99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

COMP2051代做、代寫C/C++,Python編程

時間:2024-04-11  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 1
Artificial Intelligence Methods (COMP2051 or AE2AIM)
Prof. Ruibin Bai Spring 2024
Coursework: Perturbative hyper-heuristic for Bin Packing Problem
1. Introduction
Bin packing is one of the most studied combinatorial optimisation problems and has
applications in logistics, space planning, production, cloud computing, etc. Bin packing is
proven to be NP-Hard and the actual difficulties depend on both the size of the problem (i.e.
the total number of items to be packed) and other factors like the distribution of item sizes in
relation to the bin size as well as the number of distinct item sizes (different items may have a
same size).
In this coursework, you are asked to write a C/C++/Python program to solve this problem
using a perturbative hyper-heuristic method. In addition to submitting source code, a
written report (no more than 2000 words and 6 pages) is required to describe your algorithm
(see Section 4 for detailed requirements). Both your program and report must be completed
independently by yourself. The submitted documents must successfully pass a plagiarism
checker before they can be marked. Once a plagiarism case is established, the academic
misconduct policies shall be applied strictly.
This coursework carries 45% of the module marks.
2. Bin Packing Problem (BPP)
Given a set of n items, each item j has a size of aj, BPP aims to pack all items in the
minimum number of identical sized bins without violating the capacity of bins (V). The
problem can be mathematically formulated as follow:
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 2
This mathematical formulation is generally NOT solvable by existing integer programming
solvers like CPlex, Gurobi, LPSolve, especially when the number of items n is large. The
solution space of bin packing problem is characterised by its huge size and plateau-like that
makes it very challenging for traditional neighbourhood search methods. In order to
consistently solve the problem with good quality solutions, metaheuristics and hyperheuristics are used, which is the task of this coursework.
3. Problem instances
Over the years, a large number of BPP instances have been introduced by various research.
See https://www.euro-online.org/websites/esicup/data-sets/ for a collection of different bin
packing problem. In this coursework, we shall provide 3 instances files (binpack1.txt,
binpack3.txt and binpack11.txt), respectively representing easy, medium and hard instances.
From which 10 instances shall be selected for testing and evaluation of your algorithm in
marking. For each test instance, only 1 run is executed, and its objective value is used for
marking the performance component (see Section 5).
4. Experiments conditions and submission requirements
The following requirements should be satisfied by your program:
(1) You are required to submit two files exactly. The first file should contain all your
program source codes. The second file is a coursework report. Please do NOT
compress the files.
(2) Your source code should adopt a clean structure and be properly commented.
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 3
(3) Your report should include the followings:
• The main components of the algorithm, including solution encoding, fitness
function, list of low-level heuristics as well as considerations regarding the
intensification and diversification mechanisms. (12 marks).
• Statistical results (avg, best, worst of 5 runs) of the algorithm for all the problem
instances, in comparison with the best published results (i.e. the absolute gap to
the best results). Note that although your report should include results for 5 runs
but your final submission should only have one single run for each instance (i.e.
if you use the sketch code from the lab, set global variable NUM_OF_RUNS=1
before you submit the code). (3 marks)
• A short discussion/reflection on results and performance of the algorithm. (5
marks)
(4) Name your program file after your student id. For example, if your student number
is 2019560, name your program as 2019560.c (or 2019560.cpp, or 2019560.py).
(5) Your program should compile and run without errors on either CSLinux Server or a
computer in the IAMET**. Therefore, please fully tested before submission. You
may use one of the following commands (assuming your student id is 2019560 and
your program is named after your id):
 gcc -std=c99 -lm 2019560.c -o 2019560
or
 g++ -std=c++11 -lm 2019560.cpp -o 2019560
For Python programs, this second can be skipped.
(6) After compilation, your program should be executable using the following
command:
 ./2019560 -s data_fle -o solution_file -t max_time
where 2019560 is the executable file of your program, data_file is one of
problem instance files specified in Section 3. max_time is the maximum time
permitted for a single run of your algorithm. In this coursework, maximum of 30
seconds is permitted. soluton_file is the file for output the best solutions by
your algorithm. The format should be as follows:
# of problems
Instance_id1
obj= objective_value abs_gap
item_indx in bin0
item_indx in bin1
… …
Instance_id2
obj= objective_value abs_gap
item_indx in bin0
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 4
item_indx in bin1
… …
An example solution file for problem data file “binpack1.txt” is available on
moodle.
For submissions using Python, the compilation and running are combined in one
command as follows:
 python 2019560.py -s data_fle -o solution_file -t max_time
(7) The solution file output in (6) by your algorithm (solution_file) is expected to
pass a solution checking test successfully using the following command on
CSLInux:
 ./bpp_checker -s problem_file -c solution_file
where problem_file is one of problem data files in Section 3. If your solution file
format is correct, you should get a command line message similar to: “Your total score
out of 20 instances is: 80." If the solutions are infeasible for some instances, you would
get error messages.
The solution checker can be downloaded from moodle page. It is runnable only on
CSLinux.
(8) Your algorithm should run only ONCE for each problem instance and each run
should take no more than 30 seconds.
