99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP5930M 代做、代寫 c++,java 程序語言

時間:2023-12-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



School of Computing: assessment brief
   Module title
 Scientific Computation
  Module code
 COMP5930M
  Assignment title
 Coursework 2
  Assignment type and description
 Coursework assignment
  Rationale
 TBA
  Weighting
 20% of total mark
  Submission dead- line
 December 14th 2023 at 10:00
  Submission method
 Turnitin submission through Minerva
  Feedback provision
 Feedback provided on Minerva
  Learning outcomes assessed
 (i) Formulate and solve systems of nonlinear equations to solve challenging real-world problems arising from en- gineering and computational science; (ii) Implement al- gorithmic solutions to solve computational differential equation problems based on mathematical theory; (iii) Analyse computational linear algebra problems to iden- tify and implement the most efficient and scalable solu- tion algorithm to apply for large problems.
  Module lead
 Dr Toni Lassila
           1

1. Assignment guidance
Provide answers to the two exercises below. Answer both exercises.
2. Assessment tasks
Exercise 1: The Burgers’ equation models the propagation of a pres- sure wave in shock tube. It is a nonlinear partial-differential equation in one spatial dimension to find u(x, t) s.t.
∂u + u∂u = ν ∂2u, (1) ∂t ∂x ∂x2
where the boundary conditions u(a, t) = ua and u(b, t) = ub for all t, and the initial condition u(x, 0) = u0(x) need to be prescribed in order to obtain a well-posed problem. Here ν is the kinematic viscosity of the fluid. For ν = 0 we have the inviscid Burgers’ equation, and for ν > 0 we have the viscous Burgers’ equation.
(a) Applying the central difference formula to the second order deriva- tive in space, the upwind difference formula
􏰀Uk−Uk 􏰁
i−1
using implicit Euler’s method leads to the discrete formulation: Uk −Uk−1 􏰀Uk −Uk 􏰁 􏰀Uk −2Uk +Uk 􏰁
Fi(U)= i i +Uik i i−1 −ν i+1 i i−1 =0 ∆t h h2
(2) for i = 2,3,...,m−1 where the interval has been discretised with
m uniformly distributed nodes and a spatial grid size h. Implement the function F as a python subroutine fun burgers.py
        def fun_burgers( uk, ukp, dt, h, nu, ua, ub )
where uk is the vector Uk of size m, ukp is the previous time-step solution vector Uk−1, dt is the time-step ∆t, h is the spatial grid size parameter h, and nu is the kinematic viscosity ν. Include the boundary conditions ua and ub in the implementation. [6 marks]
2
Uik i
to the first order derivative in space, and discretising (1) in time
 h
   
(b) Derive the analytical formulas for the nonzero elements on row i of the Jacobian matrix for (2): [4 marks]
∂Fi , ∂Fi, ∂Fi . ∂Ui−1 ∂Ui ∂Ui+1
(c) Solve problem (2) numerically using your fun burgers.py and the PDE solver template solver burgers.py provided in the course- work folder. Use the viscosity value ν = 0.01, the time-step ∆t=0.01,thegridsizeh=0.01,andafinaltimeofT =1. The initial solution u(x, 0) should be taken as a unit step located at x = 0.1 (see below) and the boundary conditions as: u(0, t) = 1 and u(1, t) = 0.
   Figure 1: Initial condition u0(x) for the Burgers’ equation (1)
Plot the solution u(x, T ) at the final time step T = 1 and include it in your report. Also report the total number of Newton iterations required for the numerical solution (sum of Newton iterations over all time steps). [2 marks]
3

(d) The solution of Burgers’ equation (1) can be shown to be a (decay- ing) wavefront that travels from left to right at a constant velocity v. What is the approximate value of the numerical wavefront ve- locity vnum for ν = 0.01, ∆t = 0.01, and h = 0.01? Measure the approximate location of the wavefront using the point where the solution u(xmid) ≈ 0.5. [1 mark]
(e) Replace the discretisation of the nonlinear convection term with the downwind difference formula
􏰀Uk − Uk 􏰁
i (3)
and solve the problem with same parameters as in (c). Plot the solution u(x,T) at the final time step T = 1 and include it in your report. Also report the total number of Newton iterations required for the numerical solution (sum of Newton iterations over all time steps). What is the numerical wavefront velocity vnum in this case?
Now set ν = 0.001 and solve the problem again using the down- wind difference formula. What do you observe? Now solve the problem with ν = 0.001 using the original upwind difference for- mula and compare the results. What is the numerical wavefront velocity vnum in this case? [7 marks]
Uik i+1
h
 4

