99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫EMATM0050 DSMP MSc in Data Science

時(shí)間:2024-04-21  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



 University of Bristol MSc in Data Science; DSMP (Data Science Mini Project; EMATM0050)
Predicting T-Cell Receptor Specificity
T cells (T lymphocytes) are among the most important immune system cells with a vital role in adaptive immunity. T cells recognise cells in the body infected by viruses, bacteria or cells that have undergone cancer transformation. After recognising the infected or cancerous cells, T cells eliminate them from the body thereby preventing the spread of infection or cancer.
T cells recognise their targets through their T Cell Receptors (TCRs) expressed on their cell membrane. A T Cell Receptor consists of an alpha and a beta subunit. The evolutionary arms race between pathogens and the immune system has resulted in a mechanism for generation of a huge number of unique TCRs: and this is essential for a proper immune response against infections and cancer. Although TCR genes are encoded in the genome, their diversity is massively enhanced in several ways: (i) each TCR is composed of a pair of proteins (either alpha + beta chains or gamma + delta chains); (ii) rather than being encoded as a single gene, the DNA encoding the variable region of each of these chains is formed by joining 3 or 4 different stretches of DNA (gene segments) in a process is called VDJ recombination. Each alpha subunit contains a single V and J segment and each beta subunit contains a single V, a D and a J segment. Diversity is provided by the fact that the genome encodes multiple V, D and J segment; (iii) The joining of these segments involves mechanisms which insert and delete nucleotides in a pseudorandom fashion, maximising diversity in the joining region (the CDR3), the region of the TCR chain which contacts the peptide antigen. (ref 1)
T Cell Receptors (TCRs) constitute one of the most promising classes of emerging therapeutics. Whilst TCRs are amongst the most complex facets of immune biology, engineering of an optimum TCR can transform immunotherapies and personalised medicines. The TCR repertoire at any time point reflects on the person’s health and contains a memory of all past experiences. However, CRs are highly variable and their specificities aren’t easily predictable with traditional empirical methods.
In this project you will analyse TCR repertoire from the VDJdb (link) and use machine learning to predict TCRs that will bind to specific epitopes.
 
 Tasks
1. Data Download and Preprocessing
1.1 Download the zip file from GitHub and focus on the VDJdb.txt file.
1.2 Preprocess the dataset. Figure out what each column represents and keep
columns that will help you complete the project.
Predicting TCR specificity from sequence alone is the holy grail of immunotherapy. TCRs that are specific to the same target, often have very similar sequences, thereby TCR sequence – target patterns emerge in the data.
A crude approach could be to represent amino acids of the TCR or key regions of it using one-hot representation.
2. What are the limitations of this approach in downstream analysis? Could you describe a way to overcome them (Hint: Consider the CDR3 length distribution. We are looking for a high level description of the limitation and an approach that would overcome it. No algorithm development is required.)
A common method to predict specificity from a sequence is described in Vujovic et.al. (1). It creates some kind of distance or similarity score matrix of TCR sequences and uses that representation to train models that can classify TCRs based on specificity (Fig 1.).
 
  3. Estimate a distance/similarity matrix representation of the data. Calculate these metrics for the alpha and the beta chains separately, then calculate these for the combined alpha and beta chains too. (Hint: TCRDist, GLIPH or GIANA can be used for this. Alternatively, you can define your own similarity metric.)
4. Plot the TCRs in 2 dimensions and colour them based on specificity. Compare the plots for the alpha, the beta and the combined alpha-beta chains. Comment on your findings. (Hint: scikit-learn has a plethora of dimensionality reduction tools. Some examples are PCA, tSNE and UMAP.)
5. Write code to cluster TCRs. How well do TCRs cluster based on specificity? Can you explain why they do/don’t?
6. Write an algorithm that can predict antigen specificity from sequence. You can use any supervised/unsupervised algorithm to predict specificity. Comment on the performance of the model and reason why it performs good or bad. (Hint: Any reasonable modelling approach is fine. However, keep in mind that simpler models sometimes provide more insights regarding the underlying problem.)

