99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做MA2552、代寫Matlab編程設計

時間:2023-12-15  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


MA2552 Introduction to Computing (DLI) 2023/24

Computational Project

Aims and Intended Learning Outcomes

The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

• ability to investigate a topic through guided independent research, using resources

available on the internet and/or in the library;

• understanding of the researched material;

• implementation of the described methods in Matlab;

• use of the implemented methods on test examples;

• ability to present the studied topic and your computations in a written Project Report.

Plagiarism and Declaration

• This report should be your independent work. You should not seek help from other

students or provide such help to other students. All sources you used in preparing your

report should be listed in the References section at the end of your report and referred

to as necessary throughout the report.

• Your Project Report must contain the following Declaration (after the title page):

DECLARATION

All sentences or passages quoted in this Project Report from other people’s work have

been specifically acknowledged by clear and specific cross referencing to author, work and

page(s), or website link. I understand that failure to do so amounts to plagiarism and

will be considered grounds for failure in this module and the degree as a whole.

Name:

Signed: (name, if submitted electronically)

Date:

Project Report

The report should be about 6-8 pages long, written in Word or Latex. Equations should

be properly formatted and cross-referenced, if necessary. All the code should be included in

the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

file (Word document or Adobe PDF) and contain answers to the following questions:

1

MA2552 Introduction to Computing (DLI) 2023/24

Part 0: Context

Let f(x) be a periodic function. The goal of this project is to implement a numerical method

for solving the following family of ordinary differential equations (O.D.E):

an

d

nu(x)

dxn

+ an−1

d

n−1u(x)

dxn−1

+ . . . + a0u(x) = f(x), (1)

where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

with periodic boundary conditions:

d

ku(−π)

dxk

=

d

ku(π)

dxk

for k = 0, · · · , n − 1.

We aim to solve this problem using a trigonometric function expansion.

Part 1: Basis of trigonometric functions

Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

β1, β2, . . . such that

u(x) = X∞

k=0

αk cos(kx) +X∞

1

βk sin(kx).

The coefficients αk and βk can be found using the following orthogonality properties:

Z π

−π

cos(kx) sin(nx) dx = 0, for any k, n

Z π

−π

cos(kx) cos(nx) dx =

ɽ**;?**0;

ɽ**;?**1;

0 if k ̸= n

π if k = n ̸= 0

2π if k = n = 0.

Z π

−π

sin(kx) sin(nx) dx =

(

0 if k ̸= n

π if k = n ̸= 0.

1. Implement a function that takes as an input two function handles f and g, and an

array x, and outputs the integral

1

π

Z π

−π

f(x)g(x) dx,

using your own implementation of the Simpson’s rule scheme. Corroborate numerically

the orthogonality properties above for different values of k and n.

2. Show that

αk =

(

1

π

R π

−π

u(x) cos(kx) dx if k ̸= 0

1

R π

−π

u(x) dx if k = 0

βk =

1

π

Z π

π

u(x) sin(kx) dx.

2

MA2552 Introduction to Computing (DLI) 2023/24

3. Using question 1 and 2, write a function that given a function handle u and an integer

m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

of an array) the truncated series

um(x) := Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx), (2)

where x is a linspace array on the interval [−π, π].

5. Using the function from question 3, compute the truncated series um(x) of the following

functions:

• u(x) = sin3

(x)

• u(x) = |x|

• u(x) = (

x + π, for x ∈ [−π, 0]

x − π, for x ∈ [0, π]

,

and using question 4, plot u(x) and um(x) for different values of m.

6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

and then with p = ∞. What do you observe?

Part 2: Solving the O.D.E

Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

one can approximate u(x) by um(x):

u(x) ≈

Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx),

Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

to solve (1) numerically, one could build a system of equations for determining these

coefficients.

7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

8. We have that

dum(x)

dx =

Xm

k=0

γk cos(kx) +Xm

k=1

ηk sin(kx)

Write a function that takes as input the integer m, and outputs a square matrix D that

maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

3

MA2552 Introduction to Computing (DLI) 2023/24

9. Write a function that given a function handler f and the constants ak, solves the

O.D.E. (1). Note that some systems might have an infinite number of solutions. In

that case your function should be able identify such cases.

10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

(x) + 1),

with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

does your numerical solution converge to the exact solution?

