99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP2051代做、代寫C/C++,Python編程

時間:2024-04-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 1
Artificial Intelligence Methods (COMP2051 or AE2AIM)
Prof. Ruibin Bai Spring 2024
Coursework: Perturbative hyper-heuristic for Bin Packing Problem
1. Introduction
Bin packing is one of the most studied combinatorial optimisation problems and has
applications in logistics, space planning, production, cloud computing, etc. Bin packing is
proven to be NP-Hard and the actual difficulties depend on both the size of the problem (i.e.
the total number of items to be packed) and other factors like the distribution of item sizes in
relation to the bin size as well as the number of distinct item sizes (different items may have a
same size).
In this coursework, you are asked to write a C/C++/Python program to solve this problem
using a perturbative hyper-heuristic method. In addition to submitting source code, a
written report (no more than 2000 words and 6 pages) is required to describe your algorithm
(see Section 4 for detailed requirements). Both your program and report must be completed
independently by yourself. The submitted documents must successfully pass a plagiarism
checker before they can be marked. Once a plagiarism case is established, the academic
misconduct policies shall be applied strictly.
This coursework carries 45% of the module marks.
2. Bin Packing Problem (BPP)
Given a set of n items, each item j has a size of aj, BPP aims to pack all items in the
minimum number of identical sized bins without violating the capacity of bins (V). The
problem can be mathematically formulated as follow:
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 2
This mathematical formulation is generally NOT solvable by existing integer programming
solvers like CPlex, Gurobi, LPSolve, especially when the number of items n is large. The
solution space of bin packing problem is characterised by its huge size and plateau-like that
makes it very challenging for traditional neighbourhood search methods. In order to
consistently solve the problem with good quality solutions, metaheuristics and hyperheuristics are used, which is the task of this coursework.
3. Problem instances
Over the years, a large number of BPP instances have been introduced by various research.
See https://www.euro-online.org/websites/esicup/data-sets/ for a collection of different bin
packing problem. In this coursework, we shall provide 3 instances files (binpack1.txt,
binpack3.txt and binpack11.txt), respectively representing easy, medium and hard instances.
From which 10 instances shall be selected for testing and evaluation of your algorithm in
marking. For each test instance, only 1 run is executed, and its objective value is used for
marking the performance component (see Section 5).
4. Experiments conditions and submission requirements
The following requirements should be satisfied by your program:
(1) You are required to submit two files exactly. The first file should contain all your
program source codes. The second file is a coursework report. Please do NOT
compress the files.
(2) Your source code should adopt a clean structure and be properly commented.
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 3
(3) Your report should include the followings:
• The main components of the algorithm, including solution encoding, fitness
function, list of low-level heuristics as well as considerations regarding the
intensification and diversification mechanisms. (12 marks).
• Statistical results (avg, best, worst of 5 runs) of the algorithm for all the problem
instances, in comparison with the best published results (i.e. the absolute gap to
the best results). Note that although your report should include results for 5 runs
but your final submission should only have one single run for each instance (i.e.
if you use the sketch code from the lab, set global variable NUM_OF_RUNS=1
before you submit the code). (3 marks)
• A short discussion/reflection on results and performance of the algorithm. (5
marks)
(4) Name your program file after your student id. For example, if your student number
is 2019560, name your program as 2019560.c (or 2019560.cpp, or 2019560.py).
(5) Your program should compile and run without errors on either CSLinux Server or a
computer in the IAMET**. Therefore, please fully tested before submission. You
may use one of the following commands (assuming your student id is 2019560 and
your program is named after your id):
 gcc -std=c99 -lm 2019560.c -o 2019560
or
 g++ -std=c++11 -lm 2019560.cpp -o 2019560
For Python programs, this second can be skipped.
(6) After compilation, your program should be executable using the following
command:
 ./2019560 -s data_fle -o solution_file -t max_time
where 2019560 is the executable file of your program, data_file is one of
problem instance files specified in Section 3. max_time is the maximum time
permitted for a single run of your algorithm. In this coursework, maximum of 30
seconds is permitted. soluton_file is the file for output the best solutions by
your algorithm. The format should be as follows:
# of problems
Instance_id1
obj= objective_value abs_gap
item_indx in bin0
item_indx in bin1
… …
Instance_id2
obj= objective_value abs_gap
item_indx in bin0
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 4
item_indx in bin1
… …
An example solution file for problem data file “binpack1.txt” is available on
moodle.
For submissions using Python, the compilation and running are combined in one
command as follows:
 python 2019560.py -s data_fle -o solution_file -t max_time
(7) The solution file output in (6) by your algorithm (solution_file) is expected to
pass a solution checking test successfully using the following command on
CSLInux:
 ./bpp_checker -s problem_file -c solution_file
where problem_file is one of problem data files in Section 3. If your solution file
format is correct, you should get a command line message similar to: “Your total score
out of 20 instances is: 80." If the solutions are infeasible for some instances, you would
get error messages.
The solution checker can be downloaded from moodle page. It is runnable only on
CSLinux.
(8) Your algorithm should run only ONCE for each problem instance and each run
should take no more than 30 seconds.