(9) Please carefully check the memory management in your program and test your
algorithm with a full run on CSLinux (i.e. running multiple instances in one go). In
the past, some submitted programs can run for **2 instances but then crashed
because of out-of-memory error. This, if happens, will greatly affect your score.
(10) You must strictly follow policies and regulations related to Plagiarism. You are
prohibited from using recent AI tools like ChatGPT/GPT-4 or other similar large
language models (LLMs). Once a case is established, it will be treated as a
plagiarism case and relevant policies and penalties shall be applied.
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 5
5. Marking criteria
• The quality of the experimental results (20 marks). Your algorithm shall be tested for
a file containing 10 instances chosen from the provided set of instances. The
performance of your algorithm is evaluated by computing the absolute gap with the
best known results using
   _    =     _       _          −     _     _         
Criteria Mark
abs_gap < 0 New best results! Bonus: 2 extra marks for
each new best result.
abs_gap <= 0 2 marks per instance
0<abs_gap <=1 1.5 marks per instance
1<abs_gap<=2 1 mark per instance
2< abs_gap <=3 0.5 mark per instance
• abs_gap >4 or
• infeasible solution or
• fail to output solution
within required time limit
0 mark
• The quality of codes, including organisation of the functions/methods, naming
conventions and clarity and succinctness of the comments (5 marks)
• Report (20 marks)
6. Submission deadline
3rd May 2024, 4pm Beijing Time
 Standard penalties are applied for late submissions.
7. How to submit
Submit via Moodle.
8. Practical Hints
• Solution encoding for bin packing is slightly more challenging compared with
knapsack program because both the number of bins to be used and the number of
items to be packed in each bin are parts of decisions to be optimised. Therefore, the
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.**
data structure that is used to hold the packing information cannot be implemented via
fixed-size arrays. You may consider to use vector from C++ STL (standard template
library) which requires you to include <vector.h> as header file. If you prefer C style
without classes, the following data type would be also acceptable:
struct bin_struct {
 std::vector<item_struct> packed_items;
 int cap_left;
};
struct solution_struct {
 struct problem_struct* prob; //maintain a shallow copy of problem data
 float objective;
 int feasibility; //indicate the feasibility of the solution
 std::vector<bin_struct> bins;
};
In this way, you could open/close bins and at the same time to add/remove items for a
specific bin through API functions provided by the vector library.
• The search space of bin packing problem has a lot of plateaus that make the problem
extremely difficult for simple neighbourhood methods. Therefore, multiple low-level
heuristics are suggested within a perturbative hyper-heuristic method. You are free to
select any of the perturbative hyper-heuristic methods described in
(https://link.springer.com/article/10.1007/s10288-01**0182-8), as well as some of the
