99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫CMSE11475、代做Java/Python編程

時間:2024-04-02  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Financial Machine Learning (CMSE11**5)
Group Project Assignment
2023/2024
Content
Content................................................................................................................................................................................................. 1
Project Description......................................................................................................................................................................... 2
Individual Project: ......................................................................................................................................................................... 2
Project Deadline and Submission:........................................................................................................................................... 2
Project topic ................................................................................................................................................................................... 2
Project Hints ................................................................................................................................................................................... 2
Suggested Topics ............................................................................................................................................................................ 3
Forecasting Limit Order Book ............................................................................................................................................... 3
Forecasting Stock Volatility.................................................................................................................................................... 5
Forecasting High Frequency Cryptocurrency Return.................................................................................................. 7
Project Description
The project aims to practice the use of state-of-art machine learning models to analyse financial data and
solve financial problems.
Individual Project:
The project is individual project. No group is required. Students shall select their own topic with data to
complete their own research question alone. Cooperation and discussion with each other in the learning
process is encouraged but the project shall be completed by students’ own work, not a grouped work.
Project Deadline and Submission:
Individual projects run from 15
th January 2024 (week 1) to 29th March 2024 (week 10).
The deadline of submission is 14:00, Thursday, 4
th April 2024.
The submision of the project includes the project report and all implementation codes (do NOT submit any
data). The code shall work on the originally provided datasets. The report and the codes shall be ZIPPED to
one package for submission.
The report MUST follow the given template. All sections are required. The code MUST have complete and
detailed comments for every major logical section.
Project topic
Each student should individually choose a topic from the following suggested topics (with provided data) as
your own project. You are encouraged to revise/improve the project topic to make it more practical,
challenging, and suitable for your own research question. It’s fine if many students select the same suggested
topics as their projects as long as the codes and project reports are significantly distinctive.
The aim of this project is to apply at least THREE out of five techniques illustrated in the course (Deep Neural
Network; XGBoost; Cross-validation; Ensemble Model; Interpretability) to solve a financial problem.
Project Hints
All suggested topics are based on the computer lab examples with some changes and extensions. You can
easily find similar methods and models in the computer lab examples. Carefully studying those examples
and codes are crucial for understanding this course and complete the group coursework.
Suggested Topics
Forecasting Limit Order Book
Topic
Can we use deep neural network to forecast the high-frequency return at multiple horizon for stocks using
their limit order book information?
Data
10-level high frequency Limit Order Book of five stocks: Apple, Amazon, Intel, Microsoft, and Google on 21st
June 2012. Data size from 40MB to 100+MB. You can select to use part of the data.
Method
You may define the following features:are the ask and bid price of 10 levels (𝑖 = 1, … ,10), and w**7;w**5;
𝑖,𝑎
and w**7;w**5;
𝑖,𝑏
are the volume of 10 levels
(𝑖 = 1, … ,10). w**4;w**5;
𝐿𝑂w**; ∈ **7;40
2) Bid-Ask Order Flow (OF)
𝑏𝑂𝐹w**5;,𝑖 = {
w**7;w**5;
𝑖,𝑏
, 𝑖𝑓 𝑏w**5;
𝑖 > 𝑏w**5;−1
𝑖
w**7;w**5;
𝑖,𝑏 − w**7;w**5;−1
𝑖,𝑏
,𝑖𝑓 𝑏w**5;
𝑖 = 𝑏w**5;−1
𝑖
−w**7;w**5;
𝑖,𝑏
, 𝑖𝑓 𝑏w**5;
𝑖 < 𝑏w**5;−1
𝑖
𝑎𝑂𝐹w**5;,𝑖 = {
w**7;w**5;
𝑖,𝑎
, 𝑖𝑓 𝑎w**5;
𝑖 > 𝑎w**5;−1
𝑖
w**7;w**5;
𝑖,𝑎 − w**7;w**5;−1
𝑖,𝑎
,𝑖𝑓 𝑎w**5;
𝑖 = 𝑎w**5;−1
𝑖
−w**7;w**5;
𝑖,𝑎
, 𝑖𝑓 𝑎w**5;
𝑖 < 𝑎w**5;−1
𝑖
𝑂𝐹𝑖 ∈ **7;20
3) Order Flow Imbalance (OFI)
𝑂𝐹𝐼w**5; = 𝑏𝑂𝐹w**5;,𝑖 − 𝑎𝑂𝐹w**5;,𝑖
𝑂𝐹𝐼w**5; ∈ **7;20
The features can be defined as a vector
𝐗w**5; = (w**4;w**5;
𝐿𝑂w**;
, 𝑏𝑂𝐹w**5;,𝑖
, 𝑎𝑂𝐹w**5;,𝑖
,𝑂𝐹𝐼w**5;)
𝑇
The total dimension of feature vector 𝐗w**5;
is 40+20+10=70. 𝐗w**5; ∈ **7;70
.
