99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫INAF U8145、代做c++,Java程序語言

時間:2024-04-10  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



SIPA INAF U8145
Spring 2024
Problem Set 3: Poverty and Inequality in Guatemala
Due Fri. April 5, 11:59pm, uploaded in a single pdf file on Courseworks
In this exercise, you will conduct an assessment of poverty and inequality in Guatemala. The data come from the
Encuesta de Condiciones de Vita (ENCOVI) 2000, collected by the Instituto Nacional de Estadistica (INE), the
national statistical institute of Guatemala, with assistance from the World Bank’s Living Standards Measurement
Study (LSMS). Information on this and other LSMS surveys are on the World Bank’s website at
http://www.worldbank.org/lsms. These data were used in the World Bank’s official poverty assessment for
Guatemala in 2003, available here.
Two poverty lines have been calculated for Guatemala using these ENCOVI 2000 data. The first is an extreme
poverty line, defined as the annual cost of purchasing the minimum daily caloric requirement of 2, 172 calories.
By this definition, the extreme poverty line is 1,912 Quetzals (Q), or approximately I$649 (PPP conversion), per
person per year. The second is a full poverty line, defined as the extreme poverty line plus an allowance for nonfood items, where the allowance is calculated from the average non-food budget share of households whose
calorie consumption is approximately the minimum daily requirement. (In other words, the full poverty line is the
average per-capita expenditures of households whose food per-capita food consumption is approximately at the
minimum.) By this definition, the full poverty line is 4,319 Q, or I$1,467.
Note on sampling design: the ENCOVI sample was not a random sample of the entire population. First, clusters
(or “strata”) were defined, and then households were sampled within each cluster. Given the sampling design, the
analysis should technically be carried out with different weights for different observations. Stata has a special set
of commands to do this sort of weighting (svymean, svytest, svytab etc.) But for the purpose of this exercise, we
will ignore the fact that the sample was stratified, and assign equal weight for all observations.1 As a result, your
answers will not be the same as in the World Bank’s poverty assessment, and will in some cases be unreliable.
1. Get the data. From the course website, download the dataset ps3.dta, which contains a subset of the variables
available in the ENCOVI 2000. Variable descriptions are contained in ps3vardesc.txt.
2. Start a new do file. My suggestion is that you begin again from the starter Stata program for Problem Set 1 (or
from your own code for Problem Set 1), keep the first set of commands (the “housekeeping” section) changing
the name of the log file, delete the rest, and save the do file under a new name.
3. Open the dataset in Stata (“use ps3.dta”), run the “describe” command, and check that you have 7,230
observations on the variables in ps3vardesc.txt.
4. Calculate the income rank for each household in the dataset (egen incrank = rank(incomepc)). Graph the
poverty profile. Include horizontal lines corresponding to the full poverty line and the extreme poverty line.
(Hint: you may want to create new variables equal to the full and extreme poverty lines.) When drawing the
poverty profile, only include households up to the 95th percentile in income per capita on the graph. (That is,
leave the top 5% of households off the graph.) Eliminating the highest-income household in this way will allow
you to use a sensible scale for the graph, and you will be able to see better what is happening at lower income
levels.
5. Using the full poverty line and the consumption per capita variable, calculate the poverty measures P0, P1, P2.
(Note: to sum a variable over all observations, use the command “egen newvar = total(oldvar);”.)
6. Using the extreme poverty line and the consumption per capita variable, again calculate P0, P1, and P2.
1 In all parts, you should treat each household as one observation. That is, do not try to adjust for the fact that
some households are larger than others. You will thus be calculating poverty statistics for households, using
per-capita consumption within the household as an indicator of the well-being of the household as a whole.
7. Using the full poverty line and the consumption per capita variable, calculate P2 separately for urban and rural
households.
8. Using the full poverty line and the consumption per capita variable, calculate P2 separately for indigenous and
non-indigenous households.
9. Using the full poverty line and the consumption per capita variable, calculate P2 separately for each region.
(Three bonus points for doing this in a “while” loop in Stata, like the one you used in Problem Set 1.)
10. Using one of your comparisons from parts 7-9, compute the contribution that each subgroup makes to
overall poverty. Note that if P2 is the poverty measure for the entire population (of households or of individuals),
and P2 j and sj are the poverty measure and population share of sub-group j of the population, then the
contribution of each sub-group to overall poverty can be written: sj*P2j/P2.
11. Summarize your results for parts 4-10 in a paragraph, noting which calculations you find particularly
interesting or important and why.
