99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

MA2605代做、代寫MATLAB編程語言

時間:2023-12-29  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



MA2605 – Professional Development and Project Work
Assignment 3
Distribution Date: Friday December 1st , 2023
Submission Deadline: 23:59 Friday December 29th, 2023
(through Wiseflow)
Feedback by: After exam panels and boards
Contribution to overall module assessment: 50%
Indicative student time working on
assessment:
20 hours
Main objective of the assessment: The objective of this task is to solve a range of problems
involving the numerical solution of differential equations. Solutions must be written up using LaTeX,
and numerical methods must be coded using MATLAB.
Description of the Assessment: Each student must submit a report (a single .pdf file), written using
LaTeX (article style). There is no hard page limit, but it should be possible to answer all questions
successfully without writing more than 10 pages. All MATLAB codes used to generate results in the
report should also be submitted in a .zip file, and it should be clearly stated in your answer to each
question which code(s) correspond(s) to that question. The report should be clearly titled, and should
address the solution of the following problems (in each question, 𝛼𝛼 and ҵ**;ҵ**; are, respectively, the last
and second to last non-zero digits of your student number - note also that most parts can be solved
independently, i.e. if you get stuck on one part then that should not prevent you from attempting the
other parts):
1. Consider the initial value problem:
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = cos  
𝛼𝛼𝛼𝛼
4   , 𝑦𝑦(0) = 0, 0 ≤ w**5;w**5; ≤ ҵ**;ҵ**;.
a. By showing that cos  
𝛼𝛼𝑦𝑦
4   satisfies a particular condition (which you should state),
show that the problem has a unique solution. [10 marks]
b. Find the exact solution, showing your working. (Hint: you may find the following
formula helpful:
  sec(𝑦𝑦) 𝑑𝑑𝑑𝑑 = ln  tan  
𝑦𝑦
2 +
𝜋𝜋
4
   + 𝐶𝐶 ,
where C is a constant.) [10 marks]
c. Use the Forward Euler Method to approximate the solution to the initial value
problem, and draw up a table comparing the error at w**5;w**5; = ҵ**;ҵ**; for an appropriate range of
time steps. Calculate: w**1;w**1; = log2  
Ү**;Ү**;Ү**;Ү**;Ү**;Ү**;Ү**;Ү**;Ү**;Ү**; 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 w**6;w**6;w**6;w**6;w**6;w**6;w**6;w**6;w**6;w**6; w**5;w**5;w**5;w**5; w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5; w**5;w**5; 2𝜏𝜏
Ү**;Ү**;Ү**;Ү**;Ү**;Ү**;Ү**;Ү**;Ү**;Ү**; 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 w**6;w**6;w**6;w**6;w**6;w**6;w**6;w**6;w**6;w**6; w**5;w**5;w**5;w**5; w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5;w**5; w**5;w**5; 𝜏𝜏   for appropriate
values of τ, and explain how this could be used to test the conjecture: Ү**;Ү**;Ү**;Ү**;Ү**;Ү**;Ү**;Ү**;Ү**;Ү**; = 𝐶𝐶𝜏𝜏w**1;w**1;,
where 𝐶𝐶 is constant. [10 marks]
d. Repeat part c for the Trapezoidal method (an implicit method), using Fixed Point
Iteration to compute the results at each step. [10 marks]
e. Repeat part c using the modified Euler (predictor-corrector) method, for which you
should use the forward Euler method as a predictor, inserting that solution into the
right-hand side of the trapezoidal method equation. [10 marks]
f. Explicitly write out the steps of the four stage Runge Kutta method given by the
following Butcher Tableau, and then repeat part c using this method: [10 marks]
0 0 0 0 0
½ ½ 0 0 0
½ 0 ½ 0 0
1 0 0 1 0
1/6 1/3 1/3 1/6
g. Comment on the advantages and disadvantages of using each of the methods from
parts (c)-(f) above, for solving initial value problems such as the one in this question
[10 marks]
2. Consider the boundary value problem:
− 𝑑𝑑2𝑦𝑦
𝑑𝑑w**9;w**9;2 = 𝛼𝛼w**9;w**9;2 − ҵ**;ҵ**;, w**9;w**9; ∈ (−1,1),
𝑦𝑦(−1) = 𝑦𝑦(1) = 0.
a. Determine the exact solution, by direct integration or otherwise. [10 marks]
b. Suppose Ү**;Ү**; is a positive even integer, ℎ = 2
Ү**;Ү**;, and define w**9;w**9;𝑗𝑗 = −1 + 𝑗𝑗ℎ,𝑗𝑗 = 0, … , Ү**;Ү**;.
