99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫INAF U8145、代做c++,Java程序語言

時間:2024-04-10  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



SIPA INAF U8145
Spring 2024
Problem Set 3: Poverty and Inequality in Guatemala
Due Fri. April 5, 11:59pm, uploaded in a single pdf file on Courseworks
In this exercise, you will conduct an assessment of poverty and inequality in Guatemala. The data come from the
Encuesta de Condiciones de Vita (ENCOVI) 2000, collected by the Instituto Nacional de Estadistica (INE), the
national statistical institute of Guatemala, with assistance from the World Bank’s Living Standards Measurement
Study (LSMS). Information on this and other LSMS surveys are on the World Bank’s website at
http://www.worldbank.org/lsms. These data were used in the World Bank’s official poverty assessment for
Guatemala in 2003, available here.
Two poverty lines have been calculated for Guatemala using these ENCOVI 2000 data. The first is an extreme
poverty line, defined as the annual cost of purchasing the minimum daily caloric requirement of 2, 172 calories.
By this definition, the extreme poverty line is 1,912 Quetzals (Q), or approximately I$649 (PPP conversion), per
person per year. The second is a full poverty line, defined as the extreme poverty line plus an allowance for nonfood items, where the allowance is calculated from the average non-food budget share of households whose
calorie consumption is approximately the minimum daily requirement. (In other words, the full poverty line is the
average per-capita expenditures of households whose food per-capita food consumption is approximately at the
minimum.) By this definition, the full poverty line is 4,319 Q, or I$1,467.
Note on sampling design: the ENCOVI sample was not a random sample of the entire population. First, clusters
(or “strata”) were defined, and then households were sampled within each cluster. Given the sampling design, the
analysis should technically be carried out with different weights for different observations. Stata has a special set
of commands to do this sort of weighting (svymean, svytest, svytab etc.) But for the purpose of this exercise, we
will ignore the fact that the sample was stratified, and assign equal weight for all observations.1 As a result, your
answers will not be the same as in the World Bank’s poverty assessment, and will in some cases be unreliable.
1. Get the data. From the course website, download the dataset ps3.dta, which contains a subset of the variables
available in the ENCOVI 2000. Variable descriptions are contained in ps3vardesc.txt.
2. Start a new do file. My suggestion is that you begin again from the starter Stata program for Problem Set 1 (or
from your own code for Problem Set 1), keep the first set of commands (the “housekeeping” section) changing
the name of the log file, delete the rest, and save the do file under a new name.
3. Open the dataset in Stata (“use ps3.dta”), run the “describe” command, and check that you have 7,230
observations on the variables in ps3vardesc.txt.
4. Calculate the income rank for each household in the dataset (egen incrank = rank(incomepc)). Graph the
poverty profile. Include horizontal lines corresponding to the full poverty line and the extreme poverty line.
(Hint: you may want to create new variables equal to the full and extreme poverty lines.) When drawing the
poverty profile, only include households up to the 95th percentile in income per capita on the graph. (That is,
leave the top 5% of households off the graph.) Eliminating the highest-income household in this way will allow
you to use a sensible scale for the graph, and you will be able to see better what is happening at lower income
levels.
5. Using the full poverty line and the consumption per capita variable, calculate the poverty measures P0, P1, P2.
(Note: to sum a variable over all observations, use the command “egen newvar = total(oldvar);”.)
6. Using the extreme poverty line and the consumption per capita variable, again calculate P0, P1, and P2.
1 In all parts, you should treat each household as one observation. That is, do not try to adjust for the fact that
some households are larger than others. You will thus be calculating poverty statistics for households, using
per-capita consumption within the household as an indicator of the well-being of the household as a whole.
7. Using the full poverty line and the consumption per capita variable, calculate P2 separately for urban and rural
households.
8. Using the full poverty line and the consumption per capita variable, calculate P2 separately for indigenous and
non-indigenous households.
9. Using the full poverty line and the consumption per capita variable, calculate P2 separately for each region.
(Three bonus points for doing this in a “while” loop in Stata, like the one you used in Problem Set 1.)
10. Using one of your comparisons from parts 7-9, compute the contribution that each subgroup makes to
overall poverty. Note that if P2 is the poverty measure for the entire population (of households or of individuals),
and P2 j and sj are the poverty measure and population share of sub-group j of the population, then the
contribution of each sub-group to overall poverty can be written: sj*P2j/P2.
11. Summarize your results for parts 4-10 in a paragraph, noting which calculations you find particularly
interesting or important and why.