Exercise 2: Consider the anisotropic diffusion equation to find u(x, y) s.t.
􏰀 ∂2u ∂2u􏰁
− μx∂x2 +μy∂y2 =f(x,y), (x,y)∈(0,1)×(0,1), (4)
and the boundary condition u = 0 on Γ (the boundary of the unit square), where u is a scalar function that models the temperature of a heat-conducting object modelled here as a unit square and f(x,y) is a function modelling a heat source. The heat conductivity coefficients, μx > 0 and μy > 0, can have different magnitudes (anisotropy).
(a) Discretising the problem (4) using the second-order finite differ- ence formulas
∂2u ≈ ui,j−1 − 2ui,j + ui,j+1 .
Write the second-order finite difference stencil (similarly as in Tu- torial 7)
∂2u ≈ ui−1,j − 2ui,j + ui+1,j , ∂x2 h2
  ∂y2
−μx h2 −μy h2 = fi,j.
h2 􏰀ui−1,j − 2ui,j + ui+1,j 􏰁 􏰀ui,j−1 − 2ui,j + ui,j+1 􏰁
leads to the discretised form
  ?**7;
s11 s12 s13 ?**8; ?**8;
S=s s s?**8;  21 22 23?**8;
?**8; s s s?**9;
corresponding to this finite difference scheme. [4 marks] (b) Implement a python function source function.py
    def source_function( x, y, h )
that returns the right-hand side by evaluating the function:
f(x,y) :=
⭺**;1, ifx≥0.1andx≤0.3andy≥0.1andy≤0.3 0, otherwise
.
Include the source code in your answer. [3 marks] 5
31 ** 33
(5)

 Figure 2: Computational domain for problem (4) and the sub-region where the heat source is located (in red).
(c) Modify the solver from Tutorial 7 to numerically solve the diffusion problem (4) for the right-hand side (5).
Solve the linear problem AU = F using the conjugate gradient method (without preconditioning) with the diffusion coefficients μx = 1 and μy = 1, stopping tolerance tol = 10−6, and maxi- mum of 1000 CG iterations. You can use the CG implementation in scipy.sparse.linalg.cg for this problem or code your own implementation.
Plot the solution surface and include the plot in your answer. How many iterations does it take for CG to converge in this case?
[2 marks]
(d) Consider now the use of a preconditioner to accelerate the con- vergence of CG. The incomplete-LU preconditioner approximates the system matrix A ≈ LincUinc by performing Gaussian elimi- nation but setting to zero any elements that are smaller than a dropoff tolerance ε chosen by the user. You can use the imple- mentation provided in scipy.sparse.linalg.spilu to compute
6

the incomplete factors Linc and Uinc.
Write a python implementation myPCG.py of the preconditioned
conjugate gradient from Lecture 18:
            def myPCG( A, b, L, U, tol, maxit )
that solves the preconditioning step for the residual, Mzi+1 = LU zi+1 = ri+1 , using appropriate solution algorithms. Include the source code as part of your answer. [4 marks]
(e) Solve the problem (4) again using your preconditioned CG imple- mentation from (d). Use a dropout tolerance of ε = 0.1 for the incomplete LU-factorisation.
How many nonzero elements (nnz) do the factors Linc and Uinc have in this case?
How many PCG iterations does the problem take to converge to tol = 10−6 now?
[2 marks]
(f) Repeat the experiment from (e) with different values of the dif- fusion coefficients. Solve the problem (4) with μx = 0.1 and μx = 0.01, while keeping the other value at μy = 1. Solve the problem using PCG with the same ILU-preconditioner as before with a dropout tolerance of ε = 0.1. Plot the two respective solu- tions and the respective number of CG iterations. What do you observe?
[5 marks]
3. General guidance and study support
The MS Teams group for COMP53**M Scientific Computation will be used for general support for this assignment. If your question would reveal parts of the answer to any problem, please send a private message to the module leader on MS Teams instead. You can also use the tutorial sessions to ask questions about coursework.
4. Assessment criteria and marking process
Assessment marks and feedback will be available on Minerva within
three weeks of the submission deadline. Late submissions are allowed 7

