99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做MA2552、代寫Matlab編程設計

時間:2023-12-15  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


MA2552 Introduction to Computing (DLI) 2023/24

Computational Project

Aims and Intended Learning Outcomes

The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

• ability to investigate a topic through guided independent research, using resources

available on the internet and/or in the library;

• understanding of the researched material;

• implementation of the described methods in Matlab;

• use of the implemented methods on test examples;

• ability to present the studied topic and your computations in a written Project Report.

Plagiarism and Declaration

• This report should be your independent work. You should not seek help from other

students or provide such help to other students. All sources you used in preparing your

report should be listed in the References section at the end of your report and referred

to as necessary throughout the report.

• Your Project Report must contain the following Declaration (after the title page):

DECLARATION

All sentences or passages quoted in this Project Report from other people’s work have

been specifically acknowledged by clear and specific cross referencing to author, work and

page(s), or website link. I understand that failure to do so amounts to plagiarism and

will be considered grounds for failure in this module and the degree as a whole.

Name:

Signed: (name, if submitted electronically)

Date:

Project Report

The report should be about 6-8 pages long, written in Word or Latex. Equations should

be properly formatted and cross-referenced, if necessary. All the code should be included in

the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

file (Word document or Adobe PDF) and contain answers to the following questions:

1

MA2552 Introduction to Computing (DLI) 2023/24

Part 0: Context

Let f(x) be a periodic function. The goal of this project is to implement a numerical method

for solving the following family of ordinary differential equations (O.D.E):

an

d

nu(x)

dxn

+ an−1

d

n−1u(x)

dxn−1

+ . . . + a0u(x) = f(x), (1)

where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

with periodic boundary conditions:

d

ku(−π)

dxk

=

d

ku(π)

dxk

for k = 0, · · · , n − 1.

We aim to solve this problem using a trigonometric function expansion.

Part 1: Basis of trigonometric functions

Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

β1, β2, . . . such that

u(x) = X∞

k=0

αk cos(kx) +X∞

1

βk sin(kx).

The coefficients αk and βk can be found using the following orthogonality properties:

Z π

−π

cos(kx) sin(nx) dx = 0, for any k, n

Z π

−π

cos(kx) cos(nx) dx =

ɽ**;?**0;

ɽ**;?**1;

0 if k ̸= n

π if k = n ̸= 0

2π if k = n = 0.

Z π

−π

sin(kx) sin(nx) dx =

(

0 if k ̸= n

π if k = n ̸= 0.

1. Implement a function that takes as an input two function handles f and g, and an

array x, and outputs the integral

1

π

Z π

−π

f(x)g(x) dx,

using your own implementation of the Simpson’s rule scheme. Corroborate numerically

the orthogonality properties above for different values of k and n.

2. Show that

αk =

(

1

π

R π

−π

u(x) cos(kx) dx if k ̸= 0

1

R π

−π

u(x) dx if k = 0

βk =

1

π

Z π

π

u(x) sin(kx) dx.

2

MA2552 Introduction to Computing (DLI) 2023/24

3. Using question 1 and 2, write a function that given a function handle u and an integer

m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

of an array) the truncated series

um(x) := Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx), (2)

where x is a linspace array on the interval [−π, π].

5. Using the function from question 3, compute the truncated series um(x) of the following

functions:

• u(x) = sin3

(x)

• u(x) = |x|

• u(x) = (

x + π, for x ∈ [−π, 0]

x − π, for x ∈ [0, π]

,

and using question 4, plot u(x) and um(x) for different values of m.

6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

and then with p = ∞. What do you observe?

Part 2: Solving the O.D.E

Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

one can approximate u(x) by um(x):

u(x) ≈

Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx),

Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

to solve (1) numerically, one could build a system of equations for determining these

coefficients.

7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

8. We have that

dum(x)

dx =

Xm

k=0

γk cos(kx) +Xm

k=1

ηk sin(kx)

Write a function that takes as input the integer m, and outputs a square matrix D that

maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

3

MA2552 Introduction to Computing (DLI) 2023/24

9. Write a function that given a function handler f and the constants ak, solves the

O.D.E. (1). Note that some systems might have an infinite number of solutions. In

that case your function should be able identify such cases.

10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

(x) + 1),

with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

does your numerical solution converge to the exact solution?

