99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP2051代做、代寫C/C++,Python編程

時間:2024-04-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 1
Artificial Intelligence Methods (COMP2051 or AE2AIM)
Prof. Ruibin Bai Spring 2024
Coursework: Perturbative hyper-heuristic for Bin Packing Problem
1. Introduction
Bin packing is one of the most studied combinatorial optimisation problems and has
applications in logistics, space planning, production, cloud computing, etc. Bin packing is
proven to be NP-Hard and the actual difficulties depend on both the size of the problem (i.e.
the total number of items to be packed) and other factors like the distribution of item sizes in
relation to the bin size as well as the number of distinct item sizes (different items may have a
same size).
In this coursework, you are asked to write a C/C++/Python program to solve this problem
using a perturbative hyper-heuristic method. In addition to submitting source code, a
written report (no more than 2000 words and 6 pages) is required to describe your algorithm
(see Section 4 for detailed requirements). Both your program and report must be completed
independently by yourself. The submitted documents must successfully pass a plagiarism
checker before they can be marked. Once a plagiarism case is established, the academic
misconduct policies shall be applied strictly.
This coursework carries 45% of the module marks.
2. Bin Packing Problem (BPP)
Given a set of n items, each item j has a size of aj, BPP aims to pack all items in the
minimum number of identical sized bins without violating the capacity of bins (V). The
problem can be mathematically formulated as follow:
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 2
This mathematical formulation is generally NOT solvable by existing integer programming
solvers like CPlex, Gurobi, LPSolve, especially when the number of items n is large. The
solution space of bin packing problem is characterised by its huge size and plateau-like that
makes it very challenging for traditional neighbourhood search methods. In order to
consistently solve the problem with good quality solutions, metaheuristics and hyperheuristics are used, which is the task of this coursework.
3. Problem instances
Over the years, a large number of BPP instances have been introduced by various research.
See https://www.euro-online.org/websites/esicup/data-sets/ for a collection of different bin
packing problem. In this coursework, we shall provide 3 instances files (binpack1.txt,
binpack3.txt and binpack11.txt), respectively representing easy, medium and hard instances.
From which 10 instances shall be selected for testing and evaluation of your algorithm in
marking. For each test instance, only 1 run is executed, and its objective value is used for
marking the performance component (see Section 5).
4. Experiments conditions and submission requirements
The following requirements should be satisfied by your program:
(1) You are required to submit two files exactly. The first file should contain all your
program source codes. The second file is a coursework report. Please do NOT
compress the files.
(2) Your source code should adopt a clean structure and be properly commented.
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 3
(3) Your report should include the followings:
• The main components of the algorithm, including solution encoding, fitness
function, list of low-level heuristics as well as considerations regarding the
intensification and diversification mechanisms. (12 marks).
• Statistical results (avg, best, worst of 5 runs) of the algorithm for all the problem
instances, in comparison with the best published results (i.e. the absolute gap to
the best results). Note that although your report should include results for 5 runs
but your final submission should only have one single run for each instance (i.e.
if you use the sketch code from the lab, set global variable NUM_OF_RUNS=1
before you submit the code). (3 marks)
• A short discussion/reflection on results and performance of the algorithm. (5
marks)
(4) Name your program file after your student id. For example, if your student number
is 2019560, name your program as 2019560.c (or 2019560.cpp, or 2019560.py).
(5) Your program should compile and run without errors on either CSLinux Server or a
computer in the IAMET**. Therefore, please fully tested before submission. You
may use one of the following commands (assuming your student id is 2019560 and
your program is named after your id):
 gcc -std=c99 -lm 2019560.c -o 2019560
or
 g++ -std=c++11 -lm 2019560.cpp -o 2019560
For Python programs, this second can be skipped.