12. In many cases, detailed consumption or income data is not available, or is available only for a subset of
households, and targeting of anti-poverty programs must rely on poverty indices based on a few easy-toobserve correlates of poverty. Suppose that in addition to the ENCOVI survey, Guatemala has a population
census with data on all households, but suppose also that the census contains no information on per capita
consumption and only contains information on the following variables: urban, indig, spanish, n0_6, n7_24,
n25_59, n60_plus, hhhfemal, hhhage, ed_1_5, ed_6, ed_7_10, ed_11, ed_m11, and dummies for each region.
(In Stata, a convenient command to create dummy variables for each region is “xi i.region;”.) Calculate a
“consumption index” using the ENCOVI by (a) regressing log per-capita consumption on the variables
available in the population census, and (b) recovering the predicted values (command: predict), (c) converting
from log to level using the “exp( )” function in Stata. These predicted values are your consumption index. Note
that an analogous consumption index could be calculated for all households in the population census, using the
coefficient estimates from this regression using the ENCOVI data. Explain how.
13. Calculate P2 using your index (using the full poverty line) and compare to the value of P2 you calculated in
question 5.
14. Using the per-capita income variable, calculate the Gini coefficient for households (assuming that each
household enters with equal weight.) Some notes: (1) Your bins will be 1/N wide, where N is the number of
households. (2) The value of the Gini coefficient you calculate will not be equal to the actual Gini coefficient for
Guatemala, because of the weighting issue described above. (3) To generate a cumulative sum of a variable in Stata,
use the syntax “gen newvar = sum(oldvar);”. Try it out. (4) If you are interested (although it is not strictly
necessary in this case) you can create a difference between the value of a variable in one observation and the value
of the same variable in a previous observation in Stata, use the command “gen xdiff = x - x[_n-1];”. Be careful
about how the data are sorted when you do this.
What to turn in: In your write-up, you should report for each part any calculations you made, as well as written
answers to any questions. Remember that you are welcome to work in groups but you must do your write-up on
your own, and note whom you worked with. You should also attach a print-out of your Stata code.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代做RISC-V、C/C++編程設計代寫
  • 下一篇:菲律賓買房的理由是什么 菲律賓買房的選擇
