99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫5614. C++ PROGRAMMING

時間:2024-02-29  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Assignment 1: Linear classifiers

Due date: Thursday, February 15, 11:59:59 PM

 

In this assignment you will implement simple linear classifiers and run them on two different datasets:

1. Rice dataset: a simple categorical binary classification dataset. Please note that the

labels in the dataset are 0/1, as opposed to -1/1 as in the lectures, so you may have to change either the labels or the derivations of parameter update rules accordingly.

2. Fashion-MNIST: a multi-class image classification dataset

The goal of this assignment is to help you understand the fundamentals of a few classic methods and become familiar with scientific computing tools in Python. You will also get experience in hyperparameter tuning and using proper train/validation/test data splits.

Download the starting code here.

You will implement the following classifiers (in their respective files):

1. Logistic regression (logistic.py)

2. Perceptron (perceptr on.py)

3. SVM (svm.py)

4. Softmax (softmax.py)

For the logistic regression classifier, multi-class prediction is difficult, as it requires a one-vs-one or one-vs-rest classifier for every class. Therefore, you only need to use logistic regression on the Rice dataset.

The top-level notebook (CS 444 Assignment-1.ipynb) will guide you through all of the steps.

Setup instructions are below. The format of this assignment is inspired by the Stanford

CS231n assignments, and we have borrowed some of their data loading and instructions in our assignment IPython notebook.

None of the parts of this assignment require the use of a machine with a GPU. You may complete the assignment using your local machine or you may use Google Colaboratory.

Environment Setup (Local)

If you will be completing the assignment on a local machine then you will need a Python environment set up with the appropriate packages.

We suggest that you use Anaconda to manage Python package dependencies

(https://www.anaconda.com/download). This guide provides useful information on how to use Conda: https://conda.io/docs/user-guide/getting-started.html.

Data Setup (Local)

Once you have downloaded and opened the zip file, navigate to the fashion-mnist directory in assignment1 and execute the get_datasets script provided:

$ cd assignment1/fashion-mnist/

$ sh get_data.sh or $bash get_data.sh

The Rice dataset is small enough that we've included it in the zip file.

Data Setup (For Colaboratory)

If you are using Google Colaboratory for this assignment, all of the Python packages you need will already be installed. The only thing you need to do is download the datasets and make them available to your account.

Download the assignment zip file and follow the steps above to download Fashion-MNIST to your local machine. Next, you should make a folder in your Google Drive to holdall of   your assignment files and upload the entire assignment folder (including the datasets you downloaded) into this Google drive file.

You will now need to open the assignment 1 IPython notebook file from your Google Drive folder in Colaboratory and run a few setup commands. You can find a detailed tutorial on   these steps here (no need to worry about setting up GPU for now). However, we have

condensed all the important commands you need to run into an IPython notebook.

IPython

The assignment is given to you in the CS 444 Assignment-1.ipynb file. As mentioned, if you are   using Colaboratory, you can open the IPython notebook directly in Colaboratory. If you are using a local machine, ensure that IPython is installed (https://ipython.org/install.html). You may then navigate to the assignment directory in the terminal and start a local IPython server using the jupyter notebook command.

Submission Instructions

Submission of this assignment will involve three steps:

1. If you are working in a pair, only one designated student should make the submission to Canvas and Kaggle. You should indicate your Team Name on Kaggle Leaderboard   and team members in the report.

2. You must submit your output Kaggle CSV files from each model on the Fashion- MNIST dataset to their corresponding Kaggle competition webpages:

  Perceptron

  SVM

  Softmax

The baseline accuracies you should approximately reach are listed as benchmarks on each respective Kaggle leaderboard.

3. You must upload three files on Canvas:

1. All of your code (Python files and ipynb file) in a single ZIP file. The filename should benetid_mp1_code.zip. Do NOT include datasets in your zip file.

2. Your IPython notebook with output cells converted to PDF format. The filename should benetid_mp1_output.pdf.

3. A brief report in PDF format using this template. The filename should be netid_mp1_report.pdf.

Don'tforget to hit "Submit" after uploadingyour files,otherwise we will not receive your submission!

Please refer to course policies on academic honesty, collaboration, late submission, etc.
代寫 5614. C++ Programming-留學生作業幫 (daixie7.com)