within 14 days of the original deadline providing that a request for an extension is submitted before the deadline. Standard late penalties apply for submissions without approved extensions.
5. Presentation and referencing
When writing mathematical formulas, use similar notation and sym- bols as during the lectures and tutorials. Hand-written sections for mathematical notation are acceptable but need to be clearly readable.
You may assume theorems and other results that have been presented during lectures and tutorials as known. Any other theorems need to be cited using standard citation practice.
6. Submission requirements
This is an individual piece of work. Submit your answers through Tur- nitin as one PDF document (generated either in Word or with LaTeX). You may use hand-written and scanned pages for mathematical formu- las, but these need to be clearly legible and the document must contain at least some typeset text or Turnitin will reject it. All submissions will be checked for academic integrity.
7. Academic misconduct and plagiarism
Academic integrity means engaging in good academic practice. This involves essential academic skills, such as keeping track of where you find ideas and information and referencing these accurately in your work.
By submitting this assignment you are confirming that the work is a true expression of your own work and ideas and that you have given credit to others where their work has contributed to yours.
8. Assessment/marking criteria grid
Total number of marks is 40, divided as follows:
Exercise 1 (One-dimensional Burgers equation): 20 marks
Exercise 2 (Anisotropic diffusion and conjugate gradient): 20 marks
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:CAN201 代做、代寫 Python語言編程
  • 下一篇:代寫COM6471、代做 java 語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                99精品视频在线播放观看| 亚洲第一电影网| 久久久亚洲精华液精华液精华液| 91精品国产入口| 亚洲免费观看高清完整版在线| 日韩在线一区二区| 日本va欧美va瓶| 欧美日韩成人高清| 日韩欧美国产小视频| 亚洲国产成人91porn| 在线观看一区二区视频| 亚洲成人免费视频| 日韩精品一区二区三区中文不卡 | 亚洲欧美日韩在线| 欧美亚洲国产bt| 久久国产生活片100| 国产欧美精品区一区二区三区 | www.