more recent ones
(https://www.sciencedirect.com/science/article/pii/S0377221719306526).
• Your algorithm must be runnable on CSLinux and/or computers on IAMET**.
Therefore, you are not permitted to use external libraries designed specifically for
optimisation. 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當(dāng)前頁
  • 上一篇:越南駕駛證簽證辦理(越南駕照的有效期)
  • 下一篇:FIT1047代做、Python/c++程序語言代寫
  • ·代做SWEN20003、代寫C/C++,python編程語
  • ·QBUS6820代做、Python編程語言代寫
  • ·代寫CMSE11475、代做Java/Python編程
  • ·代寫CPSC 217、代做python編程設(shè)計
  • ·代寫CMSC 323、代做Java/Python編程
  • ·CMSC 323代做、代寫Java, Python編程
  • ·CS170程序代做、Python編程設(shè)計代寫
  • ·COM3524代做、代寫Java,Python編程設(shè)計
  • · Root finding part代做、代寫c++,Python編程語言
  • ·代寫ECS 120、代做Java/Python編程設(shè)計
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲精品中文在线影院| 欧美情侣在线播放| 日本中文一区二区三区| 亚洲精品成人天堂一二三| 国产三级一区二区| 久久婷婷成人综合色| 久久综合久久鬼色中文字| 欧美tickling挠脚心丨vk| 日韩一区二区三区电影在线观看| 欧美日韩一区二区三区免费看| 欧美在线制服丝袜| 欧美男同性恋视频网站| 欧美一区二区三区在| 日韩午夜激情免费电影| 久久久综合视频| 国产精品国产a| 亚洲欧美国产毛片在线| 亚洲国产一区二区在线播放| 五月天一区二区| 极品尤物av久久免费看| 风间由美性色一区二区三区| 北岛玲一区二区三区四区| 91久久久免费一区二区| 欧美精品乱码久久久久久| 在线免费视频一区二区| 制服丝袜国产精品| 国产无人区一区二区三区| 中文字幕在线一区二区三区| 一区二区三区中文字幕精品精品 | 在线日韩av片| 欧美久久高跟鞋激| 久久精品视频网| 亚洲午夜免费福利视频| 免费人成网站在线观看欧美高清| 国产成人在线视频网站| 在线视频欧美精品| 精品国产凹凸成av人网站| 亚洲少妇中出一区| 精品一区二区三区欧美| 91麻豆.com| 久久久久久影视| 亚洲国产精品视频| 国产精品99久久久| 欧美久久一区二区| 日韩美女久久久| 精品一区二区三区免费播放| 99久久综合精品| 精品国偷自产国产一区| 最新国产成人在线观看| 国内久久婷婷综合| 欧美日韩国产高清一区二区| 国产精品日韩精品欧美在线| 男人的天堂亚洲一区| 色诱视频网站一区| 久久久久国产一区二区三区四区| 性欧美大战久久久久久久久| 91丨九色丨尤物| 国产亚洲精品久| 日韩不卡一区二区| 欧美日韩一本到| 亚洲精品乱码久久久久久| 国产一区二区免费看| 欧美精品18+| 亚洲午夜视频在线| 91麻豆.com| 亚洲欧洲日韩一区二区三区| 国产一区二区主播在线| 精品国产99国产精品| 日本免费新一区视频| 欧美日韩久久久| 亚洲已满18点击进入久久| 99麻豆久久久国产精品免费 | 久久蜜臀精品av| 美女一区二区视频| 欧美一级欧美三级| 美腿丝袜亚洲一区| 欧美成人三级在线| 九一九一国产精品| 久久综合网色—综合色88| 精品在线你懂的| 久久久青草青青国产亚洲免观| 蜜臀va亚洲va欧美va天堂| 日韩一区二区三区免费看 | 国产一区二区免费看| 日韩天堂在线观看| 喷水一区二区三区| 久久影院午夜片一区| 国产一区不卡在线| 国产精品电影一区二区三区| av一区二区不卡| 亚洲精品国产无天堂网2021| 色欧美乱欧美15图片| 亚洲综合在线视频| 欧美区视频在线观看| 久久国产福利国产秒拍| 国产夜色精品一区二区av| www.亚洲人| 亚洲图片自拍偷拍| 7777精品伊人久久久大香线蕉的| 日韩专区欧美专区| 日韩亚洲欧美一区| 国产尤物一区二区| 亚洲免费毛片网站| 欧美精品一二三| 久久99国产精品尤物| 国产精品毛片久久久久久久| 91啪九色porn原创视频在线观看| 一区二区三区小说| 欧美一区二区三区免费在线看| 久久99精品一区二区三区三区| 久久精品夜夜夜夜久久| 色综合久久久久久久久| 日本美女视频一区二区| 国产人成亚洲第一网站在线播放 | 老司机午夜精品| 亚洲国产精品高清| 欧美视频三区在线播放| 精品一二三四区| 亚洲精品欧美在线| 欧美变态tickle挠乳网站| 成人动漫一区二区三区| 日本不卡123| 亚洲色图欧洲色图| 678五月天丁香亚洲综合网| 国产福利不卡视频| 亚洲午夜免费电影| 国产女人aaa级久久久级| 91国在线观看| 国产.精品.日韩.另类.中文.在线.播放| 国产精品亲子伦对白| 欧美日韩国产首页| 高清成人免费视频| 久久精品国产99久久6| 亚洲gay无套男同| 综合久久给合久久狠狠狠97色| 精品入口麻豆88视频| 欧美日韩在线不卡| 91美女在线视频| 国产91丝袜在线观看| 欧美a一区二区| 亚洲韩国一区二区三区| 中文字幕在线不卡视频| 国产欧美日韩视频一区二区| 欧美一卡在线观看| 欧美日韩亚洲综合在线 | 欧美一区中文字幕| 日本乱人伦一区| av不卡免费在线观看| 国产suv精品一区二区三区| 久久91精品国产91久久小草| 青青草精品视频| 日本亚洲视频在线| 午夜在线成人av| 五月婷婷激情综合| 性久久久久久久| 日韩电影在线看| 日韩电影在线观看一区| 日本不卡的三区四区五区| 视频在线观看一区二区三区| 亚洲午夜国产一区99re久久| 亚洲已满18点击进入久久| 一级女性全黄久久生活片免费| 日韩毛片高清在线播放| 中文字幕一区二区三区乱码在线| 中文无字幕一区二区三区| 中文av一区二区| 亚洲视频在线一区观看| 亚洲永久免费视频| 日韩精品乱码av一区二区| 美女视频一区二区三区| 精品一区二区三区视频| 国产精品伊人色| 99综合影院在线| 欧美又粗又大又爽| 欧美一区二区私人影院日本| 日韩视频一区二区| 国产无人区一区二区三区| 日韩美女视频19| 肉色丝袜一区二区| 国产一区二区在线看| 成人国产精品免费观看动漫| 在线观看亚洲精品| 欧美一级片在线观看| 久久精品视频在线免费观看| 国产精品视频看| 亚洲最大成人综合| 毛片一区二区三区| 成人精品小蝌蚪| 欧美日韩一区二区三区四区五区 | 午夜伊人狠狠久久| 久久精品噜噜噜成人av农村| 成人美女视频在线看| 欧美性色欧美a在线播放| 日韩一区二区视频在线观看| 国产欧美综合在线观看第十页| 亚洲女同ⅹxx女同tv| 久久99九九99精品| 色婷婷香蕉在线一区二区| 欧美mv日韩mv| 亚洲卡通欧美制服中文|