請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫CS444 Linear classifiers
  • 下一篇:莆田鞋官方正品入口,這十個官方入口必須收藏
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美一区二区三区四区高清| 亚洲黄色录像片| 亚洲成人av一区二区| 色哟哟一区二区| 午夜伊人狠狠久久| 日韩欧美一区在线观看| 国内国产精品久久| 国产精品嫩草久久久久| 91成人免费电影| 麻豆91在线观看| 国产精品传媒在线| 宅男在线国产精品| 丁香婷婷综合色啪| 天堂久久一区二区三区| 日本一区二区三区视频视频| 欧美天堂一区二区三区| 国产福利一区二区三区在线视频| 国产精品另类一区| 91精品国产免费久久综合| 成人久久视频在线观看| 日本视频一区二区| 一区二区三区在线观看国产| 久久久亚洲精华液精华液精华液| 一本久久综合亚洲鲁鲁五月天| 久久99精品国产麻豆不卡| 亚洲精品视频免费看| 久久久影视传媒| 欧美日韩在线播放三区| 成人美女在线视频| 国产一区啦啦啦在线观看| 天堂成人免费av电影一区| 亚洲美女精品一区| 中文字幕精品综合| 精品1区2区在线观看| 欧美性生活大片视频| 成人蜜臀av电影| 国内成人精品2018免费看| 五月激情六月综合| 一区二区在线观看av| 中文字幕成人av| 风间由美一区二区av101| 另类欧美日韩国产在线| 五月婷婷综合激情| 一二三四社区欧美黄| 亚洲欧美日韩在线| **性色生活片久久毛片| 中文字幕av不卡| 中文av一区特黄| 国产精品九色蝌蚪自拍| 国产亚洲精品免费| 亚洲国产激情av| 国产精品麻豆一区二区 | 男人的j进女人的j一区| 亚洲成人福利片| 天天综合网天天综合色| 日韩精品亚洲一区| 美日韩一级片在线观看| 久久国产欧美日韩精品| 久久99精品国产91久久来源| 精品制服美女久久| 国产凹凸在线观看一区二区| www.av亚洲| 在线观看中文字幕不卡| 3d动漫精品啪啪1区2区免费| 日韩免费高清av| 久久综合五月天婷婷伊人| 欧美激情一区二区三区四区| 中文av字幕一区| 一区二区在线观看视频| 午夜视频在线观看一区| 开心九九激情九九欧美日韩精美视频电影 | 欧美日韩电影一区| 欧美一区二区免费视频| 久久这里只有精品视频网| 国产精品久久久一本精品| 亚洲一区二区三区精品在线| 久久99国产精品尤物| 成人午夜看片网址| 欧美三级中文字| 国产日产欧美一区二区三区| 亚洲蜜臀av乱码久久精品蜜桃| 视频一区欧美精品| 丁香五精品蜜臀久久久久99网站 | 色爱区综合激月婷婷| 日韩视频一区二区三区在线播放 | 激情六月婷婷久久| 在线观看日韩高清av| 欧美成人r级一区二区三区| 国产精品免费视频观看| 日韩主播视频在线| 成人听书哪个软件好| 日韩天堂在线观看| 亚洲日本一区二区| 久久er精品视频| 91国偷自产一区二区使用方法| 3751色影院一区二区三区| 久久久www免费人成精品| 亚洲一区av在线| av一区二区三区黑人| 日韩视频国产视频| 国产精品久久久久久久久果冻传媒| 图片区小说区国产精品视频| 成人av电影观看| 精品美女被调教视频大全网站| 婷婷久久综合九色综合绿巨人| 成人黄页在线观看| 精品国产乱码久久久久久免费| 亚洲成人黄色影院| 在线欧美日韩精品| 亚洲欧洲精品一区二区三区| 国产精品一品二品| 2024国产精品| 韩日av一区二区| 欧美一区二区福利视频| 亚洲国产精品久久久久秋霞影院| 成人午夜私人影院| 国产色综合一区| 国产成人99久久亚洲综合精品| 欧美大白屁股肥臀xxxxxx| 日本麻豆一区二区三区视频| 在线观看免费亚洲| 亚洲色图清纯唯美| 色噜噜狠狠成人网p站| 国产精品久久久久久久久果冻传媒| 国内精品久久久久影院薰衣草| 日韩精品中午字幕| 久久99精品久久久久久| 日韩免费视频一区| 国产综合色精品一区二区三区| 精品久久久久久亚洲综合网| 国产曰批免费观看久久久| 久久久99免费| 99精品欧美一区| 亚洲成人午夜影院| 精品少妇一区二区三区日产乱码| 麻豆成人91精品二区三区| 久久久一区二区| 99在线视频精品| 亚洲国产一区在线观看| 91精品国产综合久久精品麻豆| 日韩在线观看一区二区| 久久天天做天天爱综合色| 99久久国产综合精品色伊| 洋洋av久久久久久久一区| 欧美一级精品大片| 不卡电影免费在线播放一区| 亚洲一区在线观看网站| 精品国产免费久久| 色综合久久久网| 久久国产精品99久久久久久老狼| 国产精品视频你懂的| 欧美日韩精品二区第二页| 久久精品久久精品| |精品福利一区二区三区| 欧美精品国产精品| 粉嫩高潮美女一区二区三区| 亚洲一二三四久久| xnxx国产精品| 欧美视频在线观看一区| 国产高清亚洲一区| 天天综合色天天| 国产精品三级久久久久三级| 欧美日韩国产首页在线观看| 欧美久久一区二区| 国产在线不卡一区| 亚洲欧美怡红院| 91精品国产综合久久久久久久| 国产成人午夜精品影院观看视频| 综合久久国产九一剧情麻豆| 欧美巨大另类极品videosbest | 99久久99久久久精品齐齐| 日本麻豆一区二区三区视频| 国产婷婷精品av在线| 欧美日韩国产美女| 91理论电影在线观看| 国产呦萝稀缺另类资源| 日韩国产精品久久久久久亚洲| 日韩美女久久久| 久久久久久久综合日本| 91精品国产综合久久精品性色| 一本到高清视频免费精品| 国产成人精品三级麻豆| 六月丁香综合在线视频| 亚洲午夜久久久久| 亚洲欧美激情一区二区| 国产欧美日韩三级| 精品免费视频.| 日韩一区二区三| 6080日韩午夜伦伦午夜伦| 色综合久久综合网| 91色|porny| 91成人在线精品| 欧美日韩在线播| 欧美人成免费网站| 欧美福利视频一区| 91精品久久久久久蜜臀| 欧美日韩不卡一区二区| 欧美午夜免费电影| 欧美怡红院视频| 欧美三级日韩在线|