99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP5930M 代做、代寫 c++,java 程序語言

時間:2023-12-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



School of Computing: assessment brief
   Module title
 Scientific Computation
  Module code
 COMP5930M
  Assignment title
 Coursework 2
  Assignment type and description
 Coursework assignment
  Rationale
 TBA
  Weighting
 20% of total mark
  Submission dead- line
 December 14th 2023 at 10:00
  Submission method
 Turnitin submission through Minerva
  Feedback provision
 Feedback provided on Minerva
  Learning outcomes assessed
 (i) Formulate and solve systems of nonlinear equations to solve challenging real-world problems arising from en- gineering and computational science; (ii) Implement al- gorithmic solutions to solve computational differential equation problems based on mathematical theory; (iii) Analyse computational linear algebra problems to iden- tify and implement the most efficient and scalable solu- tion algorithm to apply for large problems.
  Module lead
 Dr Toni Lassila
           1

1. Assignment guidance
Provide answers to the two exercises below. Answer both exercises.
2. Assessment tasks
Exercise 1: The Burgers’ equation models the propagation of a pres- sure wave in shock tube. It is a nonlinear partial-differential equation in one spatial dimension to find u(x, t) s.t.
∂u + u∂u = ν ∂2u, (1) ∂t ∂x ∂x2
where the boundary conditions u(a, t) = ua and u(b, t) = ub for all t, and the initial condition u(x, 0) = u0(x) need to be prescribed in order to obtain a well-posed problem. Here ν is the kinematic viscosity of the fluid. For ν = 0 we have the inviscid Burgers’ equation, and for ν > 0 we have the viscous Burgers’ equation.
(a) Applying the central difference formula to the second order deriva- tive in space, the upwind difference formula
􏰀Uk−Uk 􏰁
i−1
using implicit Euler’s method leads to the discrete formulation: Uk −Uk−1 􏰀Uk −Uk 􏰁 􏰀Uk −2Uk +Uk 􏰁
Fi(U)= i i +Uik i i−1 −ν i+1 i i−1 =0 ∆t h h2
(2) for i = 2,3,...,m−1 where the interval has been discretised with
m uniformly distributed nodes and a spatial grid size h. Implement the function F as a python subroutine fun burgers.py
        def fun_burgers( uk, ukp, dt, h, nu, ua, ub )
where uk is the vector Uk of size m, ukp is the previous time-step solution vector Uk−1, dt is the time-step ∆t, h is the spatial grid size parameter h, and nu is the kinematic viscosity ν. Include the boundary conditions ua and ub in the implementation. [6 marks]
2
Uik i
to the first order derivative in space, and discretising (1) in time
 h
   
(b) Derive the analytical formulas for the nonzero elements on row i of the Jacobian matrix for (2): [4 marks]
∂Fi , ∂Fi, ∂Fi . ∂Ui−1 ∂Ui ∂Ui+1
(c) Solve problem (2) numerically using your fun burgers.py and the PDE solver template solver burgers.py provided in the course- work folder. Use the viscosity value ν = 0.01, the time-step ∆t=0.01,thegridsizeh=0.01,andafinaltimeofT =1. The initial solution u(x, 0) should be taken as a unit step located at x = 0.1 (see below) and the boundary conditions as: u(0, t) = 1 and u(1, t) = 0.
   Figure 1: Initial condition u0(x) for the Burgers’ equation (1)
Plot the solution u(x, T ) at the final time step T = 1 and include it in your report. Also report the total number of Newton iterations required for the numerical solution (sum of Newton iterations over all time steps). [2 marks]
3

(d) The solution of Burgers’ equation (1) can be shown to be a (decay- ing) wavefront that travels from left to right at a constant velocity v. What is the approximate value of the numerical wavefront ve- locity vnum for ν = 0.01, ∆t = 0.01, and h = 0.01? Measure the approximate location of the wavefront using the point where the solution u(xmid) ≈ 0.5. [1 mark]
(e) Replace the discretisation of the nonlinear convection term with the downwind difference formula
􏰀Uk − Uk 􏰁
i (3)
and solve the problem with same parameters as in (c). Plot the solution u(x,T) at the final time step T = 1 and include it in your report. Also report the total number of Newton iterations required for the numerical solution (sum of Newton iterations over all time steps). What is the numerical wavefront velocity vnum in this case?
Now set ν = 0.001 and solve the problem again using the down- wind difference formula. What do you observe? Now solve the problem with ν = 0.001 using the original upwind difference for- mula and compare the results. What is the numerical wavefront velocity vnum in this case? [7 marks]
Uik i+1
h
 4

