99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

COMP2051代做、代寫C/C++,Python編程

時間:2024-04-11  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 1
Artificial Intelligence Methods (COMP2051 or AE2AIM)
Prof. Ruibin Bai Spring 2024
Coursework: Perturbative hyper-heuristic for Bin Packing Problem
1. Introduction
Bin packing is one of the most studied combinatorial optimisation problems and has
applications in logistics, space planning, production, cloud computing, etc. Bin packing is
proven to be NP-Hard and the actual difficulties depend on both the size of the problem (i.e.
the total number of items to be packed) and other factors like the distribution of item sizes in
relation to the bin size as well as the number of distinct item sizes (different items may have a
same size).
In this coursework, you are asked to write a C/C++/Python program to solve this problem
using a perturbative hyper-heuristic method. In addition to submitting source code, a
written report (no more than 2000 words and 6 pages) is required to describe your algorithm
(see Section 4 for detailed requirements). Both your program and report must be completed
independently by yourself. The submitted documents must successfully pass a plagiarism
checker before they can be marked. Once a plagiarism case is established, the academic
misconduct policies shall be applied strictly.
This coursework carries 45% of the module marks.
2. Bin Packing Problem (BPP)
Given a set of n items, each item j has a size of aj, BPP aims to pack all items in the
minimum number of identical sized bins without violating the capacity of bins (V). The
problem can be mathematically formulated as follow:
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 2
This mathematical formulation is generally NOT solvable by existing integer programming
solvers like CPlex, Gurobi, LPSolve, especially when the number of items n is large. The
solution space of bin packing problem is characterised by its huge size and plateau-like that
makes it very challenging for traditional neighbourhood search methods. In order to
consistently solve the problem with good quality solutions, metaheuristics and hyperheuristics are used, which is the task of this coursework.
3. Problem instances
Over the years, a large number of BPP instances have been introduced by various research.
See https://www.euro-online.org/websites/esicup/data-sets/ for a collection of different bin
packing problem. In this coursework, we shall provide 3 instances files (binpack1.txt,
binpack3.txt and binpack11.txt), respectively representing easy, medium and hard instances.
From which 10 instances shall be selected for testing and evaluation of your algorithm in
marking. For each test instance, only 1 run is executed, and its objective value is used for
marking the performance component (see Section 5).
4. Experiments conditions and submission requirements
The following requirements should be satisfied by your program:
(1) You are required to submit two files exactly. The first file should contain all your
program source codes. The second file is a coursework report. Please do NOT
compress the files.
(2) Your source code should adopt a clean structure and be properly commented.
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 3
(3) Your report should include the followings:
• The main components of the algorithm, including solution encoding, fitness
function, list of low-level heuristics as well as considerations regarding the
intensification and diversification mechanisms. (12 marks).
• Statistical results (avg, best, worst of 5 runs) of the algorithm for all the problem
instances, in comparison with the best published results (i.e. the absolute gap to
the best results). Note that although your report should include results for 5 runs
but your final submission should only have one single run for each instance (i.e.
if you use the sketch code from the lab, set global variable NUM_OF_RUNS=1
before you submit the code). (3 marks)
• A short discussion/reflection on results and performance of the algorithm. (5
marks)
(4) Name your program file after your student id. For example, if your student number
is 2019560, name your program as 2019560.c (or 2019560.cpp, or 2019560.py).
(5) Your program should compile and run without errors on either CSLinux Server or a
computer in the IAMET**. Therefore, please fully tested before submission. You
may use one of the following commands (assuming your student id is 2019560 and
your program is named after your id):
 gcc -std=c99 -lm 2019560.c -o 2019560
or
 g++ -std=c++11 -lm 2019560.cpp -o 2019560
For Python programs, this second can be skipped.
