合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代做Biological Neural Computation、Python/Java程序語言代寫

        時間:2024-02-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        Biological Neural Computation
        Homework problem set 2
        Spring 2024
        Data Assigned: 2/19/2024
        Data Due: 3/08/2024
        General Guidelines: The homework solutions should include figures that clearly
        capture the result. The figures have to be labeled, well explained and the results
        must be clearly discussed. When appropriate, it is recommended that you use
        the Hypothesis – Rationale – Experiments/data – Analysis – Results –
        Discussion/Conclusions – Limitation(s) framework to discuss your work.
        The first sheet of the homework must certify that this is completely your
        work and list the students/people you have consulted or received help from
        (with your signature and date of submission). All online references used
        must be listed in the reference section at the end of the homework.
        Good luck,
        Barani Raman
        2
        Points for BME 572 /BME **2 students
        Points    for    L41    5657 students
        Problem 1. Implement the batch perceptron algorithm to obtain a linear discriminating
        function as described in Chapter 5 of Duda et al Pattern Classification book. Create
        linearly separable and non-linearly separable datasets with samples belonging to the two
        classes. Apply your perceptron algorithm to discriminate. Report your observation and
        analysis? Plot classification error vs. # of iterations, classification results, and the
        obtained decision boundary.
        [30 pts]
        [50 pts]
        Problem 2: Using the same datasets used in problem 1, now create a linear classifier
        using Least Mean Squares (LMS) rule. Compare these results with the Perceptron
        algorithm results.
        [20 pts]
        [50 pts]
        3
        For BME 572 students only
        [50 pts]
        Problem 3: Using back-propagation algorithm train a multilayer perceptron for the
        problem of recognizing handwritten digits. A popular dataset (‘mnist_all.dat’) comprising
        of training and testing samples of the different digits is provided in the homework folder.
        Each sample is 28x28 gray scale 8-bit image.
        Figure 1: Sample of the nine handwritten digits in the MNIST dataset.
        Training:
        The Matrix train0 has the training samples for digit ‘0’. Each row has 784 columns
        corresponding to the 28x28 pixel (you can use reshape command to plot the digits; e.g.
        imagesc(reshape(test0(1,:),28,28)') plots first training sample for digit 0’’.) Similarly,
        there is one dataset corresponding to each digit. You will train your network using the
        training samples only. You are free to choose a network of any size, and any non-linear
        activation function. Also, you are free to use any preprocessing technique or
        dimensionality reduction technique, or use only a subset of training samples, if you
        would like to reduce the complexity of the neural network or the training process.
        Initialize the weight vectors to a very small random number between 0 and 0.1. This will
        help the network to converge better than equal weights or zero weights.
        4
        For non-linear activation two popular choices are the following:
        Choice1: Logistic function
        Choice2: Hyperbolic tangent function
        [Note: a, b are constants]
        Testing:
        The Matrix test0 has the test samples for digit ‘0’. Similarly, there is one corresponding
        to each digit. You will evaluate the performance of your network using the test samples
        only.
        Show the evolution of the prediction error as a function of training iteration, final
        classification percentages for each digit, and the overall classification performance.
        Discuss your findings.

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

        掃一掃在手機打開當前頁
      1. 上一篇:代寫MATH60026、Python程序設計代做
      2. 下一篇:代寫ELEC-4840 編程
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 99国产精品一区二区| 97一区二区三区四区久久| 91一区二区三区| 亚洲AV无码一区二区三区牛牛| 国产乱码精品一区二区三区| 国产一区二区三区不卡观| 国内精品视频一区二区八戒| 日韩人妻精品无码一区二区三区| 国产精品一区不卡| 97精品国产一区二区三区| 日韩视频在线观看一区二区| 精品国产一区二区三区香蕉事| 国产成人精品无码一区二区三区 | 国产精品免费一区二区三区四区| 成人毛片一区二区| 91精品福利一区二区| 国产爆乳无码一区二区麻豆| 上原亚衣一区二区在线观看| 一区二区三区在线观看视频| 国产精品亚洲一区二区三区| 色欲综合一区二区三区| 亚洲毛片αv无线播放一区| 国产成人精品一区在线| 国产精品成人一区无码| 好吊妞视频一区二区| 亚洲av无一区二区三区| 国产自产对白一区| 国产精品视频一区麻豆| 国产短视频精品一区二区三区| 日本午夜精品一区二区三区电影| 丰满少妇内射一区| 亚洲av不卡一区二区三区| 日韩人妻一区二区三区蜜桃视频| 中文字幕一区二区三区乱码| 久久影院亚洲一区| 国产在线精品一区二区中文| 久久久一区二区三区| 91video国产一区| 精品亚洲av无码一区二区柚蜜| 国模极品一区二区三区| 日韩熟女精品一区二区三区 |