99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS444 Linear classifiers

時間:2024-02-29  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Assignment 1: Linear classifiers

Due date: Thursday, February 15, 11:59:59 PM

 

In this assignment you will implement simple linear classifiers and run them on two different datasets:

1. Rice dataset: a simple categorical binary classification dataset. Please note that the

labels in the dataset are 0/1, as opposed to -1/1 as in the lectures, so you may have to change either the labels or the derivations of parameter update rules accordingly.

2. Fashion-MNIST: a multi-class image classification dataset

The goal of this assignment is to help you understand the fundamentals of a few classic methods and become familiar with scientific computing tools in Python. You will also get experience in hyperparameter tuning and using proper train/validation/test data splits.

Download the starting code here.

You will implement the following classifiers (in their respective files):

1. Logistic regression (logistic.py)

2. Perceptron (perceptr on.py)

3. SVM (svm.py)

4. Softmax (softmax.py)

For the logistic regression classifier, multi-class prediction is difficult, as it requires a one-vs-one or one-vs-rest classifier for every class. Therefore, you only need to use logistic regression on the Rice dataset.

The top-level notebook (CS 444 Assignment-1.ipynb) will guide you through all of the steps.

Setup instructions are below. The format of this assignment is inspired by the Stanford

CS231n assignments, and we have borrowed some of their data loading and instructions in our assignment IPython notebook.

None of the parts of this assignment require the use of a machine with a GPU. You may complete the assignment using your local machine or you may use Google Colaboratory.

Environment Setup (Local)

If you will be completing the assignment on a local machine then you will need a Python environment set up with the appropriate packages.

We suggest that you use Anaconda to manage Python package dependencies

(https://www.anaconda.com/download). This guide provides useful information on how to use Conda: https://conda.io/docs/user-guide/getting-started.html.

Data Setup (Local)

Once you have downloaded and opened the zip file, navigate to the fashion-mnist directory in assignment1 and execute the get_datasets script provided:

$ cd assignment1/fashion-mnist/

$ sh get_data.sh or $bash get_data.sh

The Rice dataset is small enough that we've included it in the zip file.

Data Setup (For Colaboratory)

If you are using Google Colaboratory for this assignment, all of the Python packages you need will already be installed. The only thing you need to do is download the datasets and make them available to your account.

Download the assignment zip file and follow the steps above to download Fashion-MNIST to your local machine. Next, you should make a folder in your Google Drive to holdall of   your assignment files and upload the entire assignment folder (including the datasets you downloaded) into this Google drive file.

You will now need to open the assignment 1 IPython notebook file from your Google Drive folder in Colaboratory and run a few setup commands. You can find a detailed tutorial on   these steps here (no need to worry about setting up GPU for now). However, we have

condensed all the important commands you need to run into an IPython notebook.

IPython

The assignment is given to you in the CS 444 Assignment-1.ipynb file. As mentioned, if you are   using Colaboratory, you can open the IPython notebook directly in Colaboratory. If you are using a local machine, ensure that IPython is installed (https://ipython.org/install.html). You may then navigate to the assignment directory in the terminal and start a local IPython server using the jupyter notebook command.

Submission Instructions

Submission of this assignment will involve three steps:

1. If you are working in a pair, only one designated student should make the submission to Canvas and Kaggle. You should indicate your Team Name on Kaggle Leaderboard   and team members in the report.

2. You must submit your output Kaggle CSV files from each model on the Fashion- MNIST dataset to their corresponding Kaggle competition webpages:

  Perceptron

  SVM

  Softmax

The baseline accuracies you should approximately reach are listed as benchmarks on each respective Kaggle leaderboard.

3. You must upload three files on Canvas:

1. All of your code (Python files and ipynb file) in a single ZIP file. The filename should benetid_mp1_code.zip. Do NOT include datasets in your zip file.

2. Your IPython notebook with output cells converted to PDF format. The filename should benetid_mp1_output.pdf.

3. A brief report in PDF format using this template. The filename should be netid_mp1_report.pdf.

Don'tforget to hit "Submit" after uploadingyour files,otherwise we will not receive your submission!