(6) After compilation, your program should be executable using the following
command:
 ./2019560 -s data_fle -o solution_file -t max_time
where 2019560 is the executable file of your program, data_file is one of
problem instance files specified in Section 3. max_time is the maximum time
permitted for a single run of your algorithm. In this coursework, maximum of 30
seconds is permitted. soluton_file is the file for output the best solutions by
your algorithm. The format should be as follows:
# of problems
Instance_id1
obj= objective_value abs_gap
item_indx in bin0
item_indx in bin1
… …
Instance_id2
obj= objective_value abs_gap
item_indx in bin0
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 4
item_indx in bin1
… …
An example solution file for problem data file “binpack1.txt” is available on
moodle.
For submissions using Python, the compilation and running are combined in one
command as follows:
 python 2019560.py -s data_fle -o solution_file -t max_time
(7) The solution file output in (6) by your algorithm (solution_file) is expected to
pass a solution checking test successfully using the following command on
CSLInux:
 ./bpp_checker -s problem_file -c solution_file
where problem_file is one of problem data files in Section 3. If your solution file
format is correct, you should get a command line message similar to: “Your total score
out of 20 instances is: 80." If the solutions are infeasible for some instances, you would
get error messages.
The solution checker can be downloaded from moodle page. It is runnable only on
CSLinux.
(8) Your algorithm should run only ONCE for each problem instance and each run
should take no more than 30 seconds.
(9) Please carefully check the memory management in your program and test your
algorithm with a full run on CSLinux (i.e. running multiple instances in one go). In
the past, some submitted programs can run for **2 instances but then crashed
because of out-of-memory error. This, if happens, will greatly affect your score.
(10) You must strictly follow policies and regulations related to Plagiarism. You are
prohibited from using recent AI tools like ChatGPT/GPT-4 or other similar large
language models (LLMs). Once a case is established, it will be treated as a
plagiarism case and relevant policies and penalties shall be applied.
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 5
5. Marking criteria
• The quality of the experimental results (20 marks). Your algorithm shall be tested for
a file containing 10 instances chosen from the provided set of instances. The
performance of your algorithm is evaluated by computing the absolute gap with the
best known results using
   _    =     _       _          −     _     _         
Criteria Mark
abs_gap < 0 New best results! Bonus: 2 extra marks for
each new best result.
abs_gap <= 0 2 marks per instance
0<abs_gap <=1 1.5 marks per instance
1<abs_gap<=2 1 mark per instance
2< abs_gap <=3 0.5 mark per instance
• abs_gap >4 or
• infeasible solution or
• fail to output solution
within required time limit
0 mark
• The quality of codes, including organisation of the functions/methods, naming
conventions and clarity and succinctness of the comments (5 marks)
• Report (20 marks)
6. Submission deadline
3rd May 2024, 4pm Beijing Time
 Standard penalties are applied for late submissions.
7. How to submit
Submit via Moodle.
8. Practical Hints
• Solution encoding for bin packing is slightly more challenging compared with
knapsack program because both the number of bins to be used and the number of
items to be packed in each bin are parts of decisions to be optimised. Therefore, the
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.**
data structure that is used to hold the packing information cannot be implemented via
fixed-size arrays. You may consider to use vector from C++ STL (standard template
library) which requires you to include <vector.h> as header file. If you prefer C style
without classes, the following data type would be also acceptable:
struct bin_struct {
 std::vector<item_struct> packed_items;
 int cap_left;
};
struct solution_struct {
 struct problem_struct* prob; //maintain a shallow copy of problem data
 float objective;
 int feasibility; //indicate the feasibility of the solution
 std::vector<bin_struct> bins;
};
In this way, you could open/close bins and at the same time to add/remove items for a
specific bin through API functions provided by the vector library.
• The search space of bin packing problem has a lot of plateaus that make the problem
extremely difficult for simple neighbourhood methods. Therefore, multiple low-level
heuristics are suggested within a perturbative hyper-heuristic method. You are free to
select any of the perturbative hyper-heuristic methods described in
(https://link.springer.com/article/10.1007/s10288-01**0182-8), as well as some of the
more recent ones
(https://www.sciencedirect.com/science/article/pii/S0377221719306526).
