99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫CMSE11475、代做Java/Python編程

時間:2024-04-02  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Financial Machine Learning (CMSE11**5)
Group Project Assignment
2023/2024
Content
Content................................................................................................................................................................................................. 1
Project Description......................................................................................................................................................................... 2
Individual Project: ......................................................................................................................................................................... 2
Project Deadline and Submission:........................................................................................................................................... 2
Project topic ................................................................................................................................................................................... 2
Project Hints ................................................................................................................................................................................... 2
Suggested Topics ............................................................................................................................................................................ 3
Forecasting Limit Order Book ............................................................................................................................................... 3
Forecasting Stock Volatility.................................................................................................................................................... 5
Forecasting High Frequency Cryptocurrency Return.................................................................................................. 7
Project Description
The project aims to practice the use of state-of-art machine learning models to analyse financial data and
solve financial problems.
Individual Project:
The project is individual project. No group is required. Students shall select their own topic with data to
complete their own research question alone. Cooperation and discussion with each other in the learning
process is encouraged but the project shall be completed by students’ own work, not a grouped work.
Project Deadline and Submission:
Individual projects run from 15
th January 2024 (week 1) to 29th March 2024 (week 10).
The deadline of submission is 14:00, Thursday, 4
th April 2024.
The submision of the project includes the project report and all implementation codes (do NOT submit any
data). The code shall work on the originally provided datasets. The report and the codes shall be ZIPPED to
one package for submission.
The report MUST follow the given template. All sections are required. The code MUST have complete and
detailed comments for every major logical section.
Project topic
Each student should individually choose a topic from the following suggested topics (with provided data) as
your own project. You are encouraged to revise/improve the project topic to make it more practical,
challenging, and suitable for your own research question. It’s fine if many students select the same suggested
topics as their projects as long as the codes and project reports are significantly distinctive.
The aim of this project is to apply at least THREE out of five techniques illustrated in the course (Deep Neural
Network; XGBoost; Cross-validation; Ensemble Model; Interpretability) to solve a financial problem.
Project Hints
All suggested topics are based on the computer lab examples with some changes and extensions. You can
easily find similar methods and models in the computer lab examples. Carefully studying those examples
and codes are crucial for understanding this course and complete the group coursework.
Suggested Topics
Forecasting Limit Order Book
Topic
Can we use deep neural network to forecast the high-frequency return at multiple horizon for stocks using
their limit order book information?
Data
10-level high frequency Limit Order Book of five stocks: Apple, Amazon, Intel, Microsoft, and Google on 21st
June 2012. Data size from 40MB to 100+MB. You can select to use part of the data.
Method
You may define the following features:are the ask and bid price of 10 levels (𝑖 = 1, … ,10), and w**7;w**5;
𝑖,𝑎
and w**7;w**5;
𝑖,𝑏
are the volume of 10 levels
(𝑖 = 1, … ,10). w**4;w**5;
𝐿𝑂w**; ∈ **7;40
2) Bid-Ask Order Flow (OF)
𝑏𝑂𝐹w**5;,𝑖 = {
w**7;w**5;
𝑖,𝑏
, 𝑖𝑓 𝑏w**5;
𝑖 > 𝑏w**5;−1
𝑖
w**7;w**5;
𝑖,𝑏 − w**7;w**5;−1
𝑖,𝑏
,𝑖𝑓 𝑏w**5;
𝑖 = 𝑏w**5;−1
𝑖
−w**7;w**5;
𝑖,𝑏
, 𝑖𝑓 𝑏w**5;
𝑖 < 𝑏w**5;−1
𝑖
𝑎𝑂𝐹w**5;,𝑖 = {
w**7;w**5;
𝑖,𝑎
, 𝑖𝑓 𝑎w**5;
𝑖 > 𝑎w**5;−1
𝑖
w**7;w**5;
𝑖,𝑎 − w**7;w**5;−1
𝑖,𝑎
,𝑖𝑓 𝑎w**5;
𝑖 = 𝑎w**5;−1
𝑖
−w**7;w**5;
𝑖,𝑎
, 𝑖𝑓 𝑎w**5;
𝑖 < 𝑎w**5;−1
𝑖
𝑂𝐹𝑖 ∈ **7;20
3) Order Flow Imbalance (OFI)
𝑂𝐹𝐼w**5; = 𝑏𝑂𝐹w**5;,𝑖 − 𝑎𝑂𝐹w**5;,𝑖
𝑂𝐹𝐼w**5; ∈ **7;20
The features can be defined as a vector
𝐗w**5; = (w**4;w**5;
𝐿𝑂w**;
, 𝑏𝑂𝐹w**5;,𝑖
, 𝑎𝑂𝐹w**5;,𝑖
,𝑂𝐹𝐼w**5;)
𝑇
The total dimension of feature vector 𝐗w**5;
is 40+20+10=70. 𝐗w**5; ∈ **7;70
.