(6) After compilation, your program should be executable using the following
command:
 ./2019560 -s data_fle -o solution_file -t max_time
where 2019560 is the executable file of your program, data_file is one of
problem instance files specified in Section 3. max_time is the maximum time
permitted for a single run of your algorithm. In this coursework, maximum of 30
seconds is permitted. soluton_file is the file for output the best solutions by
your algorithm. The format should be as follows:
# of problems
Instance_id1
obj= objective_value abs_gap
item_indx in bin0
item_indx in bin1
… …
Instance_id2
obj= objective_value abs_gap
item_indx in bin0
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 4
item_indx in bin1
… …
An example solution file for problem data file “binpack1.txt” is available on
moodle.
For submissions using Python, the compilation and running are combined in one
command as follows:
 python 2019560.py -s data_fle -o solution_file -t max_time
(7) The solution file output in (6) by your algorithm (solution_file) is expected to
pass a solution checking test successfully using the following command on
CSLInux:
 ./bpp_checker -s problem_file -c solution_file
where problem_file is one of problem data files in Section 3. If your solution file
format is correct, you should get a command line message similar to: “Your total score
out of 20 instances is: 80." If the solutions are infeasible for some instances, you would
get error messages.
The solution checker can be downloaded from moodle page. It is runnable only on
CSLinux.
(8) Your algorithm should run only ONCE for each problem instance and each run
should take no more than 30 seconds.
(9) Please carefully check the memory management in your program and test your
algorithm with a full run on CSLinux (i.e. running multiple instances in one go). In
the past, some submitted programs can run for **2 instances but then crashed
because of out-of-memory error. This, if happens, will greatly affect your score.
(10) You must strictly follow policies and regulations related to Plagiarism. You are
prohibited from using recent AI tools like ChatGPT/GPT-4 or other similar large
language models (LLMs). Once a case is established, it will be treated as a
plagiarism case and relevant policies and penalties shall be applied.
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 5
5. Marking criteria
• The quality of the experimental results (20 marks). Your algorithm shall be tested for
a file containing 10 instances chosen from the provided set of instances. The
performance of your algorithm is evaluated by computing the absolute gap with the
best known results using
   _    =     _       _          −     _     _         
Criteria Mark
abs_gap < 0 New best results! Bonus: 2 extra marks for
each new best result.
abs_gap <= 0 2 marks per instance
0<abs_gap <=1 1.5 marks per instance
1<abs_gap<=2 1 mark per instance
2< abs_gap <=3 0.5 mark per instance
• abs_gap >4 or
• infeasible solution or
• fail to output solution
within required time limit
0 mark
• The quality of codes, including organisation of the functions/methods, naming
conventions and clarity and succinctness of the comments (5 marks)
• Report (20 marks)
6. Submission deadline
3rd May 2024, 4pm Beijing Time
 Standard penalties are applied for late submissions.
7. How to submit
Submit via Moodle.
8. Practical Hints
• Solution encoding for bin packing is slightly more challenging compared with
knapsack program because both the number of bins to be used and the number of
items to be packed in each bin are parts of decisions to be optimised. Therefore, the
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.**
data structure that is used to hold the packing information cannot be implemented via
fixed-size arrays. You may consider to use vector from C++ STL (standard template
library) which requires you to include <vector.h> as header file. If you prefer C style
without classes, the following data type would be also acceptable:
struct bin_struct {
 std::vector<item_struct> packed_items;
 int cap_left;
};
struct solution_struct {
 struct problem_struct* prob; //maintain a shallow copy of problem data
 float objective;
 int feasibility; //indicate the feasibility of the solution
 std::vector<bin_struct> bins;
};
In this way, you could open/close bins and at the same time to add/remove items for a
specific bin through API functions provided by the vector library.
• The search space of bin packing problem has a lot of plateaus that make the problem
extremely difficult for simple neighbourhood methods. Therefore, multiple low-level
heuristics are suggested within a perturbative hyper-heuristic method. You are free to
select any of the perturbative hyper-heuristic methods described in
(https://link.springer.com/article/10.1007/s10288-01**0182-8), as well as some of the
more recent ones
(https://www.sciencedirect.com/science/article/pii/S0377221719306526).
