99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS444 Linear classifiers

時間:2024-02-29  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Assignment 1: Linear classifiers

Due date: Thursday, February 15, 11:59:59 PM

 

In this assignment you will implement simple linear classifiers and run them on two different datasets:

1. Rice dataset: a simple categorical binary classification dataset. Please note that the

labels in the dataset are 0/1, as opposed to -1/1 as in the lectures, so you may have to change either the labels or the derivations of parameter update rules accordingly.

2. Fashion-MNIST: a multi-class image classification dataset

The goal of this assignment is to help you understand the fundamentals of a few classic methods and become familiar with scientific computing tools in Python. You will also get experience in hyperparameter tuning and using proper train/validation/test data splits.

Download the starting code here.

You will implement the following classifiers (in their respective files):

1. Logistic regression (logistic.py)

2. Perceptron (perceptr on.py)

3. SVM (svm.py)

4. Softmax (softmax.py)

For the logistic regression classifier, multi-class prediction is difficult, as it requires a one-vs-one or one-vs-rest classifier for every class. Therefore, you only need to use logistic regression on the Rice dataset.

The top-level notebook (CS 444 Assignment-1.ipynb) will guide you through all of the steps.

Setup instructions are below. The format of this assignment is inspired by the Stanford

CS231n assignments, and we have borrowed some of their data loading and instructions in our assignment IPython notebook.

None of the parts of this assignment require the use of a machine with a GPU. You may complete the assignment using your local machine or you may use Google Colaboratory.

Environment Setup (Local)

If you will be completing the assignment on a local machine then you will need a Python environment set up with the appropriate packages.

We suggest that you use Anaconda to manage Python package dependencies

(https://www.anaconda.com/download). This guide provides useful information on how to use Conda: https://conda.io/docs/user-guide/getting-started.html.

Data Setup (Local)

Once you have downloaded and opened the zip file, navigate to the fashion-mnist directory in assignment1 and execute the get_datasets script provided:

$ cd assignment1/fashion-mnist/

$ sh get_data.sh or $bash get_data.sh

The Rice dataset is small enough that we've included it in the zip file.

Data Setup (For Colaboratory)

If you are using Google Colaboratory for this assignment, all of the Python packages you need will already be installed. The only thing you need to do is download the datasets and make them available to your account.

Download the assignment zip file and follow the steps above to download Fashion-MNIST to your local machine. Next, you should make a folder in your Google Drive to holdall of   your assignment files and upload the entire assignment folder (including the datasets you downloaded) into this Google drive file.

You will now need to open the assignment 1 IPython notebook file from your Google Drive folder in Colaboratory and run a few setup commands. You can find a detailed tutorial on   these steps here (no need to worry about setting up GPU for now). However, we have

condensed all the important commands you need to run into an IPython notebook.

IPython

The assignment is given to you in the CS 444 Assignment-1.ipynb file. As mentioned, if you are   using Colaboratory, you can open the IPython notebook directly in Colaboratory. If you are using a local machine, ensure that IPython is installed (https://ipython.org/install.html). You may then navigate to the assignment directory in the terminal and start a local IPython server using the jupyter notebook command.

Submission Instructions

Submission of this assignment will involve three steps:

1. If you are working in a pair, only one designated student should make the submission to Canvas and Kaggle. You should indicate your Team Name on Kaggle Leaderboard   and team members in the report.

2. You must submit your output Kaggle CSV files from each model on the Fashion- MNIST dataset to their corresponding Kaggle competition webpages:

  Perceptron

  SVM

  Softmax

The baseline accuracies you should approximately reach are listed as benchmarks on each respective Kaggle leaderboard.

3. You must upload three files on Canvas:

1. All of your code (Python files and ipynb file) in a single ZIP file. The filename should benetid_mp1_code.zip. Do NOT include datasets in your zip file.

2. Your IPython notebook with output cells converted to PDF format. The filename should benetid_mp1_output.pdf.

3. A brief report in PDF format using this template. The filename should be netid_mp1_report.pdf.

Don'tforget to hit "Submit" after uploadingyour files,otherwise we will not receive your submission!