(9) Please carefully check the memory management in your program and test your
algorithm with a full run on CSLinux (i.e. running multiple instances in one go). In
the past, some submitted programs can run for **2 instances but then crashed
because of out-of-memory error. This, if happens, will greatly affect your score.
(10) You must strictly follow policies and regulations related to Plagiarism. You are
prohibited from using recent AI tools like ChatGPT/GPT-4 or other similar large
language models (LLMs). Once a case is established, it will be treated as a
plagiarism case and relevant policies and penalties shall be applied.
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 5
5. Marking criteria
• The quality of the experimental results (20 marks). Your algorithm shall be tested for
a file containing 10 instances chosen from the provided set of instances. The
performance of your algorithm is evaluated by computing the absolute gap with the
best known results using
   _    =     _       _          −     _     _         
Criteria Mark
abs_gap < 0 New best results! Bonus: 2 extra marks for
each new best result.
abs_gap <= 0 2 marks per instance
0<abs_gap <=1 1.5 marks per instance
1<abs_gap<=2 1 mark per instance
2< abs_gap <=3 0.5 mark per instance
• abs_gap >4 or
• infeasible solution or
• fail to output solution
within required time limit
0 mark
• The quality of codes, including organisation of the functions/methods, naming
conventions and clarity and succinctness of the comments (5 marks)
• Report (20 marks)
6. Submission deadline
3rd May 2024, 4pm Beijing Time
 Standard penalties are applied for late submissions.
7. How to submit
Submit via Moodle.
8. Practical Hints
• Solution encoding for bin packing is slightly more challenging compared with
knapsack program because both the number of bins to be used and the number of
items to be packed in each bin are parts of decisions to be optimised. Therefore, the
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.**
data structure that is used to hold the packing information cannot be implemented via
fixed-size arrays. You may consider to use vector from C++ STL (standard template
library) which requires you to include <vector.h> as header file. If you prefer C style
without classes, the following data type would be also acceptable:
struct bin_struct {
 std::vector<item_struct> packed_items;
 int cap_left;
};
struct solution_struct {
 struct problem_struct* prob; //maintain a shallow copy of problem data
 float objective;
 int feasibility; //indicate the feasibility of the solution
 std::vector<bin_struct> bins;
};
In this way, you could open/close bins and at the same time to add/remove items for a
specific bin through API functions provided by the vector library.
• The search space of bin packing problem has a lot of plateaus that make the problem
extremely difficult for simple neighbourhood methods. Therefore, multiple low-level
heuristics are suggested within a perturbative hyper-heuristic method. You are free to
select any of the perturbative hyper-heuristic methods described in
(https://link.springer.com/article/10.1007/s10288-01**0182-8), as well as some of the