Exercise 2: Consider the anisotropic diffusion equation to find u(x, y) s.t.
􏰀 ∂2u ∂2u􏰁
− μx∂x2 +μy∂y2 =f(x,y), (x,y)∈(0,1)×(0,1), (4)
and the boundary condition u = 0 on Γ (the boundary of the unit square), where u is a scalar function that models the temperature of a heat-conducting object modelled here as a unit square and f(x,y) is a function modelling a heat source. The heat conductivity coefficients, μx > 0 and μy > 0, can have different magnitudes (anisotropy).
(a) Discretising the problem (4) using the second-order finite differ- ence formulas
∂2u ≈ ui,j−1 − 2ui,j + ui,j+1 .
Write the second-order finite difference stencil (similarly as in Tu- torial 7)
∂2u ≈ ui−1,j − 2ui,j + ui+1,j , ∂x2 h2
  ∂y2
−μx h2 −μy h2 = fi,j.
h2 􏰀ui−1,j − 2ui,j + ui+1,j 􏰁 􏰀ui,j−1 − 2ui,j + ui,j+1 􏰁
leads to the discretised form
  ?**7;
s11 s12 s13 ?**8; ?**8;
S=s s s?**8;  21 22 23?**8;
?**8; s s s?**9;
corresponding to this finite difference scheme. [4 marks] (b) Implement a python function source function.py
    def source_function( x, y, h )
that returns the right-hand side by evaluating the function:
f(x,y) :=
⭺**;1, ifx≥0.1andx≤0.3andy≥0.1andy≤0.3 0, otherwise
.
Include the source code in your answer. [3 marks] 5
31 ** 33
(5)

 Figure 2: Computational domain for problem (4) and the sub-region where the heat source is located (in red).
(c) Modify the solver from Tutorial 7 to numerically solve the diffusion problem (4) for the right-hand side (5).
Solve the linear problem AU = F using the conjugate gradient method (without preconditioning) with the diffusion coefficients μx = 1 and μy = 1, stopping tolerance tol = 10−6, and maxi- mum of 1000 CG iterations. You can use the CG implementation in scipy.sparse.linalg.cg for this problem or code your own implementation.
Plot the solution surface and include the plot in your answer. How many iterations does it take for CG to converge in this case?
[2 marks]
(d) Consider now the use of a preconditioner to accelerate the con- vergence of CG. The incomplete-LU preconditioner approximates the system matrix A ≈ LincUinc by performing Gaussian elimi- nation but setting to zero any elements that are smaller than a dropoff tolerance ε chosen by the user. You can use the imple- mentation provided in scipy.sparse.linalg.spilu to compute
6

the incomplete factors Linc and Uinc.
Write a python implementation myPCG.py of the preconditioned
conjugate gradient from Lecture 18:
            def myPCG( A, b, L, U, tol, maxit )
that solves the preconditioning step for the residual, Mzi+1 = LU zi+1 = ri+1 , using appropriate solution algorithms. Include the source code as part of your answer. [4 marks]
(e) Solve the problem (4) again using your preconditioned CG imple- mentation from (d). Use a dropout tolerance of ε = 0.1 for the incomplete LU-factorisation.
How many nonzero elements (nnz) do the factors Linc and Uinc have in this case?
How many PCG iterations does the problem take to converge to tol = 10−6 now?
[2 marks]
(f) Repeat the experiment from (e) with different values of the dif- fusion coefficients. Solve the problem (4) with μx = 0.1 and μx = 0.01, while keeping the other value at μy = 1. Solve the problem using PCG with the same ILU-preconditioner as before with a dropout tolerance of ε = 0.1. Plot the two respective solu- tions and the respective number of CG iterations. What do you observe?
[5 marks]
3. General guidance and study support
The MS Teams group for COMP53**M Scientific Computation will be used for general support for this assignment. If your question would reveal parts of the answer to any problem, please send a private message to the module leader on MS Teams instead. You can also use the tutorial sessions to ask questions about coursework.
4. Assessment criteria and marking process
Assessment marks and feedback will be available on Minerva within
three weeks of the submission deadline. Late submissions are allowed 7