The target is the the LOB mid-point return 𝐫w**5; over 𝐻 future horizons (𝐻 ≥ 1).
𝐫w**5; = (w**3;w**5;,1, … , w**3;w**5;,𝐻)
𝑇
This project is to estimate the function 𝑓(∙), that takes a sequence of historical 𝐗w**5; as input and generates
vector 𝐫w**5; as output:
𝐫w**5; = 𝑓(𝐗w**5;
,𝐗w**5;−1, 𝐗w**5;−2, … , 𝐗w**5;−𝑾)
Where 𝑾 is the look back window, 𝐫w**5; = (w**3;w**5;,1, … , w**3;w**5;,𝐻)
𝑇
𝑗 = 1, … , 𝐻.
This topic shall use LSTM as one of the potential models. You may try to train the LSTM model with the raw
70-dimension features 𝐗w**5; with different 𝑾. You may also extract the features with lower dimensions 𝑀 < 70
by autoencoder and then train the LSTM model using the extracted features with different 𝑾. You can provide
a comparison of those two methods.
This project shall also address the question of the feature importance.
Forecasting Stock Volatility
Topic
This topic comprises two subtopics, both pertaining to volatility forecasting. These subtopics are as follows:
1) Is stock volatility path-dependent?
2) Is stock volatility past-dependent?
To address these questions, you have the option to employ various machine learning models for forecasting
stock return volatility. This can be achieved either by utilising past returns (path-dependent) or past volatilities
(past-dependent).
Addressing either of the aforementioned sub-questions fulfils the coursework requirements for the
FML course. There is no need to complete work for both questions.
Data
In computer lab_3_1, we show the method to download stock prices from Yahoo Finance. This topic uses the
stock adjusted prices to calculate its volatility. You shall calculate the volatility as the standard deviation of the
Ү**; daily arithmetic returns, but it's essential to note that this volatility should be computed based on returns
within distinct, non-overlapping Ү**;-day intervals. Ү**; can be five or ten days. The following figure shows the
volatility calculation, where w**3;𝑖
is the daily return and ҵ**;𝑖
is the five-day volatility.
To successfully complete the coursework, you must choose a minimum of two stocks to assess one of the
aforementioned questions. The selection of these stocks should align with your personal interests.
Method
The topic is to investigate whether the volatility is path-dependent or past-dependent. But the length 𝐿 of
the path and past are unknown. You can select 𝐿 as 5, 10, 15, 20, or 40 days in the investigation and conclude
with a best 𝐿. Please decide by yourself what lengths 𝐿 to select in your coursework.
For the question of path-dependent, the input features contain the daily returns in past 𝐿 days:
𝐗w**5; = (w**3;w**5;−1, w**3;w**5;−2, w**3;w**5;−2, … , w**3;w**5;−𝐿
)
𝑇
The output is the volatility 𝑦w**5; = ҵ**;w**5;
. Please be aware that the returns in 𝐗w**5;
shall not be included in the
calculation of the output volatility 𝑦w**5;
. As illustrated in figure below, to forecast the volatility ҵ**;w**5;
, you can use
the daily returns w**3;w**5;−1, w**3;w**5;−2,…, w**3;w**5;−𝐿
in past 𝐿 days.
For the question of past-dependent, the input features contain the previous 𝐿 volatilities:
𝐗w**5; = (ҵ**;w**5;−1, ҵ**;w**5;−2, ҵ**;w**5;−3, … , ҵ**;w**5;−𝐿
)
𝑇
The output is the volatility 𝑦w**5; = ҵ**;w**5;
.
This topic shall use any of the machine learning models.
This topic may also answer what length 𝐿 generate the best forecasting results for the path- and pastdependence.
Forecasting High Frequency Cryptocurrency Return
Topic
This topic is to study how machine learning models perform in forecasting 15-minute ahead return in any of
the 14 popular cryptocurrencies.
Data
A dataset “cryptocurrency_prices.csv” of millions of rows of **minute frequency market data dating back to
2018 is provided for building the model. The dataset contains 14 popular cryptocurrencies, distinguished by
asset IDs. The details of the asset IDs and names are in the file “asset_details.csv”. You may choose any
cryptocurrencies to forecast. The “Weight” in the file is to calculate the whole market of cryptocurrency and
will be introduced in next section.
Asset_ID Weight Asset_Name
2 2.3978952** Bitcoin Cash
0 4.30**5093 Binance Coin
1 6.779921**7 Bitcoin
5 1.386294361 EOS.IO
7 2.079441542 Ethereum Classic
6 5.894402834 Ethereum
9 2.3978952** Litecoin
11 1.609437912 Monero
13 1.791759469 TRON
12 2.079441542 Stellar
3 4.**7192** Cardano
8 1.09**2289 IOTA
10 1.09**2289 Maker
4 3.555348061 Dogecoin
In the file “cryptocurrency_prices.csv”, the target has been calculated and provided as the column “Target”.
