99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

CEG5304代做、代寫(xiě)Java/c++編程語(yǔ)言

時(shí)間:2024-04-11  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Project #2 for CEG5304: Generating Images through Prompting and Diffusion-based Models.
Spring (Semester 2), AY 202**024
In this exploratory project, you are to explore how to generate (realistic) images via diffusion-based models (such as DALLE and Stable Diffusion) through prompting, in particular hard prompting. To recall and recap the concepts of prompting, prompt engineering, LLVM (Large Language Vision Models), and LMM (Large Multi-modal Models), please refer to the slides on Week 5 (“Lect5-DL_prompt.pdf”).
Before beginning this project, please read the following instructions carefully, failure to comply with the instructions may be penalized:
1.This project does not involve compulsory coding, complete your project with this given Word document file by filling in the “TO FILL” spaces. Save the completed file as a PDF file for submission. Please do NOT modify anything (including this instruction) in your submission file.
2.The marking of this project is based on how detailed the description and discussion are over the given questions. To score, please make sure your descriptions and discussions are readable, and adequate visualizations are provided.
3.The marking of this project is NOT based on any evaluation criteria (e.g., PSNR) over the generated image. Generating a good image does NOT guarantee a high score.
4.You may use ChatGPT/Claude or any online LLM services for polishing. However, purely using these services for question answering is prohibited (and is actually very obvious). If it is suspected that you generate your answers holistically with these online services, your assignment may be considered as committing plagiarism.
5.Submit your completed PDF on Canvas before the deadline: 1759 SGT on 20 April 2024 (updated from the slides). Please note that the deadlines are strict and late submission will be deducted 10 points (out of 100) for every 24 hours.
6.The report must be done individually. You may discuss with your peers, but NO plagiarism is allowed. The University, College, Department, and the teaching team take plagiarism very seriously. An originality report may be generated from iThenticate when necessary. A zero mark will be given to anyone found plagiarizing and a formal report will be handed to the Department/College for further investigation.

Task 1: generating an image with Stable Diffusion (via Huggingface Spaces) and compare it with the objective real image. (60%)
In this task, you are to generate an image with the Stable Diffusion model in Huggingface Spaces. The link is provided here: CLICK ME. You can play with the different prompts and negative prompts (prompts that instructs the model NOT to generate something). Your objective is to generate an image that looks like the following image:

1a) First, select a rather coarse text prompt. A coarse text prompt may not include a lot of details but should be a good starting prompt to generate images towards our objective. An example could be “A Singaporean university campus with a courtyard.”. Display your generated image and its corresponding text prompt (as well as the negative prompt, if applicable) below: (10%)
TO FILL
TO FILL
1b) Describe, in detail, how the generated image is compared to the objective image. You may include the discussion such as the components in the objective image that is missing from the generated image, or anything generated that does not make sense in the real world. (20%)
TO FILL
TO FILL
Next, you are to improve the generated image with prompt engineering. Note that it is highly likely that you may still be unable to obtain the objective image. A good reference material for prompt engineering can be found here: PROMPT ENGINEERING. 
1c) Describe in detail how you improve your generated image. The description should include display of the generated images and their corresponding prompts, and detailed reasoning over the change in prompts. If the final improved image is generated with several iterations of prompt improvement, you should show each step in detail. I.e., you should display the result of each iteration of prompt change and discuss the result of each prompt change. You should also compare your improved image with both the first image you generated above, as well as the objective image. (30%)
TO FILL
TO FILL
TO FILL
Task 2: generating images with another diffusion-based model, DALL-E (mini-DALL-E, via Huggingface Spaces). (40%)
Stable Diffusion is not the only diffusion-based model that has the capability to generate good quality images. DALL-E is an alternative to Stable Diffusion. However, we are not to discuss the differences over these two models technically, but the differences over the generated images qualitatively (in a subjective manner). The link to generating with mini-DALL-E is provided here: MINI-DALL-E.
2a) You should first use the same prompt as you used in Task 1a and generate the image with mini-DALL-E. Display the generated image and compare, in detail, the new generated image with that generated by Stable Diffusion. (10%)
TO FILL
TO FILL
2b) Similar to what we performed for Stable Diffusion; you are to again improve the generated image with prompt engineering. Describe in detail how you improve your generated image. Similarly, if the final improved image is generated with several iterations of prompt improvement, you should show each step in detail. The description should include display of the generated images and their corresponding prompts, and detailed reasoning over the change in prompts. You should compare your improved image with both the first image you generated above, as well as the objective image.
In addition, you should also describe how the improvement is similar to or different from the previous improvement process with Stable Diffusion. (10%)
TO FILL
TO FILL
2c) From the generation process in Task 1 and Task 2, discuss the capabilities and limitations over image generation with off-the-shelf diffusion-based models and prompt engineering. You could further elaborate on possible alternatives or improvements that could generate images that are more realistic or similar to the objective image. (20%)
TO FILL
TO FILL