within 14 days of the original deadline providing that a request for an extension is submitted before the deadline. Standard late penalties apply for submissions without approved extensions.
5. Presentation and referencing
When writing mathematical formulas, use similar notation and sym- bols as during the lectures and tutorials. Hand-written sections for mathematical notation are acceptable but need to be clearly readable.
You may assume theorems and other results that have been presented during lectures and tutorials as known. Any other theorems need to be cited using standard citation practice.
6. Submission requirements
This is an individual piece of work. Submit your answers through Tur- nitin as one PDF document (generated either in Word or with LaTeX). You may use hand-written and scanned pages for mathematical formu- las, but these need to be clearly legible and the document must contain at least some typeset text or Turnitin will reject it. All submissions will be checked for academic integrity.
7. Academic misconduct and plagiarism
Academic integrity means engaging in good academic practice. This involves essential academic skills, such as keeping track of where you find ideas and information and referencing these accurately in your work.
By submitting this assignment you are confirming that the work is a true expression of your own work and ideas and that you have given credit to others where their work has contributed to yours.
8. Assessment/marking criteria grid
Total number of marks is 40, divided as follows:
Exercise 1 (One-dimensional Burgers equation): 20 marks
Exercise 2 (Anisotropic diffusion and conjugate gradient): 20 marks
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:CAN201 代做、代寫 Python語言編程