The target is derived from the log return over the future 15 minutes, for each cryptocurrency asset 𝑎 as the
residual of 15 minutes log return Targetw**5;
𝑎
. Noted that, in each row, the “Target” has already been aligned as
the future 15 minute return residual and is to be forecasted. (Target: Residual log-returns for the asset over
a 15 minute horizon.)
We can see the features included in the dataset as the following:
timestamp: All timestamps are returned as second Unix timestamps (the number of seconds elapsed since
1970-0**01 00:00:00.000 UTC). Timestamps in this dataset are multiple of 60, indicating minute-by-minute
data.
Asset_ID: The asset ID corresponding to one of the crytocurrencies (e.g. Asset_ID = 1 for Bitcoin). The mapping
from Asset_ID to crypto asset is contained in asset_details.csv.
Count: Total number of trades in the time interval (last minute).
Open: Opening price of the time interval (in USD).
High: Highest price reached during time interval (in USD).
Low: Lowest price reached during time interval (in USD).
Close: Closing price of the time interval (in USD).
Volume: Quantity of asset bought or sold, displayed in base currency USD.
VWAP: The average price of the asset over the time interval, weighted by volume. VWAP is an aggregated
form of trade data.
Method
You may define some additional features. For example, the past 5 minute log return, the past 5 minute
absolute log return, past 5 minute highest, past 5 minute lowest, etc.
You may try simple models, i.e., linear tree, and complex models, i.e., LSTM and compare their forecasting
performance.
If using LSTM, you may also study what length of the looking back window provide the best forecasting
performance.
In addition, the feature importance shall also be studied to show which features contribute to the stock relative
performance in the future the best.
Appendix
This appendix introduces how the target is calculated.
The log return at time w**5; for asset 𝑎 is calculated as:
𝑅w**5;
𝑎 = log (
𝑃w**5;+16
𝑎
𝑃w**5;+1
𝑎 )
As the crypto asset returns are highly correlated, forecasting returns for individual asset shall remove the
market signal from individual asset returns. Therefore, the weighted average cryptocurrency market return 𝑀w**5;
is defined as:
is the weight for each cryptocurrency and is defined in the column “Weight” in the file
“asset_details.csv”.
Then, a beta is calculated for each asset ҵ**;
Where the bracket &#**01;∙&#**02; calculate the rolling window average over the past 3750 minute windows.
Then, a regression residual is defined as the target for each asset Targetw**5;