 Bibliography/References
1. Vujovic M, Degn KF, Marin FI, Schaap-Johansen AL, Chain B, Andresen TL, Kaplinsky J, Marcatili P. T cell receptor sequence clustering and antigen specificity. Comput Struct Biotechnol J (2020) 18:2166–21**. doi:10.1016/j.csbj.2020.06.041
2. Mayer-Blackwell. TCR meta-clonotypes for biomarker discovery with tcrdist3: quantification of public, HLA- 2 restricted TCR biomarkers of SARS-CoV-2 infection. bioRxiv (2020) 1:75–94.
3. Huang H, Wang C, Rubelt F, Scriba TJ, Davis MM. Analyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening. Nat Biotechnol (2020) 38:1194–1202. doi:10.1038/s41587-020-0505-4
4. Zhang H, Zhan X, Li B. GIANA allows computationally-efficient TCR clustering and multi-disease repertoire classification by isometric transformation. Nat Commun (2021) 12:1–11.doi:10.1038/s41467-02**25006-WX:codinghelp

掃一掃在手機(jī)打開當(dāng)前頁(yè)
  • 上一篇:學(xué)習(xí)英語(yǔ)必備的幾大教材!非常全面
  • 下一篇:代做CS 7642 Reinforcement Learning and Decision
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士2號(hào)線
    合肥機(jī)場(chǎng)巴士2號(hào)線
    合肥機(jī)場(chǎng)巴士1號(hào)線
    合肥機(jī)場(chǎng)巴士1號(hào)線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          激情五月综合色婷婷一区二区| 韩国成人理伦片免费播放| 亚洲一区中文| 在线播放视频一区| 国产精品成人免费视频| 快播亚洲色图| 欧美一区二区视频在线观看2020 | 国产一区二区三区丝袜| 欧美激情第一页xxx| 欧美在线视频二区| 亚洲欧美激情四射在线日 | 欧美欧美天天天天操| 欧美一区二区视频网站| 亚洲一区欧美二区| 99国产欧美久久久精品| 亚洲国产99| 国内精品美女在线观看| 国产精品美腿一区在线看| 欧美日韩另类一区| 欧美日本三级| 欧美日韩另类字幕中文| 国产视频精品免费播放| 国产麻豆精品theporn| 91久久久久久| 亚洲综合激情| 欧美黄色一级视频| 国产综合色在线| 中国女人久久久| 久久一二三四| 国产嫩草一区二区三区在线观看 | 国产拍揄自揄精品视频麻豆| 亚洲国产欧美一区二区三区同亚洲| 亚洲精品视频一区| 久久久久国产一区二区| 欧美一级理论性理论a| 欧美黄色影院| 国产亚洲欧美一区在线观看| 日韩一级裸体免费视频| 久久免费高清| 国产亚洲欧美另类一区二区三区| 亚洲国产精品一区二区www在线| 亚洲一区美女视频在线观看免费| 欧美丰满高潮xxxx喷水动漫| 国产伦精品一区二区三区视频黑人 | 国产精品一区二区三区成人| 亚洲欧洲日韩综合二区| 亚洲精选大片| 欧美成年人网站| 