The target is the the LOB mid-point return 𝐫w**5; over 𝐻 future horizons (𝐻 ≥ 1).
𝐫w**5; = (w**3;w**5;,1, … , w**3;w**5;,𝐻)
𝑇
This project is to estimate the function 𝑓(∙), that takes a sequence of historical 𝐗w**5; as input and generates
vector 𝐫w**5; as output:
𝐫w**5; = 𝑓(𝐗w**5;
,𝐗w**5;−1, 𝐗w**5;−2, … , 𝐗w**5;−𝑾)
Where 𝑾 is the look back window, 𝐫w**5; = (w**3;w**5;,1, … , w**3;w**5;,𝐻)
𝑇
𝑗 = 1, … , 𝐻.
This topic shall use LSTM as one of the potential models. You may try to train the LSTM model with the raw
70-dimension features 𝐗w**5; with different 𝑾. You may also extract the features with lower dimensions 𝑀 < 70
by autoencoder and then train the LSTM model using the extracted features with different 𝑾. You can provide
a comparison of those two methods.
This project shall also address the question of the feature importance.
Forecasting Stock Volatility
Topic
This topic comprises two subtopics, both pertaining to volatility forecasting. These subtopics are as follows:
1) Is stock volatility path-dependent?
2) Is stock volatility past-dependent?
To address these questions, you have the option to employ various machine learning models for forecasting
stock return volatility. This can be achieved either by utilising past returns (path-dependent) or past volatilities
(past-dependent).
Addressing either of the aforementioned sub-questions fulfils the coursework requirements for the
FML course. There is no need to complete work for both questions.
Data
In computer lab_3_1, we show the method to download stock prices from Yahoo Finance. This topic uses the
stock adjusted prices to calculate its volatility. You shall calculate the volatility as the standard deviation of the
Ү**; daily arithmetic returns, but it's essential to note that this volatility should be computed based on returns
within distinct, non-overlapping Ү**;-day intervals. Ү**; can be five or ten days. The following figure shows the
volatility calculation, where w**3;𝑖
is the daily return and ҵ**;𝑖
is the five-day volatility.
To successfully complete the coursework, you must choose a minimum of two stocks to assess one of the
aforementioned questions. The selection of these stocks should align with your personal interests.
Method
The topic is to investigate whether the volatility is path-dependent or past-dependent. But the length 𝐿 of
the path and past are unknown. You can select 𝐿 as 5, 10, 15, 20, or 40 days in the investigation and conclude
with a best 𝐿. Please decide by yourself what lengths 𝐿 to select in your coursework.
For the question of path-dependent, the input features contain the daily returns in past 𝐿 days:
𝐗w**5; = (w**3;w**5;−1, w**3;w**5;−2, w**3;w**5;−2, … , w**3;w**5;−𝐿
)
𝑇
The output is the volatility 𝑦w**5; = ҵ**;w**5;
. Please be aware that the returns in 𝐗w**5;
shall not be included in the
calculation of the output volatility 𝑦w**5;
. As illustrated in figure below, to forecast the volatility ҵ**;w**5;
, you can use
the daily returns w**3;w**5;−1, w**3;w**5;−2,…, w**3;w**5;−𝐿
in past 𝐿 days.
For the question of past-dependent, the input features contain the previous 𝐿 volatilities:
𝐗w**5; = (ҵ**;w**5;−1, ҵ**;w**5;−2, ҵ**;w**5;−3, … , ҵ**;w**5;−𝐿
)
𝑇
The output is the volatility 𝑦w**5; = ҵ**;w**5;
.
This topic shall use any of the machine learning models.
This topic may also answer what length 𝐿 generate the best forecasting results for the path- and pastdependence.
Forecasting High Frequency Cryptocurrency Return
Topic
This topic is to study how machine learning models perform in forecasting 15-minute ahead return in any of
the 14 popular cryptocurrencies.
Data
A dataset “cryptocurrency_prices.csv” of millions of rows of **minute frequency market data dating back to
2018 is provided for building the model. The dataset contains 14 popular cryptocurrencies, distinguished by
asset IDs. The details of the asset IDs and names are in the file “asset_details.csv”. You may choose any
cryptocurrencies to forecast. The “Weight” in the file is to calculate the whole market of cryptocurrency and
will be introduced in next section.
Asset_ID Weight Asset_Name
2 2.3978952** Bitcoin Cash
0 4.30**5093 Binance Coin
1 6.779921**7 Bitcoin
5 1.386294361 EOS.IO
7 2.079441542 Ethereum Classic
6 5.894402834 Ethereum
9 2.3978952** Litecoin
11 1.609437912 Monero
13 1.791759469 TRON
12 2.079441542 Stellar
3 4.**7192** Cardano
8 1.09**2289 IOTA
10 1.09**2289 Maker
4 3.555348061 Dogecoin
In the file “cryptocurrency_prices.csv”, the target has been calculated and provided as the column “Target”.