Consider the following finite difference scheme for the numerical solution of the
boundary value problem:
−  𝑌𝑌𝑗𝑗+1 − 2𝑌𝑌𝑗𝑗 + 𝑌𝑌𝑗𝑗−1
ℎ2   = 𝛼𝛼w**9;w**9;𝑗𝑗
2 − ҵ**;ҵ**;, 𝑗𝑗 = 1, … , Ү**;Ү**; − 1,
𝑌𝑌0 = 0, 𝑌𝑌Ү**;Ү**; = 0,
where 𝑌𝑌𝑗𝑗 ≈ 𝑦𝑦 w**9;w**9;𝑗𝑗 , 𝑗𝑗 = 0, … , Ү**;Ү**;. Rewrite this difference scheme as a system of linear
equations in matrix form with a vector of unknowns 𝑌𝑌 = (𝑌𝑌1, … , 𝑌𝑌Ү**;Ү**;−1)𝑇𝑇, and
comment on the structure of the matrix. [10 marks]
c. Write a code to compute 𝑌𝑌 for any given input Ү**;Ү**;, and plot 𝑌𝑌 and the error on
different graphs, each for an appropriate range of values of Ү**;Ү**;. Comment on your
results. [10 marks]
Learning outcomes to be assessed: The module learning outcomes relevant to this assessment are:
• Plan and implement numerical methods for differential equations using an appropriate
programming language. Illustrate the results using the language's graphics facilities. Analyse
and interpret the results of the numerical implementation in terms of the original problem;
• Choose with confidence and manipulate accurately the appropriate techniques to solve
problems with linear differential equations, including providing criteria for the accuracy of
numerical methods;
• Demonstrate the knowledge and understanding of the multiple skills necessary to operate in a
professional environment
Marking: the total mark available for this assignment is worth up to 50% of the available overall
mark for the module. Marks (out of 100) will be awarded for answers to the questions listed above
according to the stated mark distribution.
Submission instructions: Submission should be through WISEflow. Each student should submit
two files:
1. A single .pdf file, containing the full report. The name of this file should include the module
code and your student ID number, e.g. MA2605_1234567.pdf.
2. A zip file containing all MATLAB (.m) files used to generate the results in the .pdf. The
name of this file should also include the module code and your student ID number, e.g.
MA2605_1234567.zip.
If you are unsure how to download your .pdf file from Overleaf into a folder on your computer, then
please follow the instructions given in the following link:
https://www.overleaf.com/learn/how-to/Downloading_a_Project
Note that the first part of the instructions creates a .zip file containing all of the source files but not the
.pdf file. You will need to download the .pdf file separately by following the instructions on how to
download the finished .pdf. Please remember to back up your files periodically; it is your
responsibility to make sure that your files are securely backed up, and the safest way to do this is by
using the filestore at Brunel – details of how to do this can be found at:
https://intra.brunel.ac.uk/s/cc/kb/Pages/Saving-work-on-your-filestore-at-Brunel.aspx
You can login into Wiseflow directly at https://europe.wiseflow.net/login/uk/brunel.
Plagiarism and references: The university’s standard rules on plagiarism and collusion apply (see
https://www.brunel.ac.uk/life/library/SubjectSupport/Plagiarism for more information). This is an
individual assignment, and work submitted must be your own. Information from any research
undertaken (e.g., in text books or online) should be given credit where appropriate. The lecture on
academic misconduct and plagiarism, given on Thursday October 19th (week 6, lecture 13) is
available for viewing via the course Brightspace page, and you are strongly encouraged to watch this
if you have not done so already.
Please familiarise yourself with the university’s guidelines to students on the use of AI,
see https://students.brunel.ac.uk/study/using-artificial-intelligence-in-your-studies.
Late submission: The clear expectation is that you will submit your coursework by the submission
deadline. In line with the University’s policy on the late submission of coursework, coursework
submitted up to 48 hours late will be capped at a threshold pass (D-). Work submitted over 48 hours
after the stated deadline will automatically be given a fail grade (F). Please refer to
https://students.brunel.ac.uk/study/cedps/welcome-to-mathematics for information on submitting late
work, penalties applied, and procedures in the case of extenuating circumstances. 