Please refer to course policies on academic honesty, collaboration, late submission, etc.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:莆田鞋在哪買:介紹十個最新購買渠道
  • 下一篇:代寫5614. C++ PROGRAMMING
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                91精品蜜臀在线一区尤物| 51精品视频一区二区三区| 成人免费毛片嘿嘿连载视频| 狠狠色综合日日| 国产精品综合在线视频| 欧美一区二区在线播放| 亚洲自拍另类综合| 色诱亚洲精品久久久久久| 国产日韩精品一区二区三区| 国产伦精一区二区三区| 精品少妇一区二区三区在线播放| 午夜成人在线视频| 欧美剧情片在线观看| 午夜一区二区三区在线观看| 欧洲av在线精品| 亚洲香肠在线观看| 欧美另类z0zxhd电影| 亚洲成人www| 91精品欧美一区二区三区综合在| 午夜精品123| 日韩精品影音先锋| 国产老妇另类xxxxx| 欧美国产精品一区二区三区| 不卡视频免费播放| 亚洲综合成人网| 成人18精品视频| 亚洲精品久久嫩草网站秘色| 欧美日韩一二三| 精品一区二区三区在线播放| 久久久电影一区二区三区| 国产成人av自拍| 日韩一区二区免费电影| 亚洲电影在线免费观看| 日韩欧美中文字幕一区| 夜夜嗨av一区二区三区四季av| www.欧美.com| 国产精品国产三级国产普通话蜜臀| 成人av在线资源| 亚洲高清一区二区三区| 精品国产一区二区在线观看| www.欧美日韩| 精品综合久久久久久8888| 国产精品久久久久久久久图文区 | 国产麻豆精品久久一二三| 日韩视频在线永久播放| 国产91清纯白嫩初高中在线观看| 亚洲人成在线播放网站岛国 | 国产福利一区二区三区视频| 亚洲欧美视频在线观看视频| 日韩精品一区二区三区老鸭窝 | 日韩欧美一区二区久久婷婷| av激情综合网| 韩国成人福利片在线播放| 一区二区三区精品久久久| 精品国一区二区三区| 欧美在线播放高清精品| 国产精品亚洲第一区在线暖暖韩国| 亚洲永久免费视频| 91亚洲国产成人精品一区二区三| 国产欧美综合色| 高清不卡在线观看av| 国产精品夫妻自拍| 在线视频国产一区| 亚洲一区二区三区四区五区黄| 成人三级伦理片| 欧美日韩在线不卡| 2024国产精品视频| 成人妖精视频yjsp地址| 天天色天天操综合| 久久久精品tv| 5566中文字幕一区二区电影| 婷婷久久综合九色综合伊人色| 欧美xxxxx牲另类人与| 一本一本大道香蕉久在线精品| 综合电影一区二区三区 | 色狠狠av一区二区三区| 色狠狠综合天天综合综合| 欧美日韩精品欧美日韩精品一综合| 国产免费观看久久| 555www色欧美视频| 91亚洲午夜精品久久久久久| 免费一区二区视频| 最新国产成人在线观看| 91香蕉视频mp4| 蜜臀av在线播放一区二区三区| 欧美精品日韩一本| 欧美bbbbb| 欧美三级午夜理伦三级中视频| 欧美体内she精高潮| 成人免费看黄yyy456| 欧美在线观看视频一区二区| 免费国产亚洲视频| 色婷婷综合久色| 久久你懂得1024| 午夜精品久久久久影视| 91免费精品国自产拍在线不卡| 日韩欧美一级二级| 亚洲电影一区二区三区| 福利电影一区二区三区| 久久久三级国产网站| 美女网站在线免费欧美精品| 欧美亚州韩日在线看免费版国语版| 91精品综合久久久久久| 91精品国产综合久久久蜜臀图片| 国产精品福利一区| 国产成人免费视频网站| 精品国产1区二区| 久久精品99国产精品日本| 欧美日韩一区中文字幕| 亚洲综合色区另类av| 一本到一区二区三区| 亚洲视频精选在线| 91麻豆成人久久精品二区三区| 中文在线一区二区| 国产剧情一区二区| 51精品国自产在线| 亚洲人成网站在线| 99久久婷婷国产精品综合| 日韩亚洲欧美在线| 精品一区二区三区免费观看| 日韩免费观看高清完整版| 在线免费精品视频| 成人一级视频在线观看| 欧美日韩国产高清一区二区三区 | 国产成人av电影免费在线观看| av成人免费在线| 国产欧美综合在线| 成人国产精品免费观看视频| 中文字幕一区二区三区乱码在线| 99久久久无码国产精品| 一区二区三区四区不卡在线| 福利电影一区二区| 日韩欧美的一区二区| 国精产品一区一区三区mba桃花| 国产丝袜欧美中文另类| 91丨porny丨最新| 欧美日韩精品一区二区在线播放| 在线观看成人免费视频| 中文一区二区完整视频在线观看| 国产欧美精品国产国产专区| 午夜激情一区二区三区| 精品久久五月天| 99视频在线精品| 亚洲高清不卡在线观看| 精品国产99国产精品| 99久久精品免费看国产| 午夜电影网亚洲视频| 国产亚洲精品久| 欧美色区777第一页| 麻豆免费看一区二区三区| 欧美性生活久久| 国产精品综合二区| 91香蕉国产在线观看软件| 欧美日韩一区不卡| 国产乱码精品1区2区3区| 日韩激情视频网站| 欧美成人一区二区三区| 成人三级伦理片| 一区二区三区在线视频免费| 91精品国产麻豆| 国产精品一区二区久激情瑜伽| 久久久91精品国产一区二区精品 | 欧美主播一区二区三区美女| 国产91露脸合集magnet| 国产成人午夜99999| 毛片一区二区三区| 日韩黄色免费网站| 免费在线观看视频一区| 日本在线不卡一区| 天堂蜜桃一区二区三区| 日本中文在线一区| 久久精品久久久精品美女| 欧美96一区二区免费视频| 九色|91porny| 国产美女精品在线| 国产91丝袜在线播放0| 91首页免费视频| 欧美精品一二三| 精品国产乱码久久久久久牛牛| 91视频国产资源| 国产乱码精品一区二区三区av| 五月婷婷另类国产| 亚洲午夜精品在线| 专区另类欧美日韩| 国产欧美一区二区三区沐欲| 精品久久久久久久久久久久久久久久久 | 日本视频一区二区三区| 久久99精品国产91久久来源| 成人激情小说网站| 精品视频一区 二区 三区| 欧美mv日韩mv国产| 中文字幕人成不卡一区| 日本最新不卡在线| www..com久久爱| 欧美高清视频不卡网| 中文字幕精品一区| 午夜激情综合网| 国产aⅴ综合色| 日韩亚洲欧美高清| 亚洲黄色片在线观看|