The target is derived from the log return over the future 15 minutes, for each cryptocurrency asset 𝑎 as the
residual of 15 minutes log return Targetw**5;
𝑎
. Noted that, in each row, the “Target” has already been aligned as
the future 15 minute return residual and is to be forecasted. (Target: Residual log-returns for the asset over
a 15 minute horizon.)
We can see the features included in the dataset as the following:
timestamp: All timestamps are returned as second Unix timestamps (the number of seconds elapsed since
1970-0**01 00:00:00.000 UTC). Timestamps in this dataset are multiple of 60, indicating minute-by-minute
data.
Asset_ID: The asset ID corresponding to one of the crytocurrencies (e.g. Asset_ID = 1 for Bitcoin). The mapping
from Asset_ID to crypto asset is contained in asset_details.csv.
Count: Total number of trades in the time interval (last minute).
Open: Opening price of the time interval (in USD).
High: Highest price reached during time interval (in USD).
Low: Lowest price reached during time interval (in USD).
Close: Closing price of the time interval (in USD).
Volume: Quantity of asset bought or sold, displayed in base currency USD.
VWAP: The average price of the asset over the time interval, weighted by volume. VWAP is an aggregated
form of trade data.
Method
You may define some additional features. For example, the past 5 minute log return, the past 5 minute
absolute log return, past 5 minute highest, past 5 minute lowest, etc.
You may try simple models, i.e., linear tree, and complex models, i.e., LSTM and compare their forecasting
performance.
If using LSTM, you may also study what length of the looking back window provide the best forecasting
performance.
In addition, the feature importance shall also be studied to show which features contribute to the stock relative
performance in the future the best.
Appendix
This appendix introduces how the target is calculated.
The log return at time w**5; for asset 𝑎 is calculated as:
𝑅w**5;
𝑎 = log (
𝑃w**5;+16
𝑎
𝑃w**5;+1
𝑎 )
As the crypto asset returns are highly correlated, forecasting returns for individual asset shall remove the
market signal from individual asset returns. Therefore, the weighted average cryptocurrency market return 𝑀w**5;
is defined as:
is the weight for each cryptocurrency and is defined in the column “Weight” in the file
“asset_details.csv”.
Then, a beta is calculated for each asset ҵ**;
Where the bracket &#**01;∙&#**02; calculate the rolling window average over the past 3750 minute windows.
Then, a regression residual is defined as the target for each asset Targetw**5;
BUT, you don’t need to do this calculation. The target values have been calculated and provided in the 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 