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當(dāng)前頁
  • 上一篇:莆田鞋哪個平臺買,試試這6個靠譜平臺
  • 下一篇:代做Data Structures 2D real-time strategy game
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          久久一区精品| 久久久青草青青国产亚洲免观| 亚洲高清在线观看| 一区久久精品| 亚洲精品乱码久久久久久日本蜜臀 | 午夜精品影院| 午夜精品福利视频| 久久久亚洲午夜电影| 久久综合狠狠综合久久综青草 | 国产一区亚洲| 亚洲高清色综合| 日韩亚洲精品在线| 欧美一区二区视频在线观看2020| 久久免费黄色| 欧美午夜在线观看| 在线成人激情| 亚洲一区二区在线免费观看视频| 久久精品女人| 欧美精品尤物在线| 国产亚洲精品久久久久婷婷瑜伽| 亚洲片在线观看| 欧美影院成人| 欧美性猛交xxxx乱大交蜜桃| 红杏aⅴ成人免费视频| 一区二区日韩| 欧美aa在线视频| 国产欧美91| 亚洲美女黄色片| 久久久久综合网| 国产精品区二区三区日本| 激情国产一区| 欧美一区免费视频| 欧美日韩视频在线一区二区观看视频 | 国产色视频一区| 99av国产精品欲麻豆| 亚洲欧美成人在线| 久久久久一区二区| 欧美在线3区| 国产精品爱久久久久久久| 一区二区亚洲欧洲国产日韩| 亚洲一区二区四区| 免费一级欧美在线大片| 国产精品影音先锋| 亚洲一区二区三区中文字幕| 欧美激情黄色片| 伊人蜜桃色噜噜激情综合| 亚洲免费在线电影| 欧美日韩在线观看视频| 亚洲精品国产精品国自产在线| 美女视频网站黄色亚洲| 亚洲成人在线| 久久综合久久综合这里只有精品| 国产九九精品| 亚洲欧美综合一区| 国产精品美女www爽爽爽| 一区二区欧美国产| 欧美日韩一区二区三区在线| 9国产精品视频| 欧美日韩一级视频| 夜夜狂射影院欧美极品| 欧美日本国产一区| 中日韩高清电影网| 国产精品极品美女粉嫩高清在线 | 美女精品国产| 亚洲动漫精品| 欧美精品一区二区三区很污很色的| 91久久线看在观草草青青| 欧美成在线视频| 9l视频自拍蝌蚪9l视频成人| 欧美性猛片xxxx免费看久爱| 亚洲永久免费精品| 国产精品看片资源| 久久www成人_看片免费不卡| 一区二区三区在线观看欧美| 欧美电影免费观看高清完整版| 亚洲欧洲中文日韩久久av乱码| 免费成人av| 99精品99| 国产在线欧美| 欧美精品在线观看一区二区| 在线视频精品一区| 国产视频亚洲| 欧美激情在线有限公司| 亚洲无玛一区| 韩国欧美国产1区| 欧美极品在线观看| 午夜在线电影亚洲一区| 韩国美女久久| 欧美视频免费| 久久看片网站| 国产精品99久久久久久久女警| 国产精品嫩草久久久久| 蜜臀va亚洲va欧美va天堂 | 久久精品欧美日韩| 亚洲精品少妇| 国模精品一区二区三区| 欧美日韩性视频在线| 欧美制服丝袜| 亚洲视频一区在线观看| 红桃av永久久久| 国产精品蜜臀在线观看| 欧美成人黑人xx视频免费观看| 亚洲欧美日韩综合aⅴ视频| 尤妮丝一区二区裸体视频| 国产精品v一区二区三区| 欧美a级大片| 久久国产精品第一页| 国产精品99久久久久久人| 在线成人性视频| 国产欧美在线观看| 欧美日韩三级一区二区| 久久野战av| 久久成人综合视频| 亚洲视频一起| 99精品视频免费观看视频| 在线观看视频亚洲| 国产一区二区精品| 国产精品一区二区久久| 欧美视频亚洲视频| 欧美久久九九| 欧美啪啪一区| 欧美激情一区二区久久久| 久久先锋资源| 久久久天天操| 久久天堂av综合合色| 久久精品91| 久久久久久电影| 久久久亚洲一区| 久久久久国产一区二区三区| 欧美中文字幕在线视频| 欧美一二区视频| 香蕉久久夜色| 久久精品综合| 六月天综合网| 欧美人与性禽动交情品 | 亚洲无线视频| 亚洲视频1区| 午夜精品久久久| 久久aⅴ国产欧美74aaa| 欧美在线亚洲一区| 久久夜色精品国产噜噜av| 久热精品视频在线| 欧美激情国产精品| 欧美日韩国产精品| 国产精品r级在线| 国产精品一区二区久久久久| 国产欧美日韩免费| 狠狠色狠色综合曰曰| 亚洲国产高清一区二区三区| 亚洲精品久久久久| 在线中文字幕一区| 欧美一区二区三区在线| 久久中文字幕导航| 欧美激情欧美激情在线五月| 欧美先锋影音| 国产亚洲欧美aaaa| 亚洲成人在线视频网站| 亚洲乱码日产精品bd| 亚洲欧美bt| 久久青草福利网站| 欧美理论片在线观看| 国产精品区二区三区日本| 国产亚洲一级高清| 亚洲精品日韩在线观看| 亚洲欧美综合精品久久成人| 久久人人爽国产| 欧美日韩中文另类| 国内精品写真在线观看| 日韩一二三区视频| 久久国产天堂福利天堂| 欧美黄色免费网站| 国产欧美欧洲在线观看| 亚洲国产日韩欧美一区二区三区| 亚洲视频一区二区在线观看| 久久久久欧美精品| 欧美小视频在线| 91久久久久久国产精品| 亚洲欧美日韩在线高清直播| 欧美成年人网站| 国产一区二区精品久久| 在线一区二区三区四区五区| 久久综合狠狠综合久久激情| 国产精品欧美日韩一区| 亚洲精品久久久蜜桃| 久久精品国产久精国产爱| 欧美日韩精品一本二本三本| 怡红院精品视频| 午夜在线精品| 欧美色视频在线| 亚洲片区在线| 老司机成人网| 国产日本欧美在线观看| 夜夜爽www精品| 蜜桃av一区二区| 一区视频在线看| 久久国产欧美精品| 国产欧美一区二区三区另类精品| 中日韩视频在线观看| 欧美激情区在线播放| 亚洲国产成人高清精品|