  • 下一篇:代寫COM6471、代做 java 語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          国产主播喷水一区二区| 亚洲国产三级| 欧美伊人久久| 91久久精品美女| 欧美日韩成人在线观看| 亚洲一区二区在线免费观看视频| 国产一区二区精品久久99| 欧美精品亚洲精品| 欧美在线视频在线播放完整版免费观看 | 日韩一级大片在线| 国产精品theporn| 美腿丝袜亚洲色图| 欧美一级二级三级蜜桃| 亚洲精品一区二区三区av| 国产欧美一区二区精品性| 欧美精品综合| 巨乳诱惑日韩免费av| 亚洲欧美国内爽妇网| 91久久黄色| 极品尤物一区二区三区| 国产日韩欧美一区二区三区在线观看| 欧美大片免费| 免费91麻豆精品国产自产在线观看| 亚洲一区在线直播| 亚洲国产天堂久久国产91| 国产日韩欧美视频| 国产精品国产三级国产专播精品人 | 久久免费精品日本久久中文字幕| 在线视频一区二区| 亚洲精品一区二区三区不| 1024欧美极品| 国产精品av免费在线观看| 欧美日韩精品在线播放| 欧美另类人妖| 欧美精品入口| 欧美日韩国产成人在线91| 欧美激情二区三区| 欧美伦理影院| 国产精品福利网| 国产精品久久一级| 国产精品久久久久久妇女6080 | 欧美成人免费全部| 欧美aⅴ99久久黑人专区| 美日韩丰满少妇在线观看| 久热re这里精品视频在线6| 久久久人人人| 美女图片一区二区| 欧美日韩国产综合网| 国产精品wwwwww| 国产麻豆日韩欧美久久| 韩国在线视频一区| 在线观看视频欧美| 亚洲人成艺术| 亚洲视频日本| 久久精品成人一区二区三区蜜臀| 久久精品国产免费看久久精品| 久久久久久网| 欧美美女bbbb| 国产乱码精品一区二区三区忘忧草| 国产精品人人做人人爽 | 亚洲一级影院| 久久爱另类一区二区小说| 久久成人综合视频| 欧美成人xxx| 欧美系列电影免费观看| 国内精品视频在线播放| 亚洲精品资源| 欧美专区中文字幕| 欧美日本精品| 国内久久精品| 亚洲性视频网址| 免费高清在线视频一区·| 国产精品超碰97尤物18| 在线观看视频免费一区二区三区| 亚洲毛片视频| 久久午夜视频| 国产精品萝li| 亚洲精品之草原avav久久| 欧美一区激情| 欧美性做爰猛烈叫床潮| 亚洲第一页中文字幕| 性久久久久久| 欧美午夜不卡在线观看免费| 在线观看视频欧美| 午夜久久一区| 欧美日韩中文在线观看| 在线免费观看一区二区三区| 先锋影院在线亚洲| 欧美婷婷久久| 亚洲日本久久| 蘑菇福利视频一区播放| 一区二区在线看| 欧美亚洲系列| 欧美涩涩网站| 在线视频日韩| 欧美日韩精品久久| 亚洲人成小说网站色在线| 欧美a级大片| 亚洲国产精品一区二区www在线| 久久精品国产综合| 国产农村妇女精品| 性久久久久久久久| 国产欧美视频一区二区| 亚洲男女自偷自拍图片另类| 欧美视频观看一区| 亚洲视频一区二区免费在线观看| 欧美精品一区二区三区四区| 亚洲乱码精品一二三四区日韩在线| 免费亚洲一区| 亚洲日本欧美| 国产精品vvv| 午夜精品亚洲一区二区三区嫩草| 欧美日韩综合| 欧美影院精品一区| 国产精品综合久久久| 久久精品免费看| 亚洲国产成人在线播放| 欧美激情二区三区| 亚洲视频在线观看免费| 国产精品户外野外| 午夜精品视频在线| 国产一区二区精品丝袜| 免费高清在线视频一区·| 亚洲片在线资源| 欧美午夜精品一区| 欧美一级在线亚洲天堂| 精品成人一区| 欧美精品电影在线| 亚洲视频www| 国产综合色产在线精品| 欧美成人dvd在线视频| 亚洲毛片视频| 国产人久久人人人人爽| 欧美成人亚洲成人| 亚洲欧美日韩综合aⅴ视频| 狠狠干成人综合网| 欧美日韩专区| 榴莲视频成人在线观看| 亚洲午夜在线视频| 亚洲福利视频一区| 欧美午夜在线视频| 久久亚洲欧美国产精品乐播| 一区二区三区国产精品| 国内成人精品2018免费看| 欧美日韩另类综合| 久久亚洲欧美国产精品乐播| 99热在线精品观看| 精品成人久久| 国产精品自在欧美一区| 欧美日韩国产经典色站一区二区三区| 欧美一区二区三区精品电影| 亚洲精品免费一二三区| 韩国av一区二区三区| 国产精品swag| 欧美区一区二区三区| 欧美 日韩 国产在线| 午夜精品www| 在线视频一区观看| 亚洲国产日韩欧美在线动漫| 国产一区二区欧美| 国产精品日韩在线观看| 欧美日韩美女一区二区| 久久伊人亚洲| 先锋影音国产一区| 亚洲在线一区二区三区| 亚洲精品久久| 亚洲国产老妈| 亚洲激情自拍| 极品尤物av久久免费看| 国产精品你懂的在线欣赏| 欧美视频中文在线看 | 亚洲一区二区三区免费在线观看| 在线观看日韩av先锋影音电影院| 国产一区二区成人久久免费影院| 欧美www视频| 欧美日韩国产色视频| 欧美高清视频免费观看| 裸体丰满少妇做受久久99精品| 久久久高清一区二区三区| 久久精品亚洲一区二区| 久久大综合网| 久久在线播放| 欧美丰满高潮xxxx喷水动漫| 欧美成人黑人xx视频免费观看 | 国产亚洲日本欧美韩国| 国产模特精品视频久久久久| 国产伦精品一区二区三区| 欧美精品亚洲二区| 国产精品久久久久久久久久久久久| 欧美国产日本| 欧美日韩一区二区三区免费看 | 性欧美xxxx大乳国产app| 亚洲一区成人| 久久国产免费看| 久久综合福利| 欧美激情综合五月色丁香| 国产精品a久久久久久| 国产视频综合在线| 亚洲黄色高清| 亚洲欧美综合网|