11. Show your numerical solution for different f(x) and different ak of your choice.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:INT3095代做、代寫Artificial Intelligence語言編程
  • 下一篇:代寫MGMT20005、代做Decision Analysis程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          久久福利视频导航| 欧美一级黄色网| 午夜久久tv| 国产免费成人| 国产精品毛片大码女人 | 久久久精品一区二区三区| 性欧美video另类hd性玩具| 免费在线国产精品| 国产精品国码视频| 国内精品视频一区| 欧美精品久久99| 欧美中文字幕在线| 99在线精品免费视频九九视| 一本大道久久a久久综合婷婷| 日韩写真在线| 国产日韩欧美不卡在线| 尤物在线观看一区| 亚洲精品网址在线观看| 国产亚洲精品久| 日韩午夜激情电影| 欧美一区二区三区免费看 | 国产农村妇女精品一区二区| 老司机午夜精品视频在线观看| 麻豆乱码国产一区二区三区| 国产情人节一区| 亚洲国产欧洲综合997久久| 国产精品午夜国产小视频| 亚洲精品网站在线播放gif| 久久精品导航| 中日韩视频在线观看| 亚洲视频二区| 久久精品二区| 午夜天堂精品久久久久| 另类av一区二区| 欧美在线免费观看亚洲| 欧美视频手机在线| 亚洲一区二区精品| 99天天综合性| 欧美福利精品| 免费日韩av片| 欧美www视频| 国产一区二区三区日韩欧美| 亚洲自拍三区| 模特精品在线| 免费成人毛片| 欧美日韩高清在线观看| 欧美激情亚洲综合一区| 在线观看日韩欧美| 激情久久久久久久久久久久久久久久| 国产欧美日韩亚洲| 狠狠干综合网| 韩日成人av| 国产精品高潮呻吟久久av黑人| 亚洲电影免费观看高清完整版在线观看 | 亚洲国产精品欧美一二99| 欧美中文字幕不卡| 亚洲欧美国产日韩中文字幕| 亚洲天堂网在线观看| 欧美精品在线观看91| 欧美大尺度在线| 欧美日韩另类丝袜其他| 欧美视频在线不卡| 久久精品在线播放| 久久久久**毛片大全| 欧美福利视频在线| 欧美不卡视频一区| 欧美日韩国产精品一区| 国产精品高精视频免费| 韩日成人在线| 亚洲美女色禁图| 欧美精品一区二区在线观看| 国产精品久久久久久妇女6080| 国产精品乱码妇女bbbb| 性刺激综合网| 美女视频一区免费观看| 欧美日韩一区国产| 国产精品天美传媒入口| 久久国内精品视频| 欧美精品一区二区高清在线观看| 香蕉成人啪国产精品视频综合网| 久久精品日韩一区二区三区| 欧美日韩一区二区三区免费| 国产一区二区三区四区hd| 久久精品人人做人人爽电影蜜月| 久久婷婷国产麻豆91天堂| 欧美日韩在线视频观看| 在线观看日韩av电影| 亚洲男人第一av网站| 99精品欧美一区| 久久精品二区三区| 国产精品久久久久久av下载红粉| 亚洲国产精品免费| 久久精品国产亚洲a| 国产精品久久久久久模特 | 欧美国产日韩a欧美在线观看| 欧美三级视频在线观看| 亚洲国产精品黑人久久久| 午夜综合激情| 久久中文字幕一区二区三区| 国产伦精品一区二区三区照片91| 亚洲美女一区| 久久久久久夜| 国产免费观看久久| 亚洲日本无吗高清不卡| 老色批av在线精品| 国产一区美女| 翔田千里一区二区| 欧美色精品天天在线观看视频| 亚洲国产欧美在线人成| 久久精彩视频| 国内外成人在线| 午夜一区二区三视频在线观看 | 久久成人综合网| 国产欧美日韩视频一区二区| 亚洲一区二区三区激情| 欧美三级特黄| 影音先锋亚洲一区| 国内外成人免费激情在线视频网站| 狠狠色2019综合网| 欧美一级在线播放| 国产欧美一区二区三区久久| 亚洲欧美三级在线| 国产精品色在线| 亚洲欧美日韩区 | 黄色一区二区在线| 国产亚洲成av人在线观看导航| 欧美日韩高清在线播放| 欧美—级高清免费播放| 影音先锋日韩资源| 极品尤物av久久免费看| 99视频有精品| 一级成人国产| 一区二区三区在线免费播放| 日韩视频不卡中文| 久久福利毛片| 国产精品久久综合| 亚洲欧美日韩一区| 欧美日韩免费区域视频在线观看| 亚洲电影免费| 国产精品欧美一区二区三区奶水| 日韩小视频在线观看| 欧美日韩在线免费观看| 在线视频精品一区| 亚洲国产经典视频| 欧美午夜不卡| 久久婷婷人人澡人人喊人人爽| 日韩天天综合| 激情久久久久久| 欧美华人在线视频| 久久不射2019中文字幕| 黄色一区二区三区四区| 欧美精品久久久久久久久久| 亚洲尤物在线视频观看| 亚洲高清在线视频| 国产视频久久久久| 欧美日韩在线播放三区四区| 美女国产精品| 麻豆精品传媒视频| 午夜综合激情| 亚洲欧美日韩人成在线播放| 中文亚洲免费| 亚洲视频在线二区| 欧美四级剧情无删版影片| 毛片一区二区| 欧美成人国产一区二区 | 亚洲色诱最新| 日韩视频一区二区在线观看 | 国产午夜精品麻豆| 国精品一区二区| 久久久综合精品| 欧美.www| 欧美性久久久| 国产欧美日韩激情| 永久免费精品影视网站| 国产精品日韩欧美大师| 欧美日韩高清在线播放| 国产麻豆视频精品| 亚洲激情不卡| 欧美日韩成人综合在线一区二区 | 欧美日韩精品不卡| 国内外成人在线视频| 亚洲一区日韩| 欧美国产三级| 伊人影院久久| 久久精品人人做人人综合| 欧美日韩一区不卡| 日韩小视频在线观看| 欧美日韩国语| 亚洲国产一区二区a毛片| 篠田优中文在线播放第一区| 国产精品成人免费精品自在线观看| 亚洲激情av| 欧美日本韩国一区二区三区| 国产麻豆午夜三级精品| 亚洲日本va午夜在线电影| 亚洲欧美一区二区三区在线| 亚洲精品综合精品自拍| 日韩视频中午一区| 久久精品色图| 在线免费一区三区|