11. Show your numerical solution for different f(x) and different ak of your choice.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:INT3095代做、代寫Artificial Intelligence語言編程
  • 下一篇:代寫MGMT20005、代做Decision Analysis程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                一区二区三区资源| 亚洲男女毛片无遮挡| 午夜av一区二区| 91麻豆精品国产91| 日韩福利视频网| 国产午夜精品理论片a级大结局| 国产精品一区二区三区乱码| 欧美精品 日韩| 99久久免费国产| 久久先锋影音av鲁色资源网| 91麻豆福利精品推荐| 秋霞av亚洲一区二区三| 日日噜噜夜夜狠狠视频欧美人 | 日本中文字幕一区二区有限公司| 久久婷婷综合激情| 国产剧情一区在线| 丝袜美腿成人在线| 亚洲视频在线观看一区| 成人动漫中文字幕| 亚洲1区2区3区4区| 亚洲电影欧美电影有声小说| 欧美α欧美αv大片| 日韩一级免费观看| 精品国产一二三| 亚洲精品国产视频| 日韩西西人体444www| 麻豆一区二区三区| 午夜视黄欧洲亚洲| 亚洲1区2区3区视频| 一色屋精品亚洲香蕉网站| 日韩午夜三级在线| 亚洲国产精品综合小说图片区| 肉肉av福利一精品导航| 蜜桃一区二区三区在线观看| 床上的激情91.| 精品国产亚洲在线| 亚洲欧美偷拍另类a∨色屁股| 亚洲va国产va欧美va观看| 久久国产精品72免费观看| 丰满少妇在线播放bd日韩电影| 欧美日韩在线播| 久久综合色综合88| 亚洲国产精品欧美一二99| 丁香一区二区三区| 91精品国产乱码久久蜜臀| 亚洲精品国产无天堂网2021| 粉嫩欧美一区二区三区高清影视| 91免费观看在线| 国产日本欧洲亚洲| 国产二区国产一区在线观看| 欧美一区二区视频在线观看| 五月天久久比比资源色| 欧美日韩你懂的| 亚洲欧美一区二区三区国产精品 | 国产最新精品精品你懂的| 国产精品狼人久久影院观看方式| 激情综合色综合久久综合| 久久精品视频网| 欧美日韩在线播放一区| 七七婷婷婷婷精品国产| 欧美精品xxxxbbbb| 日韩av成人高清| 色妹子一区二区| 欧美变态tickle挠乳网站| 亚洲成人精品一区| 欧美日韩第一区日日骚| 亚洲一级不卡视频| 国产日韩v精品一区二区| 综合av第一页| 九九久久精品视频| 制服丝袜中文字幕亚洲| 污片在线观看一区二区| 欧美肥妇free| 蜜臀av性久久久久蜜臀aⅴ四虎 | 欧美一级片免费看| 亚洲午夜精品17c| 日韩欧美国产麻豆| 日韩二区在线观看| 久久婷婷成人综合色| 99国产精品99久久久久久| 欧美一区二区在线观看| 成人毛片在线观看| 久久国产成人午夜av影院| 中文字幕亚洲电影| 欧美一区二区三区婷婷月色| 成人性色生活片| 国产精品 日产精品 欧美精品| 亚洲欧美日韩国产另类专区| 国产欧美一区二区精品性色 | 美洲天堂一区二卡三卡四卡视频 | 色噜噜夜夜夜综合网| 亚洲色图视频免费播放| 欧美老女人第四色| 欧美中文字幕亚洲一区二区va在线| 高清国产一区二区三区| 国产精品自拍毛片| 国产尤物一区二区在线| 国产一区二区中文字幕| 久久精品999| 精品一区二区影视| 久久精品99久久久| 国产精品亚洲成人| 成人丝袜视频网| 99精品视频免费在线观看| 国产成人午夜精品5599 | 国产亚洲va综合人人澡精品| 2021久久国产精品不只是精品| 精品国产乱码久久久久久老虎| 一区二区三区四区乱视频| 国产伦精品一区二区三区在线观看 | 中文字幕一区二区三区四区不卡| 国产91露脸合集magnet| 国产精品久久久久久久久免费丝袜 | 99久久婷婷国产综合精品| 亚洲色图都市小说| 懂色av中文一区二区三区| 国产毛片精品视频| 日韩精品一二区| 婷婷久久综合九色国产成人| 国产精品区一区二区三| 麻豆极品一区二区三区| 亚洲欧洲精品一区二区三区不卡| 国产精品日韩成人| 亚洲第一av色| 日韩av二区在线播放| 亚洲色图19p| 日韩福利电影在线观看| 久久免费偷拍视频| 精品国产制服丝袜高跟| 久久久久久亚洲综合| 91影视在线播放| 精品久久久久久最新网址| 日韩精品一二三四| 精品一区二区免费视频| 日本午夜一区二区| 国产拍揄自揄精品视频麻豆| 91免费观看视频| 91视频一区二区| 欧美日韩精品久久久| caoporm超碰国产精品| 中文字幕一区在线观看| 欧美视频精品在线| 亚洲精品国产精华液| 精品久久久久久久久久久久久久久| 91蜜桃在线免费视频| 麻豆91免费观看| 香蕉成人伊视频在线观看| 国产婷婷色一区二区三区| 国产91精品免费| 精品国产欧美一区二区| 午夜久久久久久久久久一区二区| 欧美白人最猛性xxxxx69交| 91免费国产视频网站| 精品在线一区二区三区| 久久青草国产手机看片福利盒子| 99视频一区二区| 国产成人免费网站| 天天av天天翘天天综合网色鬼国产 | 在线观看不卡视频| 日韩区在线观看| 欧美日韩国产bt| 欧美日本韩国一区| 91女神在线视频| 不卡区在线中文字幕| 精品一区二区免费| 国产一区二区影院| 日韩精品成人一区二区在线| 日韩成人午夜精品| 久久精品视频一区二区| 国产欧美日韩一区二区三区在线观看| 2欧美一区二区三区在线观看视频 337p粉嫩大胆噜噜噜噜噜91av | 亚洲成精国产精品女| 亚洲啪啪综合av一区二区三区| 91色视频在线| 国产成人鲁色资源国产91色综| 美女网站色91| 美女视频第一区二区三区免费观看网站| 亚洲综合色区另类av| 亚洲成人免费看| 亚洲午夜国产一区99re久久| 午夜欧美大尺度福利影院在线看| 天使萌一区二区三区免费观看| 一区二区三区精品在线| 调教+趴+乳夹+国产+精品| 香蕉乱码成人久久天堂爱免费| 蜜臀av一区二区在线观看| 国产精品无遮挡| 亚洲精选一二三| 成人av影视在线观看| 亚洲男人电影天堂| av综合在线播放| 国产精品私人影院| 国产成a人亚洲| 久久无码av三级| 亚洲一区二区三区国产| 91蜜桃视频在线| 日韩码欧中文字| 日韩精品五月天| 欧美一级久久久久久久大片| 91理论电影在线观看|