黄色工厂这里只有精品| 蜜桃av一区| 激情综合在线| 在线日韩视频| 久久婷婷麻豆| 欧美黑人一区二区三区| 欧美午夜精品理论片a级按摩| 国产精品v欧美精品v日韩精品| 欧美午夜久久久| 在线精品视频在线观看高清| 日韩午夜电影av| 午夜国产精品视频免费体验区| 久久精品夜色噜噜亚洲a∨| 国语自产偷拍精品视频偷| 亚洲精品乱码久久久久| 欧美风情在线观看| 亚洲欧洲日产国产网站| 欧美精品久久久久久久免费观看| 久久亚洲国产精品一区二区 | 欧美日本亚洲视频| 午夜精品久久久久影视| 影音欧美亚洲| 午夜一区二区三视频在线观看| 国产精品av久久久久久麻豆网| 欧美日韩中文字幕在线| 伊人久久久大香线蕉综合直播 | 亚洲精品国产精品国自产观看浪潮| 亚洲免费网址| 国产欧美日韩视频一区二区三区| 亚洲国产毛片完整版| 亚洲一区二区三区四区中文| 欧美午夜激情视频| 蜜桃av一区二区三区| 欧美日韩国产黄| 91久久国产精品91久久性色| 亚洲自拍啪啪| 欧美性大战xxxxx久久久| 亚洲第一综合天堂另类专| 亚洲欧美在线aaa| 欧美日韩一区综合| 欧美二区视频| 亚洲人成在线观看| 国产精品www.| 欧美18av| 午夜亚洲性色福利视频| 亚洲成色www8888| 欧美日韩精品免费观看| 欧美在线精品一区| 亚洲精品综合在线| 一区二区精品| 国产日韩精品电影| 欧美日韩一区二区三区在线视频| 香蕉久久久久久久av网站| 亚洲国产成人一区| 国产精品日韩一区| 欧美国产视频在线观看| 亚洲永久精品国产| 日韩亚洲欧美精品| 在线欧美福利| 欧美日韩综合在线| 亚洲欧美激情视频| 国产在线一区二区三区四区| 久久av在线| 亚洲激情第一区| 欧美色精品天天在线观看视频| 日韩午夜精品| 国产精品一区2区| 久久人91精品久久久久久不卡| 在线观看精品一区| 欧美精品在线播放| 午夜精品久久久久久99热| 一区在线电影| 免费看亚洲片| 亚洲色无码播放| 国产一区深夜福利| 欧美国产激情| 久久riav二区三区| 亚洲激情视频在线观看| 国产精品久久久久久久浪潮网站| 欧美在线短视频| 亚洲黄色免费电影| 国产欧美一区二区精品婷婷 | 亚洲一区二区三区高清 | 欧美日本精品在线| 欧美精品激情blacked18| 欧美高清在线视频| 欧美另类变人与禽xxxxx| 欧美 日韩 国产在线 | 久久久伊人欧美| 久久精品国产亚洲精品| 亚洲欧美一区二区三区极速播放 | 国产精品网站在线| 亚洲伊人久久综合| 亚洲欧美日韩成人| 欧美一区三区二区在线观看| 在线视频亚洲| 亚洲国内自拍| 国产视频在线观看一区二区三区 | 亚洲国产欧美久久| 亚洲国产精品成人一区二区| 亚洲国产91精品在线观看| 亚洲精品男同| 亚洲视频欧美在线| 欧美一区二区三区免费观看视频| 性色av一区二区三区在线观看| 欧美一区午夜精品| 麻豆成人综合网| 欧美日韩视频第一区| 国产麻豆视频精品| 国产伦精品一区二区三区免费| 欧美一区二区三区在线观看视频| 欧美激情第4页| 亚洲一级片在线观看| 欧美视频网址| 欧美四级在线| 欧美日韩国产精品| 国产精品欧美久久| 欧美成人黑人xx视频免费观看| 性色一区二区| 久久久精品国产99久久精品芒果| 美女国内精品自产拍在线播放| 久久精品一级爱片| 欧美精品久久一区| 国产精品美女久久久久久2018| 国产精品啊v在线| 欧美日韩综合网| 欧美色欧美亚洲高清在线视频| 欧美成人高清| 欧美日韩国产在线| 欧美日韩一区二区免费视频| 欧美日韩中文字幕日韩欧美| 欧美视频一区在线| 国产精品久久久久久久久久免费 | 欧美日韩精品在线| 国产精品爱啪在线线免费观看 | 亚洲人成人一区二区在线观看| 在线成人小视频| 亚洲在线观看免费| 亚洲电影av在线| 99精品国产在热久久| 亚洲人成网站精品片在线观看| 亚洲欧洲一区二区天堂久久| 亚洲欧洲一级| 亚洲在线视频观看| 午夜国产精品视频免费体验区| 久久精品人人| 欧美连裤袜在线视频| 国产农村妇女精品| 在线精品亚洲一区二区| 又紧又大又爽精品一区二区| 亚洲精品色图| 久久aⅴ乱码一区二区三区|