久久久久久久久| 国产精品日韩精品欧美在线| av高清久久久| 欧美96一区二区免费视频| 精品久久99ma| 色噜噜狠狠一区二区三区果冻| 一区二区理论电影在线观看| 日韩欧美国产一区二区在线播放 | 亚洲欧美激情小说另类| av中文字幕在线不卡| 亚洲精选免费视频| 欧美一级电影网站| 亚洲天堂a在线| 成人国产精品免费观看视频| 久久品道一品道久久精品| 国产成a人无v码亚洲福利| 亚洲一级在线观看| 久久久无码精品亚洲日韩按摩| 色拍拍在线精品视频8848| 国产精品综合一区二区三区| 亚洲综合激情网| 亚洲精品高清在线观看| 中文字幕精品三区| 久久精品亚洲麻豆av一区二区| 91精品国产综合久久精品| 欧美中文字幕一区| 91麻豆产精品久久久久久| 成人亚洲精品久久久久软件| 狠狠狠色丁香婷婷综合激情| 蜜桃久久av一区| 国产精品一二三四区| 日本不卡在线视频| 久久国产精品72免费观看| 免费观看一级特黄欧美大片| 午夜电影网亚洲视频| 久久精品国产一区二区三区免费看 | 国产精品精品国产色婷婷| 国产欧美一区二区精品忘忧草| 久久精品一级爱片| 一个色综合av| 国产美女精品在线| 色综合久久综合| 91福利在线播放| 欧美精品一卡二卡| 日韩不卡一区二区三区| 日韩av电影天堂| 九一久久久久久| 99久久免费精品高清特色大片| 蜜臀久久99精品久久久久宅男| 亚洲精品国产无套在线观| 美女视频网站黄色亚洲| 国产精品69毛片高清亚洲| 欧美专区亚洲专区| 国产精品成人免费| 免费人成在线不卡| 国产成人鲁色资源国产91色综| 欧美日韩在线精品一区二区三区激情 | 亚洲第一精品在线| 色94色欧美sute亚洲13| 国产亚洲1区2区3区| 日本视频中文字幕一区二区三区| 国产不卡免费视频| 日韩精品中文字幕一区| 日韩av高清在线观看| 欧美性一级生活| 亚洲一区二区三区中文字幕 | 国产在线视视频有精品| 欧美一区二区三区在线| 亚洲自拍偷拍九九九| 欧美日韩国产不卡| 丝袜美腿高跟呻吟高潮一区| 欧美日韩中文一区| 久久国内精品视频| 久久久国产午夜精品| 不卡欧美aaaaa| 日韩经典一区二区| 国产亚洲欧美日韩在线一区| 成人高清免费在线播放| 首页亚洲欧美制服丝腿| 日本一区二区三区四区 | 国产在线播放一区| 中文字幕中文字幕在线一区| 精品视频在线视频| 丁香激情综合五月| 久久99精品久久久久久久久久久久| 国产亚洲精品福利| 4438x成人网最大色成网站| 韩国v欧美v日本v亚洲v| 亚洲图片另类小说| 国产性做久久久久久| 欧美日韩精品专区| 91精彩视频在线观看| 成人蜜臀av电影| 国产91清纯白嫩初高中在线观看| 性感美女极品91精品| 一区二区三区精品视频| 成人免费一区二区三区在线观看| 欧美一级日韩免费不卡| 欧美网站大全在线观看| 一本一本大道香蕉久在线精品 | 久久蜜桃一区二区| 一区免费观看视频| 欧美国产日韩a欧美在线观看| 欧美日韩不卡视频| 欧美色窝79yyyycom| 欧美另类z0zxhd电影| 99在线精品免费| 91在线视频网址| 337p亚洲精品色噜噜噜| 欧美日本一区二区三区四区| av欧美精品.com| 在线精品亚洲一区二区不卡| 欧美精品色一区二区三区| 日韩一区二区精品在线观看| 精品国产自在久精品国产| 欧美变态tickle挠乳网站| 精品国产髙清在线看国产毛片| 久久婷婷国产综合精品青草 | 色偷偷88欧美精品久久久| av电影在线观看完整版一区二区| 99久久综合狠狠综合久久| 欧美专区日韩专区| 欧美高清一级片在线观看| 亚洲欧美另类小说| 精品一区二区久久久| 91黄色免费观看| 国产欧美一区二区三区在线看蜜臀 | 久久精品国产亚洲aⅴ| 成人av电影免费观看| 宅男噜噜噜66一区二区66| 国产免费观看久久| 精品一区二区免费视频| 777a∨成人精品桃花网| 国产精品福利在线播放| 黄色精品一二区| 日韩午夜三级在线| 亚洲观看高清完整版在线观看| av不卡一区二区三区| 中文字幕二三区不卡| 粉嫩av一区二区三区在线播放| 久久免费电影网| 国产毛片精品视频| 久久久久国产精品人| 国产成人亚洲综合色影视| www激情久久| 色老汉一区二区三区| 亚洲图片有声小说| 久久综合狠狠综合久久激情| 久久99国产精品成人| 国产日韩一级二级三级| 99视频精品全部免费在线| 亚洲成人综合视频| 中文一区一区三区高中清不卡| 色中色一区二区| 亚洲大型综合色站| 国产视频一区二区在线| 精品视频在线视频| 国产精品白丝jk黑袜喷水| 亚洲色图都市小说| 亚洲精品一区二区三区香蕉| 国产白丝网站精品污在线入口| 亚洲色图制服诱惑| 久久久噜噜噜久久人人看| 韩国三级在线一区| 一区二区三区蜜桃网| 国产欧美一区二区在线观看| 日韩一区二区视频| 91黄色免费版| 91极品美女在线| 91猫先生在线| 99久久精品国产毛片| 国产成人激情av| 成人免费视频视频在线观看免费| 亚洲伊人伊色伊影伊综合网| 精品一区二区影视| 精品99久久久久久| 欧美大白屁股肥臀xxxxxx| 日韩精品综合一本久道在线视频| 欧美群妇大交群中文字幕| 7777精品伊人久久久大香线蕉的| 欧美私人免费视频| 欧美三级电影在线看| 欧美片网站yy|