Please refer to course policies on academic honesty, collaboration, late submission, etc.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:莆田鞋在哪買:介紹十個最新購買渠道
  • 下一篇:代寫5614. C++ PROGRAMMING
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          久久免费黄色| 亚洲一区免费看| 日韩视频一区二区三区在线播放免费观看 | 亚洲三级观看| 亚洲人成在线观看一区二区| 亚洲麻豆av| 亚洲欧美国产精品桃花| 新狼窝色av性久久久久久| 欧美一区网站| 老司机精品福利视频| 欧美精品在线一区二区三区| 国产精品久久久一区二区三区| 国产亚洲精品福利| 亚洲第一免费播放区| 亚洲一区二区3| 久久九九有精品国产23| 欧美区一区二区三区| 国产精品日日摸夜夜添夜夜av| 激情视频一区二区| 亚洲天堂激情| 开元免费观看欧美电视剧网站| 欧美人与性动交cc0o| 国产欧美短视频| 日韩午夜在线视频| 久久久免费观看视频| 欧美日韩精品一区二区| 黄色欧美日韩| 亚洲欧美日韩一区二区在线 | 先锋影音久久| 欧美精品1区2区| 国产在线观看精品一区二区三区| 亚洲免费高清| 麻豆精品传媒视频| 国产欧美视频一区二区| 日韩一级成人av| 久久久久久久久久久久久9999| 国产精品99免费看 | 欧美日本国产一区| 在线观看日韩www视频免费| 欧美喷水视频| 香蕉成人啪国产精品视频综合网| 欧美三级乱人伦电影| 欧美日韩精品免费看| 午夜精品久久久久久久久| 国产欧美一区二区精品性| 永久久久久久| 久久成年人视频| 欧美偷拍另类| 一区二区三区久久| 欧美另类女人| 亚洲人成毛片在线播放| 久久一日本道色综合久久| 国产午夜精品理论片a级探花 | 午夜一区二区三区在线观看| 欧美视频三区在线播放| 亚洲美女色禁图| 欧美精品18videos性欧美| 在线日韩欧美视频| 久久在线免费| 亚洲激情六月丁香| 欧美精彩视频一区二区三区| 亚洲激情成人网| 欧美大胆a视频| 亚洲人成亚洲人成在线观看图片| 美国成人毛片| 亚洲国产精品高清久久久| 免费欧美视频| 日韩一级黄色片| 欧美日韩一区在线观看| 亚洲字幕在线观看| 国产欧美日韩一级| 久久久蜜桃一区二区人| 在线免费观看日本一区| 欧美成人综合网站| 亚洲精品综合精品自拍| 欧美日韩国语| 午夜精彩国产免费不卡不顿大片| 国产欧美午夜| 久久视频精品在线| 亚洲丁香婷深爱综合| 欧美高清视频| 亚洲曰本av电影| 国自产拍偷拍福利精品免费一| 久久伊人免费视频| 99国产精品视频免费观看一公开| 欧美激情一区二区三区成人| 一区二区欧美日韩| 国产欧美三级| 欧美成人一区二区三区| 一区二区三区黄色| 国内精品**久久毛片app| 欧美国产一区视频在线观看| 亚洲一区三区视频在线观看| 国自产拍偷拍福利精品免费一| 欧美风情在线| 欧美有码在线视频| 亚洲二区在线观看| 国产精品毛片| 欧美国产高潮xxxx1819| 午夜欧美大尺度福利影院在线看| 在线成人黄色| 国产精品性做久久久久久| 欧美 日韩 国产在线| 性欧美办公室18xxxxhd| 亚洲每日在线| 在线观看三级视频欧美| 国产精品欧美久久| 欧美日韩成人在线播放| 久久亚洲综合色| 午夜激情亚洲| 一区二区激情视频| 18成人免费观看视频| 国产精品稀缺呦系列在线| 欧美激情精品久久久久久大尺度| 性欧美xxxx视频在线观看| 99成人在线| 最新成人在线| 136国产福利精品导航网址| 国产欧美日韩激情| 国产精品不卡在线| 欧美日韩精品一区二区三区四区| 老牛影视一区二区三区| 久久精品国语| 欧美专区第一页| 欧美一区二区三区视频免费| 亚洲无线一线二线三线区别av| 亚洲精品国产品国语在线app | 另类春色校园亚洲| 欧美一区二区三区在线观看视频| 亚洲网友自拍| 亚洲一区二区伦理| 中文精品在线| 在线视频你懂得一区| 亚洲精品日韩综合观看成人91| 在线成人性视频| 在线精品国产欧美| 在线观看欧美精品| 一区二区亚洲精品国产| 国产亚洲欧美aaaa| 狠狠狠色丁香婷婷综合激情| 国产综合视频在线观看| 国产主播一区| 黄色成人av在线| 亚洲国产欧美日韩| 亚洲精品一区二区网址| 亚洲人成高清| 一区二区电影免费在线观看| 一区二区电影免费观看| 亚洲主播在线| 久久av一区二区三区漫画| 久久久亚洲高清| 欧美国产激情二区三区| 欧美日韩一区视频| 国产欧美日韩激情| 亚洲成人资源网| 99成人免费视频| 亚洲专区一二三| 欧美在线亚洲在线| 欧美成人精品一区二区| 欧美三级免费| 国产美女精品| 在线不卡中文字幕| 一本到12不卡视频在线dvd| 亚洲欧美日本日韩| 久热精品视频在线| 欧美日韩亚洲一区三区| 国产日韩欧美高清免费| 亚洲日本免费| 新67194成人永久网站| 免费国产一区二区| 国产精品女人网站| 亚洲高清在线播放| 亚洲欧美在线视频观看| 欧美高清视频在线| 国产女主播在线一区二区| 亚洲第一在线| 欧美一级日韩一级| 欧美日韩精品在线| 伊人久久大香线蕉综合热线| 99精品视频免费在线观看| 久久久精品性| 国产精品v欧美精品∨日韩| 亚洲高清一二三区| 欧美专区日韩专区| 国产精品成人在线观看| 在线欧美不卡| 欧美专区日韩视频| 国产精品二区影院| 亚洲人成在线免费观看| 欧美中文在线视频| 国产精品久久久久久久久久妞妞| 亚洲国产欧美另类丝袜| 久久国产精品99国产| 国产精品www.| 一区二区三区视频在线观看| 欧美 日韩 国产一区二区在线视频| 国产一区导航| 久久成人免费| 国产欧美va欧美va香蕉在| 亚洲在线一区二区三区|