12. In many cases, detailed consumption or income data is not available, or is available only for a subset of
households, and targeting of anti-poverty programs must rely on poverty indices based on a few easy-toobserve correlates of poverty. Suppose that in addition to the ENCOVI survey, Guatemala has a population
census with data on all households, but suppose also that the census contains no information on per capita
consumption and only contains information on the following variables: urban, indig, spanish, n0_6, n7_24,
n25_59, n60_plus, hhhfemal, hhhage, ed_1_5, ed_6, ed_7_10, ed_11, ed_m11, and dummies for each region.
(In Stata, a convenient command to create dummy variables for each region is “xi i.region;”.) Calculate a
“consumption index” using the ENCOVI by (a) regressing log per-capita consumption on the variables
available in the population census, and (b) recovering the predicted values (command: predict), (c) converting
from log to level using the “exp( )” function in Stata. These predicted values are your consumption index. Note
that an analogous consumption index could be calculated for all households in the population census, using the
coefficient estimates from this regression using the ENCOVI data. Explain how.
13. Calculate P2 using your index (using the full poverty line) and compare to the value of P2 you calculated in
question 5.
14. Using the per-capita income variable, calculate the Gini coefficient for households (assuming that each
household enters with equal weight.) Some notes: (1) Your bins will be 1/N wide, where N is the number of
households. (2) The value of the Gini coefficient you calculate will not be equal to the actual Gini coefficient for
Guatemala, because of the weighting issue described above. (3) To generate a cumulative sum of a variable in Stata,
use the syntax “gen newvar = sum(oldvar);”. Try it out. (4) If you are interested (although it is not strictly
necessary in this case) you can create a difference between the value of a variable in one observation and the value
of the same variable in a previous observation in Stata, use the command “gen xdiff = x - x[_n-1];”. Be careful
about how the data are sorted when you do this.
What to turn in: In your write-up, you should report for each part any calculations you made, as well as written
answers to any questions. Remember that you are welcome to work in groups but you must do your write-up on
your own, and note whom you worked with. You should also attach a print-out of your Stata code.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代做RISC-V、C/C++編程設計代寫
  • 下一篇:菲律賓買房的理由是什么 菲律賓買房的選擇
  • ·代寫ECON 8820、代做c++,Java程序語言
  • ·代寫MISM 6210、Python/java程序語言代做