 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓大使館周末上班嗎 大使館上班時間是什么時候
  • 下一篇:QBUS6820代做、Python編程語言代寫
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美成人一区二区三区| 不卡欧美aaaaa| 亚洲精品自拍动漫在线| 久久久国产一区二区三区四区小说| 国产调教视频一区| 久久欧美一区二区| 国产精品久久久久影院老司| 久88久久88久久久| 精品99一区二区| 亚洲午夜久久久久中文字幕久| 久久99久久久久| 欧美年轻男男videosbes| 日韩美女视频一区| 国产福利一区二区三区在线视频| 777精品伊人久久久久大香线蕉| 欧美国产一区在线| 老司机精品视频在线| 欧美精品久久99久久在免费线| 亚洲视频一区二区免费在线观看| 国产传媒欧美日韩成人| 久久亚洲捆绑美女| 国产一区二区影院| 久久久美女毛片| 国产成人精品一区二| 精品国产一区二区精华| 国产一区福利在线| 精品处破学生在线二十三| 奇米精品一区二区三区四区| 欧美一区二区三区思思人| 美女网站色91| 国产免费观看久久| zzijzzij亚洲日本少妇熟睡| 国产精品久久久久桃色tv| 一本色道亚洲精品aⅴ| 一区二区三区欧美亚洲| 国产经典欧美精品| 亚洲在线成人精品| 精品国产网站在线观看| av不卡在线观看| 自拍偷拍亚洲综合| 男男成人高潮片免费网站| 久久久www成人免费毛片麻豆| 欧美喷水一区二区| 欧美丝袜丝nylons| 国产精品自拍av| 久久精品国产精品亚洲精品| 日本中文字幕一区二区有限公司| 亚洲免费观看高清完整版在线观看| 久久亚洲欧美国产精品乐播| 欧美刺激脚交jootjob| 日韩一区二区三区观看| 日韩欧美一二三| 国产无一区二区| 亚洲三级免费观看| 亚洲国产精品欧美一二99| 亚洲精品欧美二区三区中文字幕| 欧美电影一区二区| 欧美午夜宅男影院| 91福利资源站| 99国内精品久久| 国产一区啦啦啦在线观看| 欧美aaaaaa午夜精品| 性做久久久久久免费观看| 亚洲综合丝袜美腿| 亚洲综合久久久| 亚洲精品自拍动漫在线| 综合色中文字幕| 亚洲精品日韩综合观看成人91| 国产亚洲欧美一级| 久久久久国产精品麻豆| 国产三级精品三级| 久久视频一区二区| 中文字幕 久热精品 视频在线| 欧美电影免费观看高清完整版在线观看| 在线免费观看日韩欧美| 99久久精品免费看| 在线观看日韩高清av| 欧美日韩激情在线| 日韩一级片网站| 久久久久久久久久久久久久久99 | 欧美r级电影在线观看| 久久精品久久久精品美女| 国产亚洲美州欧州综合国| 国产sm精品调教视频网站| 亚洲一区二区三区小说| 欧美亚洲动漫精品| 国产成人精品亚洲777人妖| 国产精品三级av| 色婷婷综合久久久中文一区二区| 欧美精品一区二区三区很污很色的| 99精品视频中文字幕| 成人动漫一区二区在线| 蜜桃免费网站一区二区三区| 久久亚洲影视婷婷| 精品一区二区三区av| 亚洲美女一区二区三区| 国产精品美女久久久久高潮| 在线观看91视频| 久久精品国产999大香线蕉| 亚洲精品大片www| 色av综合在线| 久久99国产精品免费网站| 一区二区三区四区亚洲| 亚洲精品成人精品456| 亚洲欧洲中文日韩久久av乱码| 视频一区在线播放| 三级欧美韩日大片在线看| 国产91精品入口| 日韩欧美aaaaaa| 日本不卡视频在线| 99精品视频在线观看| 日韩欧美www| 首页综合国产亚洲丝袜| 99国产精品久久久久| 亚洲精品一线二线三线无人区| 青青草成人在线观看| 99久久久国产精品| 精品国产网站在线观看| 一区二区三区在线视频观看58| 国产精品一级在线| 国产视频视频一区| 国产一区二区电影| 色婷婷av一区二区| 国产精品理论片在线观看| 狠狠色2019综合网| 精品国产第一区二区三区观看体验| 日本亚洲视频在线| 欧美videos大乳护士334| 成人性生交大片免费看中文| 欧美一二三四在线| 天天综合色天天综合色h| 日本韩国视频一区二区| 亚洲精品国产品国语在线app| 欧美影院一区二区| 亚洲bdsm女犯bdsm网站| 51精品秘密在线观看| 亚洲一区二区五区| 欧美美女一区二区在线观看| 日本中文字幕一区二区视频| 欧美一区二区三区啪啪| 蜜桃传媒麻豆第一区在线观看| 91色综合久久久久婷婷| 最新高清无码专区| 色狠狠av一区二区三区| 五月开心婷婷久久| 2021国产精品久久精品| 色狠狠一区二区| 亚洲午夜私人影院| 91麻豆精品国产91久久久久久久久 | 国产福利91精品| 亚洲色图都市小说| 精品日韩在线观看| 欧美这里有精品| 国产乱子轮精品视频| 一区二区在线电影| 日韩欧美亚洲国产精品字幕久久久| 国产麻豆欧美日韩一区| 欧美aaaaaa午夜精品| 亚洲第一成年网| 久久久99久久| 欧美白人最猛性xxxxx69交| 欧美最猛黑人xxxxx猛交| 91农村精品一区二区在线| 男女男精品视频网| 天天综合日日夜夜精品| 亚洲天堂中文字幕| 综合分类小说区另类春色亚洲小说欧美| 欧洲另类一二三四区| 首页国产欧美日韩丝袜| 亚洲欧美精品午睡沙发| 国产精品家庭影院| 久久精品视频在线看| 精品国产制服丝袜高跟| 91国产免费观看| 北条麻妃一区二区三区| 国产精品18久久久久久久久| 日产国产高清一区二区三区| 一区二区三区产品免费精品久久75| 国产精品视频观看| 国产精品毛片大码女人| 亚洲色图欧洲色图| 中文字幕综合网| 国产精品网曝门| 日韩美女天天操| 2017欧美狠狠色| ㊣最新国产の精品bt伙计久久| 26uuu国产一区二区三区| 日韩欧美在线123| 精品国产一区久久| 久久免费视频色| 久久综合九色综合97_久久久| 久久综合狠狠综合久久激情 | av电影一区二区| 99国产精品久久久久久久久久| 成人激情动漫在线观看| 日本高清不卡在线观看| 国产视频亚洲色图| 亚洲一级电影视频| 一区二区三区欧美| 国产精品一区专区|