請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp









 

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:MCD4700代做、Python/c++編程語(yǔ)言代寫(xiě)
  • 下一篇:怎么申請(qǐng)菲律賓移民達(dá)沃??jī)r(jià)格多少
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開(kāi)團(tuán)工具
    出評(píng) 開(kāi)團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 trae 豆包網(wǎng)頁(yè)版入口 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美妇女性影城| 九九国产精品视频| 色老汉一区二区三区| 国产乱码精品1区2区3区| 男女性色大片免费观看一区二区 | 久久国产婷婷国产香蕉| 亚洲曰韩产成在线| 一个色妞综合视频在线观看| 亚洲精品老司机| 国产精品欧美极品| 国产精品网曝门| 亚洲精品水蜜桃| 午夜欧美电影在线观看| 免费高清在线一区| 国产精品中文欧美| 99视频超级精品| 日本韩国一区二区三区视频| 欧美在线观看视频一区二区三区| 色老头久久综合| 欧美精品日日鲁夜夜添| 欧美一二三在线| 26uuu色噜噜精品一区| 日本一区二区三区在线观看| 中文字幕在线不卡一区二区三区| ...xxx性欧美| 日本成人中文字幕| 福利电影一区二区三区| 色妞www精品视频| 欧美一区二区三区公司| 国产欧美精品在线观看| 亚洲激情欧美激情| 久久99精品久久久久久久久久久久| 顶级嫩模精品视频在线看| 欧美专区亚洲专区| 久久无码av三级| 亚洲主播在线播放| 国产乱码精品一区二区三区五月婷| www.亚洲免费av| 制服丝袜av成人在线看| 精品国产露脸精彩对白| 一区二区三区四区在线免费观看| 青青草成人在线观看| 国产成人一级电影| 欧美日韩国产影片| 国产精品欧美久久久久无广告 | 精品毛片乱码1区2区3区| 国产精品亲子伦对白| 美美哒免费高清在线观看视频一区二区 | 国产自产视频一区二区三区 | 欧美成人一区二区三区在线观看| 国产欧美日韩三级| 日本女人一区二区三区| 在线日韩av片| 中文字幕一区在线观看视频| 激情都市一区二区| 91精品国产福利| 亚洲尤物视频在线| 99久久夜色精品国产网站| 337p粉嫩大胆色噜噜噜噜亚洲| 亚洲国产精品久久一线不卡| av在线不卡网| 国产日韩三级在线| 国内精品免费**视频| 制服丝袜亚洲精品中文字幕| 亚洲综合图片区| 色综合久久九月婷婷色综合| 国产精品嫩草影院com| 国产一区二区视频在线播放| 欧美一区二区三区精品| 性做久久久久久久久| 欧美在线影院一区二区| 亚洲少妇屁股交4| av福利精品导航| 国产精品久久久久久久久果冻传媒 | 日本高清不卡视频| 国产精品久久久久三级| 国产精品一区二区果冻传媒| 日韩午夜激情电影| 美女久久久精品| 欧美精品一区二区三区高清aⅴ| 首页国产丝袜综合| 日韩限制级电影在线观看| 