more recent ones
(https://www.sciencedirect.com/science/article/pii/S0377221719306526).
• Your algorithm must be runnable on CSLinux and/or computers on IAMET**.
Therefore, you are not permitted to use external libraries designed specifically for
optimisation. 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:越南駕駛證簽證辦理(越南駕照的有效期)
  • 下一篇:FIT1047代做、Python/c++程序語言代寫
  • ·代做SWEN20003、代寫C/C++,python編程語
  • ·QBUS6820代做、Python編程語言代寫
  • ·代寫CMSE11475、代做Java/Python編程
  • ·代寫CPSC 217、代做python編程設計
  • ·代寫CMSC 323、代做Java/Python編程
  • ·CMSC 323代做、代寫Java, Python編程
  • ·CS170程序代做、Python編程設計代寫
  • ·COM3524代做、代寫Java,Python編程設計
  • · Root finding part代做、代寫c++,Python編程語言
  • ·代寫ECS 120、代做Java/Python編程設計
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                精品国产18久久久久久| 国产一区二区精彩视频| 韩国av免费观看| 无码人妻丰满熟妇奶水区码| www.成人精品| 污污视频网站免费观看| 国产精品久久免费| 五月婷婷丁香在线| 国产一区二区波多野结衣| 女教师高潮黄又色视频| 久久精品久久99| 无码人妻精品一区二区三| 中文字幕免费看| 97超碰国产在线| 久久99久久98精品免观看软件 | 91激情视频在线| 成人一级片免费看| 久久精品欧美一区二区| 色婷婷狠狠18禁久久| 亚洲国产精品视频在线| 丰满熟女人妻一区二区三| 国内精品久久久久久久久久| 秋霞午夜鲁丝一区二区| 中文字幕1区2区| 国产99久久久| 欧美三级黄色大片| 午夜av免费在线观看| 俄罗斯女人裸体性做爰| 在线观看av中文字幕| 免费看裸体网站| 国产亚洲精品女人久久久久久| 中文字幕日产av| 日本护士做爰视频| 国产精品特级毛片一区二区三区 | 国产美女永久免费无遮挡| 中文字幕免费在线观看视频| 日本亚洲一区二区三区| 精品国精品国产自在久不卡| 草久久免费视频| 亚洲欧洲视频在线观看| 无码人妻久久一区二区三区不卡| 久久久久久久久久久久久久av | 欧美亚洲日本在线| 国产一级片久久| 国产3级在线观看| 99国产成人精品| 亚洲国产精品视频在线| 亚州视频一区二区三区| 日本美女视频网站| 女同性αv亚洲女同志| 国产一区二区在线观看免费视频| www.黄色av| 2017亚洲天堂| 亚洲午夜激情视频| 亚洲欧洲国产综合| 亚洲毛片亚洲毛片亚洲毛片| 中文字幕人妻一区二区在线视频 | 日韩中文字幕免费在线观看| 欧美一区二区免费在线观看| 久久久美女视频| 久久久久久久久99| 九九热精彩视频| 久久精品女人毛片国产| 久久精品三级视频| 久久久久久三级| 免费无码毛片一区二区app| 精品肉丝脚一区二区三区| 精品国产av一区二区| 极品尤物一区二区| 久草视频手机在线| 老熟妇一区二区三区| 毛片视频网站在线观看| 欧美成人aaaaⅴ片在线看| 青青草免费观看视频| 日本免费福利视频| 日批视频免费看| 午夜黄色小视频| 亚洲国产精品成人无久久精品 | 久一区二区三区| 久久中文字幕在线观看| 欧美一级做性受免费大片免费| 日韩精品成人免费观看视频| 日韩精品乱码久久久久久| 无码人妻久久一区二区三区不卡 | 国产一级做a爰片久久| 国产美女免费看| 精品国产99久久久久久宅男i| 波多野结衣av在线观看| 成人av无码一区二区三区| 国产伦子伦对白视频| 国产一级免费观看| 蜜桃av鲁一鲁一鲁一鲁俄罗斯的| 欧美日韩偷拍视频| 香蕉视频xxxx| 艳妇乳肉豪妇荡乳av无码福利| 国产网站在线看| 青青草原国产在线视频| 在线观看中文字幕av| 国产第一页在线观看| 欧美视频一区二区在线| 国产精品第七页| 日本午夜视频在线观看| 一二三不卡视频| 免费在线观看黄色av| 亚洲天堂网一区二区| 久久黄色免费视频| 亚洲人成色777777老人头| 青青草原国产视频| 亚洲伦理一区二区三区| 日本三级视频在线| 国产第一页在线观看| 中国毛片在线观看| 久久黄色小视频| 久久aaaa片一区二区| 色www免费视频| 国产a√精品区二区三区四区| 狠狠躁夜夜躁人人爽天天高潮| 在线免费观看av网址| 久久久精品国产sm调教| 精品人妻无码一区二区三区| 日韩人妻无码一区二区三区| 亚洲天堂手机版| 久草视频在线资源| 午夜久久久久久噜噜噜噜| www.自拍偷拍| 青青草精品在线视频| 亚洲少妇一区二区三区| 久久精品女同亚洲女同13| 亚欧美在线观看| 国产视频三区四区| 亚洲av综合色区无码另类小说| 波多野结衣a v在线| 日本不卡一二区| a天堂中文在线观看| 日本一二三四区视频| www.黄色片| 熟妇女人妻丰满少妇中文字幕| av成人免费网站| 日韩久久中文字幕| 国产成人av免费| 香蕉视频禁止18| 精品人妻一区二区三区三区四区 | 黄色大片网站在线观看| 日韩人妻无码一区二区三区99| 中文字幕一区二区三区四区在线视频 | 美女网站色免费| 日本一级一片免费视频| 成年人午夜视频| 精品女人久久久| 男人操女人下面视频| 婷婷伊人综合中文字幕| 91麻豆成人精品国产免费网站| 久久视频一区二区三区| jizz国产在线| 久久国产劲爆∧v内射| 蜜桃无码一区二区三区| 日本不卡一区二区在线观看| 国产天堂av在线| 久久嫩草捆绑紧缚| 国产一精品一aⅴ一免费| www.午夜激情| 免费看一级一片| 六月婷婷综合网| 超碰在线超碰在线| 国产露脸无套对白在线播放| 日韩欧美亚洲一区二区三区| 影音先锋资源av| 日本在线观看中文字幕| 一级特黄色大片| 日韩欧美国产片| 国产精品国产精品国产| 天天综合网在线| 精品熟妇无码av免费久久| 无码人妻精品一区二区50| 国产成人av免费在线观看| 欧美激情第四页| 亚洲天堂2018av| 国产在线不卡av| 中文字幕av不卡在线| 国产极品久久久| 蜜桃av.com| 亚洲一级中文字幕| 久久夜色精品国产噜噜亚洲av| 91嫩草丨国产丨精品| 精品无码国产污污污免费网站| 一区二区不卡免费视频| 久久国产高清视频| 第四色婷婷基地| 无码人妻久久一区二区三区| 国产精品久久久久久久99| 最近中文字幕在线观看视频| 久操免费在线视频| а天堂中文在线资源| 一区二区日韩视频| 国产免费一级视频| 最近中文字幕一区二区| 久久久久人妻一区精品色欧美| www.国产com| av在线播放网址| 日韩精品久久久久久久|