区三区在线不卡| 欧美日韩精品欧美日韩精品一| 国产福利不卡视频| 亚洲制服丝袜av| 亚洲少妇中出一区| 国产天堂亚洲国产碰碰| 日韩欧美国产综合| 在线日韩一区二区| 成人国产精品免费| 国产精品综合久久| 老司机精品视频一区二区三区| 国产精品视频第一区| 在线观看国产一区二区| av中文字幕不卡| 国产成人综合在线| 国产精品影视天天线| 激情深爱一区二区| 秋霞电影网一区二区| 亚洲福中文字幕伊人影院| 一区二区成人在线| 午夜影院久久久| 午夜天堂影视香蕉久久| 亚洲主播在线播放| 性久久久久久久久久久久| 亚洲动漫第一页| 日精品一区二区| 久热成人在线视频| 不卡一二三区首页| 欧洲国产伦久久久久久久| 51精品久久久久久久蜜臀| 91.xcao| 欧美一区二区视频免费观看| 欧美成人一级视频| 国产精品美女视频| 亚洲h精品动漫在线观看| 美女视频黄频大全不卡视频在线播放 | 精品一区二区三区免费| 韩国毛片一区二区三区| 97久久超碰国产精品电影| 欧美天天综合网| 国产精品人人做人人爽人人添| 亚洲福利视频三区| 色综合色综合色综合| 欧美一级黄色录像| 中文字幕第一区综合| 美女脱光内衣内裤视频久久网站| 99久久国产综合精品色伊| 欧美一区二区不卡视频| 国产精品成人在线观看| 美女诱惑一区二区| 欧美色精品天天在线观看视频| 欧美激情中文字幕一区二区| 日本中文字幕一区二区视频| 91蜜桃免费观看视频| 国产片一区二区| 成人激情免费电影网址| 国产三级精品视频| 国产精品一区免费在线观看| 日韩欧美国产一区二区三区| 三级精品在线观看| 日韩欧美一区二区视频| 日韩av电影免费观看高清完整版| 91蜜桃传媒精品久久久一区二区| 亚洲国产精品ⅴa在线观看| 国产一区二区在线影院| 欧美激情在线一区二区三区| 国产一区二三区| 国产精品区一区二区三| 91香蕉视频污在线| 亚洲人精品午夜| 欧美系列一区二区| 狠狠久久亚洲欧美| 亚洲视频综合在线| 欧美久久久影院| 激情五月播播久久久精品| 国产亚洲精品7777| 在线观看av一区二区| 理论电影国产精品| 综合网在线视频| 日韩你懂的在线播放| 91福利精品视频| 久草热8精品视频在线观看| 国产欧美日韩卡一| 欧美二区乱c少妇|