• Your algorithm must be runnable on CSLinux and/or computers on IAMET**.
Therefore, you are not permitted to use external libraries designed specifically for
optimisation. 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當(dāng)前頁
  • 上一篇:越南駕駛證簽證辦理(越南駕照的有效期)
  • 下一篇:FIT1047代做、Python/c++程序語言代寫
  • ·代做SWEN20003、代寫C/C++,python編程語
  • ·QBUS6820代做、Python編程語言代寫
  • ·代寫CMSE11475、代做Java/Python編程
  • ·代寫CPSC 217、代做python編程設(shè)計
  • ·代寫CMSC 323、代做Java/Python編程
  • ·CMSC 323代做、代寫Java, Python編程
  • ·CS170程序代做、Python編程設(shè)計代寫
  • ·COM3524代做、代寫Java,Python編程設(shè)計
  • · Root finding part代做、代寫c++,Python編程語言
  • ·代寫ECS 120、代做Java/Python編程設(shè)計
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          久久一区二区视频| 欧美在线黄色| 亚洲神马久久| 午夜在线一区| 久久看片网站| 欧美精品综合| 国产伦精品一区二区| 国产综合久久久久久鬼色| 黄色一区二区在线观看| 亚洲精品三级| 亚洲欧美激情视频| 欧美影院在线| 欧美激情一区二区三区在线视频| 欧美日韩国产大片| 国产精品日韩久久久久| 激情久久五月天| 亚洲视频一区在线观看| 久久久久久免费| 欧美久久一级| 国产一区观看| 一区二区三区视频在线看| 欧美在现视频| 国产精品成人免费| 精品91久久久久| 一区二区欧美视频| 久久综合综合久久综合| 国产精品久久久久av| 一区在线电影| 一区二区三区成人精品| 亚洲一区激情| 欧美精品在欧美一区二区少妇| 国产美女精品视频| 99在线|亚洲一区二区| 久久久www成人免费无遮挡大片| 欧美视频第二页| 亚洲欧洲日夜超级视频| 久久精品亚洲| 国产精品久久激情| 日韩视频免费观看高清在线视频| 久久国产欧美| 国产精品毛片va一区二区三区 | 午夜在线成人av| 欧美伦理a级免费电影| 一区二区三区在线视频播放| 欧美在线视频观看免费网站| 欧美日韩亚洲国产一区| 亚洲精品一区在线观看| 蜜桃av久久久亚洲精品| 国内精品99| 欧美亚洲视频一区二区| 欧美日韩综合网| 99www免费人成精品| 欧美另类变人与禽xxxxx| 亚洲国产另类久久久精品极度 | 夜夜嗨av一区二区三区免费区| 久久夜精品va视频免费观看| 很黄很黄激情成人| 久久精品成人一区二区三区| 国产日韩欧美精品综合| 午夜精品免费视频| 国产精品色午夜在线观看| 亚洲自拍都市欧美小说| 国产精品国产三级国产aⅴ9色| 在线一区观看| 国产精品理论片在线观看| 亚洲欧美日韩国产中文在线| 国产精品jizz在线观看美国| 亚洲视频欧洲视频| 国产精品亚洲网站| 久久精品视频播放| 亚洲国产精品高清久久久| 