BUT, you don’t need to do this calculation. The target values have been calculated and provided in the 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 







 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓大使館周末上班嗎 大使館上班時間是什么時候
  • 下一篇:QBUS6820代做、Python編程語言代寫
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          久久综合九色99| 亚洲视频一二| 国产精品久久网| 蜜臀av一级做a爰片久久| 亚洲午夜在线观看| 亚洲欧洲另类国产综合| 国产伦精品一区二区三区| 欧美电影在线观看完整版| 亚洲欧美一区二区在线观看| 亚洲人成高清| 雨宫琴音一区二区在线| 国产目拍亚洲精品99久久精品 | 欧美精品高清视频| 久久久久www| 久久都是精品| 欧美一区二区三区免费视频| 亚洲美女区一区| 亚洲国产天堂久久综合网| 国产一区二区三区四区| 国产精品国产精品| 欧美日一区二区在线观看| 欧美激情在线| 欧美精品自拍偷拍动漫精品| 欧美电影在线观看| 免费成人性网站| 免费日韩成人| 欧美成在线观看| 欧美激情一区二区三区在线视频观看| 免费观看日韩av| 欧美成人激情视频免费观看| 欧美xart系列高清| 欧美精品一区二| 欧美日韩一卡| 国产精品一页| 国内成+人亚洲+欧美+综合在线| 国产色视频一区| 亚洲电影中文字幕| 亚洲免费观看在线观看| 一区二区高清在线观看| 亚洲午夜日本在线观看| 校园激情久久| 久久视频在线视频| 欧美欧美全黄| 国产欧美日韩精品a在线观看| 国产亚洲va综合人人澡精品| 韩国精品在线观看| 亚洲国产婷婷香蕉久久久久久| 亚洲日本一区二区三区| 一区二区三区视频在线看| 亚洲欧美久久久久一区二区三区| 欧美有码在线观看视频| 欧美成人免费全部观看天天性色| 欧美日产国产成人免费图片| 国产麻豆成人精品| 亚洲国产欧美一区二区三区同亚洲| 日韩午夜在线| 久久久久久91香蕉国产| 欧美女人交a| 国语对白精品一区二区| 亚洲每日在线| 久久aⅴ国产紧身牛仔裤| 欧美电影免费观看网站| 国产精品一区在线观看| 亚洲精品日产精品乱码不卡| 性久久久久久| 欧美日韩国产不卡在线看| 国产一区二区三区高清| 一区二区欧美激情| 麻豆精品在线视频| 国产日韩欧美综合| 一区二区三区偷拍| 麻豆精品传媒视频| 国产伦理一区| 亚洲一区不卡| 欧美人与禽性xxxxx杂性| 国产亚洲人成a一在线v站| 中文精品视频| 欧美精品亚洲一区二区在线播放| 国产一区清纯| 香蕉久久国产| 国产精品国产一区二区| 亚洲精品视频在线观看免费| 久久噜噜亚洲综合| 国产亚洲欧美日韩日本| 午夜精品影院| 国产精品欧美精品| 亚洲免费婷婷| 国产精品久久久久永久免费观看 | 国产自产精品| 午夜精品区一区二区三| 国产精品久久久久久久久久免费 | 一本久久青青| 欧美精品综合| 日韩天天综合| 欧美日韩和欧美的一区二区| 亚洲日本中文字幕区| 免费欧美日韩| 亚洲精选久久| 欧美精品性视频| 日韩亚洲一区二区| 国产精品地址| 性欧美18~19sex高清播放| 国产精品九九久久久久久久| 亚洲欧美日韩国产成人| 国产精品色一区二区三区| 亚洲专区免费| 国产一区清纯| 老司机精品导航| 亚洲人成在线观看一区二区| 欧美精品国产| 一本色道**综合亚洲精品蜜桃冫| 欧美日韩亚洲天堂| 午夜视黄欧洲亚洲| 国内外成人在线视频| 久久天天躁狠狠躁夜夜av| 亚洲福利视频三区| 欧美美女视频| 久久成人这里只有精品| 亚洲激情电影在线| 国产精品国产三级国产专播品爱网 | 91久久亚洲| 国产精品久久久久久久久久免费 | 国产日韩成人精品| 麻豆久久婷婷| 亚洲在线免费| 亚洲国产精品久久久久秋霞蜜臀| 欧美日韩国产综合视频在线观看 | 国产三区精品| 欧美另类高清视频在线| 欧美亚洲在线播放| 亚洲精品乱码久久久久久按摩观| 国产精品嫩草久久久久| 老巨人导航500精品| 亚洲欧美变态国产另类| 在线欧美日韩国产| 国产日韩精品入口| 欧美日韩国产免费| 久久久久一区二区| 在线视频精品一区| 亚洲欧洲精品一区二区| 国产一区二区在线观看免费播放| 欧美剧在线免费观看网站| 久久精品国产免费| 亚洲一区二区视频| 日韩午夜视频在线观看| 亚洲第一在线综合在线| 国产一区二区三区在线观看视频 | 欧美午夜剧场| 欧美人与性动交cc0o| 久久亚洲国产成人| 欧美在线免费视频| 亚洲欧美日本在线| 99成人在线| 亚洲人成7777| 亚洲激情一区二区| 亚洲国产二区| 亚洲第一综合天堂另类专| 国色天香一区二区| 国产欧美在线观看一区| 国产精品专区一| 国产精品亚洲综合天堂夜夜| 欧美体内谢she精2性欧美| 欧美激情精品久久久久久免费印度 | 日韩视频在线观看一区二区| 亚洲第一精品在线| 一区二区在线视频| 尤物99国产成人精品视频| 国产一区二区三区观看| 国产亚洲精品bt天堂精选| 国产免费一区二区三区香蕉精| 国产日韩精品一区二区浪潮av| 国产日韩av一区二区| 国产午夜精品久久| 激情久久五月天| 在线日韩av片| 亚洲国产欧美不卡在线观看| 亚洲激情网站免费观看| 亚洲精品视频啊美女在线直播| 亚洲三级视频在线观看| 99pao成人国产永久免费视频| 亚洲精品久久久久久久久| 一本色道久久综合亚洲精品婷婷 | 国产精品日韩欧美大师| 国产伦精品一区二区三区在线观看| 国产精品区一区二区三区| 国产主播在线一区| 亚洲人午夜精品免费| 亚洲视频导航| 久久夜色精品一区| 欧美日韩不卡| 国产在线乱码一区二区三区| 在线欧美亚洲| 一本到高清视频免费精品| 香蕉av777xxx色综合一区| 久久资源在线| 国产精品激情偷乱一区二区∴| 国产欧美一区二区三区国产幕精品| 国产在线精品自拍| 亚洲美女中文字幕| 新片速递亚洲合集欧美合集 |