• Your algorithm must be runnable on CSLinux and/or computers on IAMET**.
Therefore, you are not permitted to use external libraries designed specifically for
optimisation. 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:越南駕駛證簽證辦理(越南駕照的有效期)
  • 下一篇:FIT1047代做、Python/c++程序語言代寫
  • ·代做SWEN20003、代寫C/C++,python編程語
  • ·QBUS6820代做、Python編程語言代寫
  • ·代寫CMSE11475、代做Java/Python編程
  • ·代寫CPSC 217、代做python編程設計
  • ·代寫CMSC 323、代做Java/Python編程
  • ·CMSC 323代做、代寫Java, Python編程
  • ·CS170程序代做、Python編程設計代寫
  • ·COM3524代做、代寫Java,Python編程設計
  • · Root finding part代做、代寫c++,Python編程語言
  • ·代寫ECS 120、代做Java/Python編程設計
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产女人18水真多18精品一级做| 在线视频欧美精品| 亚洲午夜一二三区视频| 国产欧美一区二区精品仙草咪| 5858s免费视频成人| 91麻豆123| av成人动漫在线观看| 国产福利视频一区二区三区| 日韩国产欧美一区二区三区| 五月天一区二区三区| 亚洲成在人线免费| 午夜欧美视频在线观看| 亚洲国产日韩a在线播放| 亚洲精品免费在线| 亚洲天堂av老司机| 一区二区三区高清不卡| 亚洲综合精品自拍| 香蕉成人啪国产精品视频综合网| 亚洲国产日日夜夜| 日韩中文字幕区一区有砖一区 | 91精品国产综合久久久久久漫画 | 日韩午夜激情视频| 欧美sm美女调教| 国产欧美综合在线观看第十页| 久久久精品一品道一区| 国产欧美精品区一区二区三区| 国产午夜一区二区三区| 国产精品欧美极品| 亚洲精品第一国产综合野| 五月激情丁香一区二区三区| 激情五月婷婷综合| bt7086福利一区国产| 欧美区在线观看| 日韩精品一区二区三区在线观看 | 欧美日韩免费在线视频| 欧美一级欧美一级在线播放| 欧美zozozo| 1000精品久久久久久久久| 亚洲一区二区欧美激情| 久久成人av少妇免费| 99久久久免费精品国产一区二区| 91福利精品第一导航| 欧美mv日韩mv| ㊣最新国产の精品bt伙计久久| 香蕉久久夜色精品国产使用方法 | 成人av在线资源网站| 欧美日韩国产另类一区| 国产精品久久久久影院色老大| 艳妇臀荡乳欲伦亚洲一区| 激情文学综合丁香| 精品视频在线免费| 国产性做久久久久久| 日韩黄色免费网站| jlzzjlzz亚洲女人18| 日韩欧美一级二级三级久久久| 亚洲图片欧美激情| 国产黄色精品视频| 欧美电视剧免费观看| 亚洲一区二区欧美激情| 成+人+亚洲+综合天堂| 精品国产网站在线观看| 一区二区三区美女视频| 国产激情一区二区三区| 91精品国产色综合久久不卡电影| 亚洲精品国产精华液| 国产乱子轮精品视频| 在线综合+亚洲+欧美中文字幕| 亚洲黄色小视频| 99精品欧美一区| 国产欧美日韩精品一区| 国产一区福利在线| 精品精品国产高清a毛片牛牛| 天天射综合影视| 欧美亚洲综合在线| 