  • ·CS101 編程代寫、代做 java程序語言
  • ·代寫DTS203TC、C++,Java程序語言代做
  • ·代做Biological Neural Computation、Python/Java程序語言代寫
  • ·program代做、Java程序語言代寫
  • ·CS 2210編程代寫、Java程序語言代做
  • ·代寫159.251編程、代做Java程序語言
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产91精品精华液一区二区三区| 欧美一级爆毛片| 青青草97国产精品免费观看| 亚州成人在线电影| 成人激情动漫在线观看| 成人手机电影网| 专区另类欧美日韩| 日韩一级欧美一级| 一区二区三区四区不卡视频| 欧美亚洲尤物久久| 日韩三级视频在线看| 亚洲欧美日韩精品久久久久| 激情图区综合网| 欧美视频精品在线观看| 这里只有精品免费| 久久久美女毛片| 免费观看一级特黄欧美大片| 成人午夜又粗又硬又大| 奇米影视一区二区三区| 婷婷亚洲久悠悠色悠在线播放 | 亚洲精品在线三区| 欧美精品在欧美一区二区少妇| 99视频国产精品| 99精品视频一区二区三区| 欧美国产综合一区二区| 亚洲女同一区二区| 亚洲天堂成人网| 成人蜜臀av电影| 国产精品美女久久久久久久久| 日韩在线一二三区| 欧美精品在线视频| 国产精品久久看| 日韩一区二区免费在线电影| 性欧美疯狂xxxxbbbb| 国产99久久久精品| 波多野结衣亚洲| 国产精品少妇自拍| 亚洲欧洲一区二区在线播放| 91黄色在线观看| 久久美女艺术照精彩视频福利播放 | 偷拍一区二区三区四区| 99久久国产综合精品麻豆| 6080国产精品一区二区| 国产精品久久久久久福利一牛影视 | 一本大道久久a久久综合| 国产一区二区精品久久99| aaa欧美日韩| 国产精品乡下勾搭老头1| 亚洲精品在线观| 久久福利资源站| 另类小说色综合网站| 欧美日产在线观看| 成人精品一区二区三区中文字幕 | 99精品国产视频| 日韩专区中文字幕一区二区| 欧美日韩黄色一区二区| 激情都市一区二区| 亚洲色图一区二区三区| 国产午夜精品一区二区三区四区| 一区二区三区 在线观看视频| 91精品国产免费久久综合| 成人白浆超碰人人人人| 麻豆精品国产传媒mv男同| 亚洲一区在线观看网站| 欧美日韩国产成人在线免费| av男人天堂一区| 黑人精品欧美一区二区蜜桃| 五月婷婷久久综合| 自拍偷自拍亚洲精品播放| 精品国产乱码久久久久久久| 欧美影院一区二区| 成人短视频下载| 国产成人精品影院| 中文字幕一区二区视频| 久久亚洲免费视频| 日韩欧美国产系列| 日韩你懂的电影在线观看| 国产在线播放一区| 久久99国产精品久久| 久久久精品影视| 精品国产一区二区亚洲人成毛片 | 午夜久久福利影院| 丝袜美腿亚洲一区二区图片| 国产一二三精品| 色美美综合视频| 精品少妇一区二区三区日产乱码| 久久久国产精品麻豆| 亚洲一区免费在线观看| 激情都市一区二区| 欧美在线观看视频一区二区三区| 欧美成va人片在线观看| 最新热久久免费视频| 麻豆精品久久久| 欧美亚洲综合久久| 国产亚洲精品资源在线26u| 亚洲一二三四区不卡| 成人一区在线观看| 日韩欧美第一区| 亚洲午夜一二三区视频| 成人一区二区三区在线观看 | 欧美性大战久久久久久久 | www.66久久| 精品国产乱码久久久久久免费 | 国产日产欧美一区| 日韩高清不卡在线| 欧美丝袜丝nylons| 成人免费小视频| 国产99久久久国产精品免费看| 欧美一区二区在线播放| 亚洲高清在线精品| 91黄色小视频| 亚洲欧美视频在线观看视频| 国产a精品视频| 久久婷婷国产综合国色天香| 毛片基地黄久久久久久天堂| 欧美妇女性影城| 日韩国产高清影视| 91精品国产综合久久精品| 亚洲va韩国va欧美va| 欧美日韩一级视频| 亚洲综合激情另类小说区| 91久久精品网| 亚洲一区二区欧美激情| 欧美性色黄大片手机版| 亚洲国产裸拍裸体视频在线观看乱了| 91成人在线观看喷潮| 亚洲国产成人av网| 欧美日韩国产综合草草| 免费xxxx性欧美18vr| 日韩欧美成人午夜| 精品一区二区三区欧美| 精品国产乱子伦一区| 国产在线不卡一卡二卡三卡四卡| 26uuu亚洲婷婷狠狠天堂| 国产成人综合在线| 亚洲免费在线播放| 欧美日本一区二区三区四区| 日韩精品成人一区二区在线| 91精品国产色综合久久 | 国产精品一区2区| 国产精品美日韩| 欧美色综合天天久久综合精品| 日韩电影在线观看电影| 26uuu久久天堂性欧美| 成人久久视频在线观看| 亚洲国产精品一区二区久久| 欧美不卡一二三| 北条麻妃一区二区三区| 三级不卡在线观看| 国产日韩一级二级三级| 99久久国产综合精品色伊| 亚洲综合免费观看高清完整版 | 欧美视频在线不卡| 另类人妖一区二区av| 国产欧美一区二区精品婷婷| 色偷偷久久一区二区三区| 三级在线观看一区二区| 国产日韩av一区| 欧美自拍偷拍一区| 激情综合一区二区三区| 日韩毛片精品高清免费| 日韩精品一区二区三区四区| 不卡在线观看av| 性久久久久久久久久久久| 欧美经典一区二区三区| 欧美三级韩国三级日本三斤| 久久精品99国产精品日本| 国产精品网站在线观看| 欧美一二三区在线观看| 97aⅴ精品视频一二三区| 日本亚洲三级在线| 亚洲人成亚洲人成在线观看图片 | 丝袜美腿亚洲一区| 国产网站一区二区三区| 91.com在线观看| 91婷婷韩国欧美一区二区| 久久av中文字幕片| 日韩成人伦理电影在线观看| 国产精品久久免费看| 日韩欧美不卡在线观看视频| 欧美亚洲另类激情小说| 成+人+亚洲+综合天堂| 国产精品一区二区黑丝| 日韩有码一区二区三区| 亚洲乱码国产乱码精品精的特点 | jvid福利写真一区二区三区| 蜜桃视频免费观看一区| 亚洲18影院在线观看| 自拍偷拍欧美精品| 中文字幕在线播放不卡一区| 国产欧美日韩亚州综合| 久久免费视频一区| 久久久久久久久久美女| 久久色成人在线| 国产午夜亚洲精品午夜鲁丝片| 久久婷婷成人综合色| 国产日韩欧美精品一区| 久久精品男人天堂av| 国产日韩欧美一区二区三区综合 | 99re这里只有精品首页|