日韩av一级片| 日韩欧美在线123| 麻豆一区二区99久久久久| 日韩一级黄色片| 乱中年女人伦av一区二区| 日韩欧美二区三区| 国产在线观看免费一区| wwwwxxxxx欧美| 粉嫩av亚洲一区二区图片| 日韩精品综合一本久道在线视频| 国模冰冰炮一区二区| 国产精品二区一区二区aⅴ污介绍| 国产在线观看一区二区 | 欧美美女直播网站| 日韩一级免费观看| 欧美大片拔萝卜| 中文字幕亚洲一区二区av在线| 日韩伦理av电影| 亚洲精品视频在线| 麻豆久久一区二区| 色老综合老女人久久久| 精品欧美乱码久久久久久1区2区| 国产精品久久夜| 国产成人一区在线| 日韩欧美一区在线| 一级中文字幕一区二区| 国产精品自拍av| 在线区一区二视频| 国产午夜精品一区二区三区四区| 久久疯狂做爰流白浆xx| 成人免费观看av| 亚洲国产成人私人影院tom| 偷窥国产亚洲免费视频| 成人av资源下载| 777a∨成人精品桃花网| 亚洲欧美日韩系列| 99热在这里有精品免费| 久久精品亚洲麻豆av一区二区 | 久久免费国产精品| 国产精品乱码人人做人人爱| 久久99精品国产| 久久综合资源网| 免费高清视频精品| 91精品国产综合久久蜜臀| 亚洲在线观看免费| 色综合久久久久综合体| 中文字幕av在线一区二区三区| 国产精品资源网站| 欧美一区二区精品久久911| 亚洲综合一区二区三区| 色婷婷久久99综合精品jk白丝| 欧美tickling网站挠脚心| 美日韩黄色大片| 久久精品一二三| 99精品在线免费| 亚洲四区在线观看| 欧美羞羞免费网站| 国产精品久久久久久久久免费相片 | 精品国产亚洲在线| 亚洲第一精品在线| 欧美羞羞免费网站| 亚洲一区二区偷拍精品| 欧美日韩在线直播| 亚洲成人动漫av| 欧美精选午夜久久久乱码6080| 韩国成人精品a∨在线观看| 2021中文字幕一区亚洲| 精品在线免费视频| 欧美韩日一区二区三区四区| 成人精品视频一区二区三区尤物| 国产精品视频看| 色婷婷久久一区二区三区麻豆| 亚洲影视在线播放| 777欧美精品| 国产白丝精品91爽爽久久| 亚洲无线码一区二区三区| 日韩三级免费观看| 欧洲亚洲精品在线| 国产不卡高清在线观看视频| 午夜精品一区二区三区电影天堂 | www.av亚洲| 免费在线观看精品| 亚洲乱码日产精品bd| 久久久综合精品| 欧美一二三区在线观看| 欧美在线啊v一区| 成人永久免费视频| 久久国产精品免费| 日韩在线一区二区三区| 亚洲精品成人在线| 国产精品无码永久免费888| 日韩一区二区免费在线电影| 在线观看一区二区视频| 99久久777色| 成人污污视频在线观看| 蜜桃视频在线观看一区| 亚洲高清免费视频| 日韩美女精品在线| 欧美激情综合在线| 国产精品视频麻豆| 亚洲国产成人自拍| 国产欧美精品一区二区三区四区 | 91精品国产色综合久久不卡电影 | 亚洲高清免费在线| 亚洲欧美在线aaa| 国产欧美日本一区视频| 欧美中文一区二区三区| aa级大片欧美| 久久草av在线| 2021久久国产精品不只是精品| 欧美一区二区三区影视| 国产成人综合在线观看| 狠狠色丁香婷婷综合| 日产国产高清一区二区三区| 亚洲一二三专区| 五月天激情小说综合| 青青草精品视频| 另类欧美日韩国产在线|