欧美福利视频网站| 一本色道久久88综合亚洲精品ⅰ | 亚洲裸体俱乐部裸体舞表演av| 欧美精品综合| 亚洲欧美日韩国产| 尤物九九久久国产精品的分类| 久久亚洲综合色| 99国内精品久久久久久久软件| 国产精品普通话对白| 久久久久这里只有精品| 亚洲精品影院在线观看| 国产精品一区三区| 欧美 日韩 国产 一区| 亚洲一区二区免费在线| 激情五月综合色婷婷一区二区| 欧美高清视频www夜色资源网| 一区二区福利| 狠狠久久五月精品中文字幕| 欧美激情a∨在线视频播放| 亚洲综合视频网| 亚洲经典一区| 国产日韩在线一区| 欧美成人黄色小视频| 亚洲主播在线观看| 亚洲茄子视频| 国产一区二区久久久| 欧美精品二区| 久久精品免费看| 一区二区三区欧美日韩| 国产真实乱子伦精品视频| 欧美日韩视频| 久久综合久久综合久久| 亚洲主播在线| 日韩亚洲欧美一区| ●精品国产综合乱码久久久久 | 欧美一区午夜视频在线观看| 亚洲国产精品va在线观看黑人| 欧美天堂亚洲电影院在线观看 | 亚洲国产免费看| 国产日韩精品久久| 欧美日韩国产成人在线免费| 久久久成人网| 羞羞视频在线观看欧美| 这里只有精品视频| 亚洲精品乱码久久久久久蜜桃91| 伊人久久婷婷色综合98网| 国产日本欧美一区二区三区在线| 欧美日韩国产麻豆| 欧美激情综合五月色丁香小说 | 亚洲午夜小视频| 亚洲精品乱码久久久久久| 一区二区在线观看视频在线观看| 国产精品系列在线| 国产精品扒开腿爽爽爽视频| 欧美日韩成人一区| 欧美精品导航| 欧美成人免费在线视频| 欧美成人xxx| 欧美二区在线播放| 欧美激情亚洲精品| 欧美激情综合亚洲一二区| 欧美激情第9页| 欧美激情精品久久久久| 欧美黑人在线观看| 欧美精品久久久久a| 欧美aⅴ一区二区三区视频| 蜜臀a∨国产成人精品| 男女精品网站| 欧美日韩国产在线| 国产精品成人av性教育| 国产精品一区二区女厕厕| 国产欧美日韩亚洲精品| 国产一区二区高清视频| 曰韩精品一区二区| 亚洲精品1区| 中文精品99久久国产香蕉| 亚洲女与黑人做爰| 欧美在现视频| 欧美.日韩.国产.一区.二区| 欧美激情综合| 国产精品国色综合久久| 国产欧美日韩精品a在线观看| 国产日韩精品在线观看| 亚洲第一福利在线观看| 亚洲精品国精品久久99热一| 日韩午夜在线观看视频| 亚洲综合色视频| 久久精品成人一区二区三区蜜臀 | 欧美中文字幕在线观看| 免费亚洲一区二区| 欧美伦理视频网站| 国产偷久久久精品专区| 在线观看国产一区二区| 国产精品99久久99久久久二8| 亚洲欧美一区二区三区久久 | 免费日韩av片| 欧美无乱码久久久免费午夜一区| 国产欧美亚洲一区| 日韩视频精品在线| 久久av免费一区| 欧美日韩精品是欧美日韩精品| 国产精品一区二区在线| 亚洲伦理在线免费看| 欧美中文字幕在线视频| 欧美视频在线观看一区| 亚洲国产精品免费| 欧美一区二区三区视频免费播放| 欧美国产免费| 激情六月婷婷综合| 亚洲欧美日韩中文在线制服| 欧美暴力喷水在线| 国产亚洲日本欧美韩国| 一本久久综合| 蜜臀久久久99精品久久久久久| 国产精品青草久久| 日韩视频一区| 免费欧美网站| 韩日精品在线| 欧美在线免费观看亚洲| 欧美视频中文一区二区三区在线观看| 国语自产在线不卡| 午夜欧美精品久久久久久久| 欧美区在线播放| 亚洲激情午夜| 久久亚洲综合色一区二区三区| 国产婷婷成人久久av免费高清| 亚洲网址在线| 国产精品白丝jk黑袜喷水| 宅男66日本亚洲欧美视频|