亚洲激情校园春色| 色噜噜狠狠成人网p站| 国产精品欧美一区喷水| 国产黄色精品网站| 日本一区二区三区四区| 黄色成人免费在线| 久久精品日韩一区二区三区| 国内精品伊人久久久久av影院| 日韩西西人体444www| 精品在线播放免费| 欧美国产一区二区在线观看| 久久99精品国产麻豆不卡| 精品欧美乱码久久久久久 | 欧美巨大另类极品videosbest | 久久综合九色欧美综合狠狠| 狠狠狠色丁香婷婷综合激情| 精品国产一区二区三区av性色| 国产在线乱码一区二区三区| 精品三级在线看| 风流少妇一区二区| 亚洲男人的天堂av| 欧美精品久久99久久在免费线| 日韩福利视频导航| 久久久影视传媒| 国产69精品久久久久毛片| 国产精品久久久一区麻豆最新章节| www.亚洲在线| 亚洲线精品一区二区三区八戒| 欧美顶级少妇做爰| 国产精品一区二区三区99| 国产精品毛片无遮挡高清| 欧美自拍偷拍午夜视频| 久久超级碰视频| 中文字幕亚洲区| 欧美一区中文字幕| 国产成人综合网| 亚洲bt欧美bt精品| 久久综合久久综合亚洲| 91麻豆国产香蕉久久精品| 婷婷中文字幕综合| 久久精品夜夜夜夜久久| 欧美日韩国产系列| 国产盗摄精品一区二区三区在线 | 六月丁香婷婷色狠狠久久| 久久久av毛片精品| 在线电影一区二区三区| 国产成人丝袜美腿| 天天综合色天天综合| 国产午夜精品一区二区| 欧美日韩黄色影视| www.欧美精品一二区| 免费成人美女在线观看.| 日韩理论片在线| 亚洲精品一线二线三线| 欧美伊人久久大香线蕉综合69 | 国产成人一区在线| 日本麻豆一区二区三区视频| 国产精品免费免费| 久久这里只精品最新地址| 欧美区视频在线观看| 91美女片黄在线观看| 国产福利精品导航| 麻豆精品久久久| 五月综合激情日本mⅴ| 亚洲精品ww久久久久久p站| 国产欧美一区二区精品久导航| 欧美精品乱码久久久久久按摩| 色婷婷久久综合| 高清不卡一区二区| 国产一区二区三区免费看| 日本亚洲最大的色成网站www| 亚洲高清一区二区三区| 亚洲精品亚洲人成人网 | 日日骚欧美日韩| 亚洲一本大道在线| 午夜av一区二区| 亚洲国产成人porn| 亚洲一区在线观看免费观看电影高清| 136国产福利精品导航| 亚洲人成网站色在线观看| 国产精品久久久久久久久搜平片| 国产日韩欧美激情| 欧美国产日产图区| 国产精品成人在线观看| 国产精品国产三级国产aⅴ无密码| 国产午夜精品一区二区三区四区| 精品国产乱码久久久久久蜜臀| 国产成人高清在线| 国产婷婷色一区二区三区四区 | 一区二区在线观看免费视频播放| 日韩欧美国产一区二区三区 | 国产亚洲综合色| 国产欧美一区二区精品性色超碰| 国产欧美日韩精品a在线观看| 国产亚洲精品7777| 亚洲精品日日夜夜| 婷婷夜色潮精品综合在线| 青青草国产成人av片免费| 看片网站欧美日韩| 国产iv一区二区三区| 91蝌蚪porny| 欧美日韩精品一区视频| 欧美精品一区二区三区一线天视频| 久久久久久电影| 亚洲男同1069视频| 精品一区二区三区在线播放| 国产电影精品久久禁18| 欧美在线观看视频一区二区三区| 欧美一区二区视频在线观看2020| 欧美精品一区二区三区蜜桃视频| 国产精品天天看| 亚洲成精国产精品女| 国产露脸91国语对白| 在线视频国产一区| 欧美精品一区二区三区高清aⅴ | 欧美一区二区国产| 国产精品国产三级国产aⅴ入口| 亚洲午夜视频在线观看| 激情综合色播五月| 在线看日本不卡| 国产偷国产偷亚洲高清人白洁| 夜夜嗨av一区二区三区| 国产真实乱对白精彩久久| 欧美中文字幕一二三区视频| 精品不卡在线视频| 人妖欧美一区二区|