  • ·代寫ECON 8820、代做c++,Java程序語言
  • ·代寫MISM 6210、Python/java程序語言代做
  • ·CS101 編程代寫、代做 java程序語言
  • ·代寫DTS203TC、C++,Java程序語言代做
  • ·代做Biological Neural Computation、Python/Java程序語言代寫
  • ·program代做、Java程序語言代寫
  • ·CS 2210編程代寫、Java程序語言代做
  • ·代寫159.251編程、代做Java程序語言
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          亚洲精品之草原avav久久| 午夜在线a亚洲v天堂网2018| 亚洲图色在线| 免费成人高清| 亚洲在线观看视频| 欧美日韩大陆在线| 影音先锋一区| 久久综合中文色婷婷| 国产乱码精品一区二区三区不卡| 亚洲另类视频| 欧美成人免费全部| 亚洲激情一区二区| 欧美福利在线观看| 亚洲国产精品尤物yw在线观看| 久久野战av| 亚洲国产专区校园欧美| 国产综合久久久久久鬼色| 一本色道**综合亚洲精品蜜桃冫 | 欧美一区三区二区在线观看| 欧美日韩一区二区视频在线观看| 亚洲人成网站在线播| 欧美精品一区二区视频 | 久久在线精品| 黄色成人91| 麻豆精品视频在线| 日韩五码在线| 欧美日韩伦理在线免费| 亚洲最新在线视频| 国产精品亚洲网站| 久久精品国产免费| 亚洲人体1000| 亚洲日本电影| 国产欧美日韩另类一区 | 国产一区美女| 国内偷自视频区视频综合| 另类综合日韩欧美亚洲| 老色鬼久久亚洲一区二区| 夜夜精品视频一区二区| 一区二区欧美日韩| 国产亚洲精品久久久| 欧美国产专区| 亚洲综合日韩在线| 一区二区视频免费在线观看| 欧美顶级艳妇交换群宴| 欧美日韩裸体免费视频| 国产精品久久久久一区二区三区| 久久久久久91香蕉国产| 亚洲自拍偷拍福利| 国产精品网站在线播放| 欧美激情在线免费观看| 久久久久国内| 亚洲欧美日韩在线一区| 亚洲免费大片| 亚洲大片精品永久免费| 国产精品扒开腿做爽爽爽软件| 久久蜜桃精品| 久久精品免费播放| 欧美精品久久久久久| 国产精品乱子乱xxxx| 在线国产精品播放| 国产日韩综合| 一本大道久久a久久精品综合 | 国产精品男人爽免费视频1| 欧美成人一区二免费视频软件| 欧美一区二区三区精品电影| 亚洲视频每日更新| 日韩视频久久| 午夜影院日韩| 欧美日韩国产91| 免播放器亚洲一区| 免费视频最近日韩| 久久亚洲午夜电影| 国产精品乱码一区二区三区| 欧美日韩在线影院| 欧美日韩国产美| 激情综合视频| 伊人成人在线视频| 先锋影音网一区二区| 欧美电影专区| 在线观看视频一区二区| 亚洲高清资源综合久久精品| 亚洲欧洲视频在线| 久久综合免费视频影院| 国产日韩专区| 欧美在线欧美在线| 老司机67194精品线观看| 国产日韩av高清| 在线观看欧美| 久久综合给合| 亚洲第一精品夜夜躁人人躁| 91久久黄色| 一二三区精品| 欧美日韩大片| 一区二区免费在线播放| 欧美一区二区三区在线免费观看| 久久不射2019中文字幕| 免播放器亚洲一区| 亚洲第一视频网站| 免费中文字幕日韩欧美| 亚洲第一精品夜夜躁人人爽| 欧美成人tv| 日韩亚洲精品电影| 香蕉成人伊视频在线观看| 国内精品伊人久久久久av影院| 亚洲一区三区电影在线观看| 欧美日韩另类综合| 亚洲一区二区在线免费观看视频| 欧美亚洲成人精品| 国产一区二区三区免费不卡| 久久精品一区二区国产| 亚洲第一在线综合网站| 亚洲神马久久| 欧美成人午夜激情在线| 国产日韩欧美制服另类| 久久久久.com| 亚洲日本aⅴ片在线观看香蕉| 亚洲一区二区三区四区五区午夜| 国产精品亚洲精品| 久久久亚洲国产美女国产盗摄| 亚洲国产高清一区| 久久久久成人精品| 亚洲黄色免费电影| 久久久久久久尹人综合网亚洲 | 伊人精品成人久久综合软件| 欧美阿v一级看视频| 99re66热这里只有精品3直播| 国产精品国产三级国产普通话蜜臀 | 久久久久久网| 一道本一区二区| 国产精品影片在线观看| 欧美成人精品三级在线观看| 一本久久a久久精品亚洲| 国产午夜精品一区二区三区欧美| 亚洲一区二区三区四区在线观看 | 亚洲精选视频在线| 国产美女一区| 中国av一区| 欧美日韩在线三区| 久久久久久国产精品mv| 亚洲视频大全| 亚洲茄子视频| 狠狠色狠狠色综合日日tαg| 欧美视频中文字幕| 在线视频日韩| 亚洲高清av| 黄色成人av网站| 久久免费视频在线| 午夜精品久久久久久久99黑人| 亚洲第一福利视频| 国内精品嫩模av私拍在线观看 | 国产精品久久久久久久久久久久久久 | 老司机aⅴ在线精品导航| 亚洲一区网站| 艳女tv在线观看国产一区| 樱桃成人精品视频在线播放| 国产欧美一区二区精品秋霞影院| 欧美日韩国产区一| 欧美丰满少妇xxxbbb| 久久久精彩视频| 在线视频成人| 韩国v欧美v日本v亚洲v| 久久人人爽人人爽| 久久精品国产99国产精品澳门| 欧美视频在线观看一区| 欧美一区二区黄色| 亚洲欧美精品在线观看| 亚洲欧美www| 欧美一区在线直播| 欧美在线视频一区二区| 亚洲欧美影音先锋| 国外成人在线视频网站| 国产亚洲日本欧美韩国| 欧美91视频| 欧美欧美全黄| 亚欧美中日韩视频| 性色一区二区三区| 久久久高清一区二区三区| 久久精品亚洲一区二区| 久久婷婷国产综合国色天香| 久久久夜夜夜| 另类亚洲自拍| 欧美精品在线网站| 欧美日韩亚洲在线| 国产精品美女www爽爽爽视频| 欧美日韩一级视频| 国产日韩一区在线| 欧美极品一区二区三区| 欧美一区二区三区免费观看视频| 亚洲欧美在线播放| 亚洲精品国产精品乱码不99| 日韩视频精品在线| 韩国成人福利片在线播放| 一区在线免费| 中文国产一区| 久久久精品动漫| 欧美日韩亚洲另类| 国产亚洲欧洲997久久综合| 一区一区视频| 夜夜嗨一区二区三区| 久久免费精品日本久久中文字幕|