合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代做Biological Neural Computation、Python/Java程序語言代寫

        時間:2024-02-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        Biological Neural Computation
        Homework problem set 2
        Spring 2024
        Data Assigned: 2/19/2024
        Data Due: 3/08/2024
        General Guidelines: The homework solutions should include figures that clearly
        capture the result. The figures have to be labeled, well explained and the results
        must be clearly discussed. When appropriate, it is recommended that you use
        the Hypothesis – Rationale – Experiments/data – Analysis – Results –
        Discussion/Conclusions – Limitation(s) framework to discuss your work.
        The first sheet of the homework must certify that this is completely your
        work and list the students/people you have consulted or received help from
        (with your signature and date of submission). All online references used
        must be listed in the reference section at the end of the homework.
        Good luck,
        Barani Raman
        2
        Points for BME 572 /BME **2 students
        Points    for    L41    5657 students
        Problem 1. Implement the batch perceptron algorithm to obtain a linear discriminating
        function as described in Chapter 5 of Duda et al Pattern Classification book. Create
        linearly separable and non-linearly separable datasets with samples belonging to the two
        classes. Apply your perceptron algorithm to discriminate. Report your observation and
        analysis? Plot classification error vs. # of iterations, classification results, and the
        obtained decision boundary.
        [30 pts]
        [50 pts]
        Problem 2: Using the same datasets used in problem 1, now create a linear classifier
        using Least Mean Squares (LMS) rule. Compare these results with the Perceptron
        algorithm results.
        [20 pts]
        [50 pts]
        3
        For BME 572 students only
        [50 pts]
        Problem 3: Using back-propagation algorithm train a multilayer perceptron for the
        problem of recognizing handwritten digits. A popular dataset (‘mnist_all.dat’) comprising
        of training and testing samples of the different digits is provided in the homework folder.
        Each sample is 28x28 gray scale 8-bit image.
        Figure 1: Sample of the nine handwritten digits in the MNIST dataset.
        Training:
        The Matrix train0 has the training samples for digit ‘0’. Each row has 784 columns
        corresponding to the 28x28 pixel (you can use reshape command to plot the digits; e.g.
        imagesc(reshape(test0(1,:),28,28)') plots first training sample for digit 0’’.) Similarly,
        there is one dataset corresponding to each digit. You will train your network using the
        training samples only. You are free to choose a network of any size, and any non-linear
        activation function. Also, you are free to use any preprocessing technique or
        dimensionality reduction technique, or use only a subset of training samples, if you
        would like to reduce the complexity of the neural network or the training process.
        Initialize the weight vectors to a very small random number between 0 and 0.1. This will
        help the network to converge better than equal weights or zero weights.
        4
        For non-linear activation two popular choices are the following:
        Choice1: Logistic function
        Choice2: Hyperbolic tangent function
        [Note: a, b are constants]
        Testing:
        The Matrix test0 has the test samples for digit ‘0’. Similarly, there is one corresponding
        to each digit. You will evaluate the performance of your network using the test samples
        only.
        Show the evolution of the prediction error as a function of training iteration, final
        classification percentages for each digit, and the overall classification performance.
        Discuss your findings.

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

        掃一掃在手機打開當前頁
      1. 上一篇:代寫MATH60026、Python程序設計代做
      2. 下一篇:代寫ELEC-4840 編程
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 无码人妻久久一区二区三区免费 | 91久久精一区二区三区大全 | 熟妇人妻系列av无码一区二区| 在线视频国产一区| 日本精品一区二区久久久| 无码人妻精品一区二区三区东京热| 3d动漫精品啪啪一区二区中文| 国产主播福利精品一区二区| 亚洲国产老鸭窝一区二区三区| 亚洲综合在线成人一区| 亚洲av无码一区二区三区四区| 日本一区二区三区中文字幕| 亚洲一区在线观看视频| 国产免费伦精品一区二区三区| 亚洲码欧美码一区二区三区 | 国产韩国精品一区二区三区久久| 精品中文字幕一区二区三区四区| 色偷偷一区二区无码视频| 国产精品福利区一区二区三区四区| 蜜桃视频一区二区三区在线观看 | 精品欧洲AV无码一区二区男男| 国产一区二区精品| 日韩精品成人一区二区三区| 国产精品一区二区久久不卡| 国产波霸爆乳一区二区| 久久免费精品一区二区| 久久精品动漫一区二区三区| 亚洲国产精品自在线一区二区| 成人精品视频一区二区三区 | 国产高清视频一区三区| 精品女同一区二区三区在线| 国产麻豆精品一区二区三区| 日韩国产免费一区二区三区| 国产精品无码一区二区在线观| 成人丝袜激情一区二区| 能在线观看的一区二区三区| 狠狠做深爱婷婷综合一区 | 国产福利电影一区二区三区久久久久成人精品综合 | 日本成人一区二区三区| 亚洲国产日韩一区高清在线| 91成人爽a毛片一区二区|